Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Sort Help
entries

Results

All (6)

All (6) ((6 results))

  • Articles and reports: 11-522-X201700014704
    Description:

    We identify several research areas and topics for methodological research in official statistics. We argue why these are important, and why these are the most important ones for official statistics. We describe the main topics in these research areas and sketch what seems to be the most promising ways to address them. Here we focus on: (i) Quality of National accounts, in particular the rate of growth of GNI (ii) Big data, in particular how to create representative estimates and how to make the most of big data when this is difficult or impossible. We also touch upon: (i) Increasing timeliness of preliminary and final statistical estimates (ii) Statistical analysis, in particular of complex and coherent phenomena. These topics are elements in the present Strategic Methodological Research Program that has recently been adopted at Statistics Netherlands

    Release date: 2016-03-24

  • Articles and reports: 12-001-X20040027753
    Description:

    Samplers often distrust model-based approaches to survey inference because of concerns about misspecification when models are applied to large samples from complex populations. We suggest that the model-based paradigm can work very successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In Zheng and Little (2003, 2004) we used penalized splines (p-splines) to model smoothly - varying relationships between the outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that p spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen for a common equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In situations that most favor the HT estimator, the model-based estimators have comparable efficiency.

    Release date: 2005-02-03

  • Articles and reports: 11-522-X20020016731
    Description:

    Behavioural researchers use a variety of techniques to predict respondent scores on constructs that are not directly observable. Examples of such constructs include job satisfaction, work stress, aptitude for graduate study, children's mathematical ability, etc. The techniques commonly used for modelling and predicting scores on such constructs include factor analysis, classical psychometric scaling and item response theory (IRT), and for each technique there are often several different strategies that can be used to generate individual scores. However, researchers are seldom satisfied with simply measuring these constructs. They typically use the derived scores in multiple regression, analysis of variance and numerous multivariate procedures. Though using predicted scores in this way can result in biased estimates of model parameters, not all researchers are aware of this difficulty. The paper will review the literature on this issue, with particular emphasis on IRT methods. Problems will be illustrated, some remedies suggested, and areas for further research will be identified.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016733
    Description:

    While censuses and surveys are often said to measure populations as they are, most reflect information about individuals as they were at the time of measurement, or even at some prior time point. Inferences from such data therefore should take into account change over time at both the population and individual levels. In this paper, we provide a unifying framework for such inference problems, illustrating it through a diverse series of examples including: (1) estimating residency status on Census Day using multiple administrative records, (2) combining administrative records for estimating the size of the US population, (3) using rolling averages from the American Community Survey, and (4) estimating the prevalence of human rights abuses.

    Specifically, at the population level, the estimands of interest, such as the size or mean characteristics of a population, might be changing. At the same time, individual subjects might be moving in and out of the frame of the study or changing their characteristics. Such changes over time can affect statistical studies of government data that combine information from multiple data sources, including censuses, surveys and administrative records, an increasingly common practice. Inferences from the resulting merged databases often depend heavily on specific choices made in combining, editing and analysing the data that reflect assumptions about how populations of interest change or remain stable over time.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20010016277
    Description:

    This paper discusses in detail issues dealing with the technical aspects of designing and conducting surveys. It is intended for an audience of survey methodologists.

    The advent of computerized record-linkage methodology has facilitated the conduct of cohort mortality studies in which exposure data in one database are electronically linked with mortality data from another database. In this article, the impact of linkage errors on estimates of epidemiological indicators of risk, such as standardized mortality ratios and relative risk regression model parameters, is explored. It is shown that these indicators can be subject to bias and additional variability in the presence of linkage errors, with false links and non-links leading to positive and negative bias, respectively, in estimates of the standardized mortality ratio. Although linkage errors always increase the uncertainty in the estimates, bias can be effectively eliminated in the special case in which the false positive rate equals the false negative rate within homogeneous states defined by cross-classification of the covariates of interest.

    Release date: 2002-09-12

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (5)

Analysis (5) ((5 results))

  • Articles and reports: 11-522-X201700014704
    Description:

    We identify several research areas and topics for methodological research in official statistics. We argue why these are important, and why these are the most important ones for official statistics. We describe the main topics in these research areas and sketch what seems to be the most promising ways to address them. Here we focus on: (i) Quality of National accounts, in particular the rate of growth of GNI (ii) Big data, in particular how to create representative estimates and how to make the most of big data when this is difficult or impossible. We also touch upon: (i) Increasing timeliness of preliminary and final statistical estimates (ii) Statistical analysis, in particular of complex and coherent phenomena. These topics are elements in the present Strategic Methodological Research Program that has recently been adopted at Statistics Netherlands

    Release date: 2016-03-24

  • Articles and reports: 12-001-X20040027753
    Description:

    Samplers often distrust model-based approaches to survey inference because of concerns about misspecification when models are applied to large samples from complex populations. We suggest that the model-based paradigm can work very successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In Zheng and Little (2003, 2004) we used penalized splines (p-splines) to model smoothly - varying relationships between the outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that p spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen for a common equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In situations that most favor the HT estimator, the model-based estimators have comparable efficiency.

    Release date: 2005-02-03

  • Articles and reports: 11-522-X20020016731
    Description:

    Behavioural researchers use a variety of techniques to predict respondent scores on constructs that are not directly observable. Examples of such constructs include job satisfaction, work stress, aptitude for graduate study, children's mathematical ability, etc. The techniques commonly used for modelling and predicting scores on such constructs include factor analysis, classical psychometric scaling and item response theory (IRT), and for each technique there are often several different strategies that can be used to generate individual scores. However, researchers are seldom satisfied with simply measuring these constructs. They typically use the derived scores in multiple regression, analysis of variance and numerous multivariate procedures. Though using predicted scores in this way can result in biased estimates of model parameters, not all researchers are aware of this difficulty. The paper will review the literature on this issue, with particular emphasis on IRT methods. Problems will be illustrated, some remedies suggested, and areas for further research will be identified.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016733
    Description:

    While censuses and surveys are often said to measure populations as they are, most reflect information about individuals as they were at the time of measurement, or even at some prior time point. Inferences from such data therefore should take into account change over time at both the population and individual levels. In this paper, we provide a unifying framework for such inference problems, illustrating it through a diverse series of examples including: (1) estimating residency status on Census Day using multiple administrative records, (2) combining administrative records for estimating the size of the US population, (3) using rolling averages from the American Community Survey, and (4) estimating the prevalence of human rights abuses.

    Specifically, at the population level, the estimands of interest, such as the size or mean characteristics of a population, might be changing. At the same time, individual subjects might be moving in and out of the frame of the study or changing their characteristics. Such changes over time can affect statistical studies of government data that combine information from multiple data sources, including censuses, surveys and administrative records, an increasingly common practice. Inferences from the resulting merged databases often depend heavily on specific choices made in combining, editing and analysing the data that reflect assumptions about how populations of interest change or remain stable over time.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20010016277
    Description:

    This paper discusses in detail issues dealing with the technical aspects of designing and conducting surveys. It is intended for an audience of survey methodologists.

    The advent of computerized record-linkage methodology has facilitated the conduct of cohort mortality studies in which exposure data in one database are electronically linked with mortality data from another database. In this article, the impact of linkage errors on estimates of epidemiological indicators of risk, such as standardized mortality ratios and relative risk regression model parameters, is explored. It is shown that these indicators can be subject to bias and additional variability in the presence of linkage errors, with false links and non-links leading to positive and negative bias, respectively, in estimates of the standardized mortality ratio. Although linkage errors always increase the uncertainty in the estimates, bias can be effectively eliminated in the special case in which the false positive rate equals the false negative rate within homogeneous states defined by cross-classification of the covariates of interest.

    Release date: 2002-09-12
Reference (1)

Reference (1) ((1 result))

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02
Date modified: