Survey design

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (57)

All (57) (0 to 10 of 57 results)

  • Articles and reports: 12-001-X202300200010
    Description: Sample coordination methods aim to increase (in positive coordination) or decrease (in negative coordination) the size of the overlap between samples. The samples considered can be from different occasions of a repeated survey and/or from different surveys covering a common population. Negative coordination is used to control the response burden in a given period, because some units do not respond to survey questionnaires if they are selected in many samples. Usually, methods for sample coordination do not take into account any measure of the response burden that a unit has already expended in responding to previous surveys. We introduce such a measure into a new method by adapting a spatially balanced sampling scheme, based on a generalization of Poisson sampling, together with a negative coordination method. The goal is to create a double control of the burden for these units: once by using a measure of burden during the sampling process and once by using a negative coordination method. We evaluate the approach using Monte-Carlo simulation and investigate its use for controlling for selection “hot-spots” in business surveys in Statistics Netherlands.
    Release date: 2024-01-03

  • Articles and reports: 11-633-X2022006
    Description:

    This article compares how survey mode, survey thematic context and sample design contribute to variation in responses to similar questions on self-perceived racial discrimination across the 2013, 2014, 2019 and 2020 cycles of the General Social Survey (GSS).

    Release date: 2022-08-09

  • Articles and reports: 12-001-X202000100002
    Description:

    Model-based methods are required to estimate small area parameters of interest, such as totals and means, when traditional direct estimation methods cannot provide adequate precision. Unit level and area level models are the most commonly used ones in practice. In the case of the unit level model, efficient model-based estimators can be obtained if the sample design is such that the sample and population models coincide: that is, the sampling design is non-informative for the model. If on the other hand, the sampling design is informative for the model, the selection probabilities will be related to the variable of interest, even after conditioning on the available auxiliary data. This will imply that the population model no longer holds for the sample. Pfeffermann and Sverchkov (2007) used the relationships between the population and sample distribution of the study variable to obtain approximately unbiased semi-parametric predictors of the area means under informative sampling schemes. Their procedure is valid for both sampled and non-sampled areas.

    Release date: 2020-06-30

  • Articles and reports: 12-001-X201900200003
    Description:

    Merging available sources of information is becoming increasingly important for improving estimates of population characteristics in a variety of fields. In presence of several independent probability samples from a finite population we investigate options for a combined estimator of the population total, based on either a linear combination of the separate estimators or on the combined sample approach. A linear combination estimator based on estimated variances can be biased as the separate estimators of the population total can be highly correlated to their respective variance estimators. We illustrate the possibility to use the combined sample to estimate the variances of the separate estimators, which results in general pooled variance estimators. These pooled variance estimators use all available information and have potential to significantly reduce bias of a linear combination of separate estimators.

    Release date: 2019-06-27

  • Articles and reports: 11-522-X201700014745
    Description:

    In the design of surveys a number of parameters like contact propensities, participation propensities and costs per sample unit play a decisive role. In on-going surveys, these survey design parameters are usually estimated from previous experience and updated gradually with new experience. In new surveys, these parameters are estimated from expert opinion and experience with similar surveys. Although survey institutes have a fair expertise and experience, the postulation, estimation and updating of survey design parameters is rarely done in a systematic way. This paper presents a Bayesian framework to include and update prior knowledge and expert opinion about the parameters. This framework is set in the context of adaptive survey designs in which different population units may receive different treatment given quality and cost objectives. For this type of survey, the accuracy of design parameters becomes even more crucial to effective design decisions. The framework allows for a Bayesian analysis of the performance of a survey during data collection and in between waves of a survey. We demonstrate the Bayesian analysis using a realistic simulation study.

    Release date: 2016-03-24

  • Articles and reports: 12-001-X201500214229
    Description:

    Self-weighting estimation through equal probability selection methods (epsem) is desirable for variance efficiency. Traditionally, the epsem property for (one phase) two stage designs for estimating population-level parameters is realized by using each primary sampling unit (PSU) population count as the measure of size for PSU selection along with equal sample size allocation per PSU under simple random sampling (SRS) of elementary units. However, when self-weighting estimates are desired for parameters corresponding to multiple domains under a pre-specified sample allocation to domains, Folsom, Potter and Williams (1987) showed that a composite measure of size can be used to select PSUs to obtain epsem designs when besides domain-level PSU counts (i.e., distribution of domain population over PSUs), frame-level domain identifiers for elementary units are also assumed to be available. The term depsem-A will be used to denote such (one phase) two stage designs to obtain domain-level epsem estimation. Folsom et al. also considered two phase two stage designs when domain-level PSU counts are unknown, but whole PSU counts are known. For these designs (to be termed depsem-B) with PSUs selected proportional to the usual size measure (i.e., the total PSU count) at the first stage, all elementary units within each selected PSU are first screened for classification into domains in the first phase of data collection before SRS selection at the second stage. Domain-stratified samples are then selected within PSUs with suitably chosen domain sampling rates such that the desired domain sample sizes are achieved and the resulting design is self-weighting. In this paper, we first present a simple justification of composite measures of size for the depsem-A design and of the domain sampling rates for the depsem-B design. Then, for depsem-A and -B designs, we propose generalizations, first to cases where frame-level domain identifiers for elementary units are not available and domain-level PSU counts are only approximately known from alternative sources, and second to cases where PSU size measures are pre-specified based on other practical and desirable considerations of over- and under-sampling of certain domains. We also present a further generalization in the presence of subsampling of elementary units and nonresponse within selected PSUs at the first phase before selecting phase two elementary units from domains within each selected PSU. This final generalization of depsem-B is illustrated for an area sample of housing units.

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201500214237
    Description:

    Careful design of a dual-frame random digit dial (RDD) telephone survey requires selecting from among many options that have varying impacts on cost, precision, and coverage in order to obtain the best possible implementation of the study goals. One such consideration is whether to screen cell-phone households in order to interview cell-phone only (CPO) households and exclude dual-user household, or to take all interviews obtained via the cell-phone sample. We present a framework in which to consider the tradeoffs between these two options and a method to select the optimal design. We derive and discuss the optimum allocation of sample size between the two sampling frames and explore the choice of optimum p, the mixing parameter for the dual-user domain. We illustrate our methods using the National Immunization Survey, sponsored by the Centers for Disease Control and Prevention.

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201500214249
    Description:

    The problem of optimal allocation of samples in surveys using a stratified sampling plan was first discussed by Neyman in 1934. Since then, many researchers have studied the problem of the sample allocation in multivariate surveys and several methods have been proposed. Basically, these methods are divided into two classes: The first class comprises methods that seek an allocation which minimizes survey costs while keeping the coefficients of variation of estimators of totals below specified thresholds for all survey variables of interest. The second aims to minimize a weighted average of the relative variances of the estimators of totals given a maximum overall sample size or a maximum cost. This paper proposes a new optimization approach for the sample allocation problem in multivariate surveys. This approach is based on a binary integer programming formulation. Several numerical experiments showed that the proposed approach provides efficient solutions to this problem, which improve upon a ‘textbook algorithm’ and can be more efficient than the algorithm by Bethel (1985, 1989).

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201400214119
    Description:

    When considering sample stratification by several variables, we often face the case where the expected number of sample units to be selected in each stratum is very small and the total number of units to be selected is smaller than the total number of strata. These stratified sample designs are specifically represented by the tabular arrays with real numbers, called controlled selection problems, and are beyond the reach of conventional methods of allocation. Many algorithms for solving these problems have been studied over about 60 years beginning with Goodman and Kish (1950). Those developed more recently are especially computer intensive and always find the solutions. However, there still remains the unanswered question: In what sense are the solutions to a controlled selection problem obtained from those algorithms optimal? We introduce the general concept of optimal solutions, and propose a new controlled selection algorithm based on typical distance functions to achieve solutions. This algorithm can be easily performed by a new SAS-based software. This study focuses on two-way stratification designs. The controlled selection solutions from the new algorithm are compared with those from existing algorithms using several examples. The new algorithm successfully obtains robust solutions to two-way controlled selection problems that meet the optimality criteria.

    Release date: 2014-12-19

  • Articles and reports: 12-001-X201300111824
    Description:

    In most surveys all sample units receive the same treatment and the same design features apply to all selected people and households. In this paper, it is explained how survey designs may be tailored to optimize quality given constraints on costs. Such designs are called adaptive survey designs. The basic ingredients of such designs are introduced, discussed and illustrated with various examples.

    Release date: 2013-06-28
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (53)

Analysis (53) (0 to 10 of 53 results)

  • Articles and reports: 12-001-X202300200010
    Description: Sample coordination methods aim to increase (in positive coordination) or decrease (in negative coordination) the size of the overlap between samples. The samples considered can be from different occasions of a repeated survey and/or from different surveys covering a common population. Negative coordination is used to control the response burden in a given period, because some units do not respond to survey questionnaires if they are selected in many samples. Usually, methods for sample coordination do not take into account any measure of the response burden that a unit has already expended in responding to previous surveys. We introduce such a measure into a new method by adapting a spatially balanced sampling scheme, based on a generalization of Poisson sampling, together with a negative coordination method. The goal is to create a double control of the burden for these units: once by using a measure of burden during the sampling process and once by using a negative coordination method. We evaluate the approach using Monte-Carlo simulation and investigate its use for controlling for selection “hot-spots” in business surveys in Statistics Netherlands.
    Release date: 2024-01-03

  • Articles and reports: 11-633-X2022006
    Description:

    This article compares how survey mode, survey thematic context and sample design contribute to variation in responses to similar questions on self-perceived racial discrimination across the 2013, 2014, 2019 and 2020 cycles of the General Social Survey (GSS).

    Release date: 2022-08-09

  • Articles and reports: 12-001-X202000100002
    Description:

    Model-based methods are required to estimate small area parameters of interest, such as totals and means, when traditional direct estimation methods cannot provide adequate precision. Unit level and area level models are the most commonly used ones in practice. In the case of the unit level model, efficient model-based estimators can be obtained if the sample design is such that the sample and population models coincide: that is, the sampling design is non-informative for the model. If on the other hand, the sampling design is informative for the model, the selection probabilities will be related to the variable of interest, even after conditioning on the available auxiliary data. This will imply that the population model no longer holds for the sample. Pfeffermann and Sverchkov (2007) used the relationships between the population and sample distribution of the study variable to obtain approximately unbiased semi-parametric predictors of the area means under informative sampling schemes. Their procedure is valid for both sampled and non-sampled areas.

    Release date: 2020-06-30

  • Articles and reports: 12-001-X201900200003
    Description:

    Merging available sources of information is becoming increasingly important for improving estimates of population characteristics in a variety of fields. In presence of several independent probability samples from a finite population we investigate options for a combined estimator of the population total, based on either a linear combination of the separate estimators or on the combined sample approach. A linear combination estimator based on estimated variances can be biased as the separate estimators of the population total can be highly correlated to their respective variance estimators. We illustrate the possibility to use the combined sample to estimate the variances of the separate estimators, which results in general pooled variance estimators. These pooled variance estimators use all available information and have potential to significantly reduce bias of a linear combination of separate estimators.

    Release date: 2019-06-27

  • Articles and reports: 11-522-X201700014745
    Description:

    In the design of surveys a number of parameters like contact propensities, participation propensities and costs per sample unit play a decisive role. In on-going surveys, these survey design parameters are usually estimated from previous experience and updated gradually with new experience. In new surveys, these parameters are estimated from expert opinion and experience with similar surveys. Although survey institutes have a fair expertise and experience, the postulation, estimation and updating of survey design parameters is rarely done in a systematic way. This paper presents a Bayesian framework to include and update prior knowledge and expert opinion about the parameters. This framework is set in the context of adaptive survey designs in which different population units may receive different treatment given quality and cost objectives. For this type of survey, the accuracy of design parameters becomes even more crucial to effective design decisions. The framework allows for a Bayesian analysis of the performance of a survey during data collection and in between waves of a survey. We demonstrate the Bayesian analysis using a realistic simulation study.

    Release date: 2016-03-24

  • Articles and reports: 12-001-X201500214229
    Description:

    Self-weighting estimation through equal probability selection methods (epsem) is desirable for variance efficiency. Traditionally, the epsem property for (one phase) two stage designs for estimating population-level parameters is realized by using each primary sampling unit (PSU) population count as the measure of size for PSU selection along with equal sample size allocation per PSU under simple random sampling (SRS) of elementary units. However, when self-weighting estimates are desired for parameters corresponding to multiple domains under a pre-specified sample allocation to domains, Folsom, Potter and Williams (1987) showed that a composite measure of size can be used to select PSUs to obtain epsem designs when besides domain-level PSU counts (i.e., distribution of domain population over PSUs), frame-level domain identifiers for elementary units are also assumed to be available. The term depsem-A will be used to denote such (one phase) two stage designs to obtain domain-level epsem estimation. Folsom et al. also considered two phase two stage designs when domain-level PSU counts are unknown, but whole PSU counts are known. For these designs (to be termed depsem-B) with PSUs selected proportional to the usual size measure (i.e., the total PSU count) at the first stage, all elementary units within each selected PSU are first screened for classification into domains in the first phase of data collection before SRS selection at the second stage. Domain-stratified samples are then selected within PSUs with suitably chosen domain sampling rates such that the desired domain sample sizes are achieved and the resulting design is self-weighting. In this paper, we first present a simple justification of composite measures of size for the depsem-A design and of the domain sampling rates for the depsem-B design. Then, for depsem-A and -B designs, we propose generalizations, first to cases where frame-level domain identifiers for elementary units are not available and domain-level PSU counts are only approximately known from alternative sources, and second to cases where PSU size measures are pre-specified based on other practical and desirable considerations of over- and under-sampling of certain domains. We also present a further generalization in the presence of subsampling of elementary units and nonresponse within selected PSUs at the first phase before selecting phase two elementary units from domains within each selected PSU. This final generalization of depsem-B is illustrated for an area sample of housing units.

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201500214237
    Description:

    Careful design of a dual-frame random digit dial (RDD) telephone survey requires selecting from among many options that have varying impacts on cost, precision, and coverage in order to obtain the best possible implementation of the study goals. One such consideration is whether to screen cell-phone households in order to interview cell-phone only (CPO) households and exclude dual-user household, or to take all interviews obtained via the cell-phone sample. We present a framework in which to consider the tradeoffs between these two options and a method to select the optimal design. We derive and discuss the optimum allocation of sample size between the two sampling frames and explore the choice of optimum p, the mixing parameter for the dual-user domain. We illustrate our methods using the National Immunization Survey, sponsored by the Centers for Disease Control and Prevention.

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201500214249
    Description:

    The problem of optimal allocation of samples in surveys using a stratified sampling plan was first discussed by Neyman in 1934. Since then, many researchers have studied the problem of the sample allocation in multivariate surveys and several methods have been proposed. Basically, these methods are divided into two classes: The first class comprises methods that seek an allocation which minimizes survey costs while keeping the coefficients of variation of estimators of totals below specified thresholds for all survey variables of interest. The second aims to minimize a weighted average of the relative variances of the estimators of totals given a maximum overall sample size or a maximum cost. This paper proposes a new optimization approach for the sample allocation problem in multivariate surveys. This approach is based on a binary integer programming formulation. Several numerical experiments showed that the proposed approach provides efficient solutions to this problem, which improve upon a ‘textbook algorithm’ and can be more efficient than the algorithm by Bethel (1985, 1989).

    Release date: 2015-12-17

  • Articles and reports: 12-001-X201400214119
    Description:

    When considering sample stratification by several variables, we often face the case where the expected number of sample units to be selected in each stratum is very small and the total number of units to be selected is smaller than the total number of strata. These stratified sample designs are specifically represented by the tabular arrays with real numbers, called controlled selection problems, and are beyond the reach of conventional methods of allocation. Many algorithms for solving these problems have been studied over about 60 years beginning with Goodman and Kish (1950). Those developed more recently are especially computer intensive and always find the solutions. However, there still remains the unanswered question: In what sense are the solutions to a controlled selection problem obtained from those algorithms optimal? We introduce the general concept of optimal solutions, and propose a new controlled selection algorithm based on typical distance functions to achieve solutions. This algorithm can be easily performed by a new SAS-based software. This study focuses on two-way stratification designs. The controlled selection solutions from the new algorithm are compared with those from existing algorithms using several examples. The new algorithm successfully obtains robust solutions to two-way controlled selection problems that meet the optimality criteria.

    Release date: 2014-12-19

  • Articles and reports: 12-001-X201300111824
    Description:

    In most surveys all sample units receive the same treatment and the same design features apply to all selected people and households. In this paper, it is explained how survey designs may be tailored to optimize quality given constraints on costs. Such designs are called adaptive survey designs. The basic ingredients of such designs are introduced, discussed and illustrated with various examples.

    Release date: 2013-06-28
Reference (4)

Reference (4) ((4 results))

  • Surveys and statistical programs – Documentation: 81-595-M2003009
    Geography: Canada
    Description:

    This paper examines how the Canadian Adult Education and Training Survey (AETS) can be used to study participation in and impacts of education and training activities for adults.

    Release date: 2003-10-15

  • Surveys and statistical programs – Documentation: 75F0002M2000012
    Description:

    This document presents the information for the new entry exit portion of the Survey of Labour and Income Dynamics (SLID) income interview.

    Release date: 2001-03-27

  • Notices and consultations: 13F0026M1999001
    Description:

    The main objectives of a new Canadian survey measuring asset and debt holding of families and individuals will be to update wealth information that is over one decade old; to improve the reliability of the wealth estimates; and, to provide a primary tool for analysing many important policy issues related to the distribution of assets and debts, future consumption possibilities, and savings behaviour that is of interest to governments, business and communities.

    This paper is the document that launched the development of the new asset and debt survey, subsequently renamed the Survey of Financial Security. It looks at the conceptual framework for the survey, including the appropriate unit of measurement (family, household or person) and discusses measurement issues such as establishing an accounting framework for assets and debts. The variables proposed for inclusion are also identified. The paper poses several questions to readers and asks for comments and feedback.

    Release date: 1999-03-23

  • Surveys and statistical programs – Documentation: 75F0002M1994001
    Description:

    This paper describes the Survey of Labour and Income Dynamics (SLID) following rules, which govern who is traced and who is interviewed. It also outlines the conceptual basis for these procedures.

    Release date: 1995-12-30
Date modified: