Statistiques par sujet – Méthodes statistiques

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Autres ressources disponibles pour appuyer vos recherches.

Aide pour trier les résultats
Explorer notre base centrale des principaux concepts normalisés, définitions, sources de données et méthodes.
En cours de chargement
Chargement en cours, veuillez patienter...
Tout (4)

Tout (4) (4 of 4 results)

  • Articles et rapports : 12-001-X201000211384
    Description :

    Le ralentissement économique aux États-Unis pourrait rendre incertain le maintien de stratégies coûteuses dans les opérations des enquêtes. Dans le Behavioral Risk Factor Surveillance System (BRFSS), une période de collecte de données mensuelle de 31 jours seulement pourrait être une solution de rechange moins coûteuse. Toutefois, elle pourrait exclure une partie des interviews menées après 31 jours (répondants tardifs) et les caractéristiques de ces répondants pourraient être différentes à de nombreux égards de celles des répondants qui ont participé à l'enquête dans les 31 jours (répondants hâtifs). Nous avons tâché de déterminer s'il existe entre les répondants hâtifs et les répondants tardifs des différences d'ordre démographique ou en ce qui a trait à la couverture des soins de santé, à l'état de santé général, aux comportements posant un risque pour la santé et aux maladies ou problèmes de santé chroniques. Nous avons utilisé les données du BRFSS 2007, où un échantillon représentatif de la population adulte aux États-Unis ne vivant pas en établissement a été sélectionné au moyen d'une méthode de composition aléatoire. Les répondants tardifs étaient significativement plus susceptibles d'être de sexe masculin ; de déclarer leur race ou origine ethnique comme étant hispanique ; d'avoir un revenu annuel de plus de 50 000 $ ; d'avoir moins de 45 ans ; d'avoir un niveau de scolarité inférieur au diplôme d'études secondaires ; de bénéficier d'une couverture des soins de santé ; d'être significativement plus susceptibles de déclarer être en bonne santé ; d'être significativement moins susceptibles de déclarer faire de l'hypertension, souffrir de diabète ou être obèses. Les différences observées entre les répondants hâtifs et les répondants tardifs dans les estimations d'enquête pourraient influer à peine sur les estimations nationales et au niveau de l'État. Étant donné que la proportion de répondants tardifs pourrait augmenter à l'avenir, il y a lieu d'examiner son incidence sur les estimations découlant de la surveillance avant de l'exclure de l'analyse. Dans l'analyse portant sur les répondants tardifs, il devrait suffire de combiner plusieurs années de données pour produire des estimations fiables.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000211385
    Description :

    Dans cette note brève, nous montrons que l'échantillonnage aléatoire sans remise et l'échantillonnage de Bernoulli ont à peu près la même entropie quand la taille de la population est grande. Nous donnons un exemple empirique en guise d'illustration.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000211378
    Description :

    L'une des clés de la réduction ou de l'éradication de la pauvreté dans le tiers monde est l'obtention d'information fiable sur les pauvres et sur leur emplacement, afin que les interventions et l'aide soient dirigées vers les personnes les plus nécessiteuses. L'estimation sur petits domaines est une méthode statistique utilisée pour surveiller la pauvreté et décider de la répartition de l'aide de façon à réaliser les Objectifs du millénaire pour le développement. Elbers, Lanjouw et Lanjouw (ELL) (2003) ont proposé, pour produire des mesures de la pauvreté fondées sur le revenu ou sur les dépenses, une méthode d'estimation sur petits domaines qui est mise en oeuvre par la Banque mondiale dans ses projets de cartographie de la pauvreté grâce à la participation des organismes statistiques centraux de nombreux pays du tiers monde, dont le Cambodge, le Laos, les Philippines, la Thaïlande et le Vietnam, et qui est intégrée dans le logiciel PovMap de la Banque mondiale. Dans le présent article, nous présentons la méthode ELL, qui consiste à modéliser d'abord les données d'enquête, puis à appliquer le modèle obtenu à des données de recensement, en nous penchant surtout sur la première phase, c'est-à-dire l'ajustement des modèles de régression, ainsi que sur les erreurs-types estimées à la deuxième phase. Nous présentons d'autres méthodes d'ajustement de modèles de régression, telles que la régression généralisée sur données d'enquête (RGE) (décrite dans Lohr (1999), chapitre 11) et celles utilisées dans les méthodes existantes d'estimations sur petits domaines, à savoir la méthode du meilleur prédicteur linéaire sans biais pseudo-empirique (pseudo-MPLSB) (You et Rao 2002) et la méthode itérative à équations d'estimation pondérées (IEEP) (You, Rao et Kovacevic 2003), et nous les comparons à la stratégie de modélisation de ELL. La différence la plus importante entre la méthode ELL et les autres techniques tient au fondement théorique de la méthode d'ajustement du modèle proposée par ELL. Nous nous servons d'un exemple fondé sur la Family Income and Expenses Survey des Philippines pour illustrer les différences entre les estimations des paramètres et leurs erreurs-types correspondantes, ainsi qu'entre les composantes de la variance générées par les diverses méthodes et nous étendons la discussion à l'effet de ces différences sur l'exactitude estimée des estimations sur petits domaines finales. Nous mettons l'accent sur la nécessité de produire de bonnes estimations des composantes de la variance, ainsi que des coefficients de régression et de leurs erreurs-types aux fins de l'estimation sur petits domaines de la pauvreté.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000111246
    Description :

    Dans le cas de nombreux sondages, des procédures d'ajustement des poids sont utilisées pour réduire le biais de non-réponse. Ces ajustements s'appuient sur les données auxiliaires disponibles. Le présent article traite de l'estimation de la variance par la méthode du jackknife pour les estimateurs qui ont été corrigés de la non-réponse. En suivant l'approche inversée d'estimation de la variance proposée par Fay (1991), ainsi que par Shao et Steel (1999), nous étudions l'effet dû au fait de ne pas recalculer l'ajustement des poids pour la non-réponse dans chaque réplique jackknife. Nous montrons que l'estimateur de variance jackknife « simplifié » résultant a tendance à surestimer la variance réelle des estimateurs ponctuels dans le cas de plusieurs procédures d'ajustement des poids utilisées en pratique. Ces résultats théoriques sont confirmés au moyen d'une étude par simulation dans laquelle nous comparons l'estimateur de variance jackknife simplifié à l'estimateur de variance jackknife complet obtenu en recalculant l'ajustement des poids pour la non-réponse dans chaque réplique jackknife.

    Date de diffusion : 2010-06-29

Données (0)

Données (0) (Aucun résultat)

Votre recherche pour «» n’a donné aucun résultat dans la présente section du site.

Vous pouvez essayer :

Analyses (4)

Analyses (4) (4 of 4 results)

  • Articles et rapports : 12-001-X201000211384
    Description :

    Le ralentissement économique aux États-Unis pourrait rendre incertain le maintien de stratégies coûteuses dans les opérations des enquêtes. Dans le Behavioral Risk Factor Surveillance System (BRFSS), une période de collecte de données mensuelle de 31 jours seulement pourrait être une solution de rechange moins coûteuse. Toutefois, elle pourrait exclure une partie des interviews menées après 31 jours (répondants tardifs) et les caractéristiques de ces répondants pourraient être différentes à de nombreux égards de celles des répondants qui ont participé à l'enquête dans les 31 jours (répondants hâtifs). Nous avons tâché de déterminer s'il existe entre les répondants hâtifs et les répondants tardifs des différences d'ordre démographique ou en ce qui a trait à la couverture des soins de santé, à l'état de santé général, aux comportements posant un risque pour la santé et aux maladies ou problèmes de santé chroniques. Nous avons utilisé les données du BRFSS 2007, où un échantillon représentatif de la population adulte aux États-Unis ne vivant pas en établissement a été sélectionné au moyen d'une méthode de composition aléatoire. Les répondants tardifs étaient significativement plus susceptibles d'être de sexe masculin ; de déclarer leur race ou origine ethnique comme étant hispanique ; d'avoir un revenu annuel de plus de 50 000 $ ; d'avoir moins de 45 ans ; d'avoir un niveau de scolarité inférieur au diplôme d'études secondaires ; de bénéficier d'une couverture des soins de santé ; d'être significativement plus susceptibles de déclarer être en bonne santé ; d'être significativement moins susceptibles de déclarer faire de l'hypertension, souffrir de diabète ou être obèses. Les différences observées entre les répondants hâtifs et les répondants tardifs dans les estimations d'enquête pourraient influer à peine sur les estimations nationales et au niveau de l'État. Étant donné que la proportion de répondants tardifs pourrait augmenter à l'avenir, il y a lieu d'examiner son incidence sur les estimations découlant de la surveillance avant de l'exclure de l'analyse. Dans l'analyse portant sur les répondants tardifs, il devrait suffire de combiner plusieurs années de données pour produire des estimations fiables.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000211385
    Description :

    Dans cette note brève, nous montrons que l'échantillonnage aléatoire sans remise et l'échantillonnage de Bernoulli ont à peu près la même entropie quand la taille de la population est grande. Nous donnons un exemple empirique en guise d'illustration.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000211378
    Description :

    L'une des clés de la réduction ou de l'éradication de la pauvreté dans le tiers monde est l'obtention d'information fiable sur les pauvres et sur leur emplacement, afin que les interventions et l'aide soient dirigées vers les personnes les plus nécessiteuses. L'estimation sur petits domaines est une méthode statistique utilisée pour surveiller la pauvreté et décider de la répartition de l'aide de façon à réaliser les Objectifs du millénaire pour le développement. Elbers, Lanjouw et Lanjouw (ELL) (2003) ont proposé, pour produire des mesures de la pauvreté fondées sur le revenu ou sur les dépenses, une méthode d'estimation sur petits domaines qui est mise en oeuvre par la Banque mondiale dans ses projets de cartographie de la pauvreté grâce à la participation des organismes statistiques centraux de nombreux pays du tiers monde, dont le Cambodge, le Laos, les Philippines, la Thaïlande et le Vietnam, et qui est intégrée dans le logiciel PovMap de la Banque mondiale. Dans le présent article, nous présentons la méthode ELL, qui consiste à modéliser d'abord les données d'enquête, puis à appliquer le modèle obtenu à des données de recensement, en nous penchant surtout sur la première phase, c'est-à-dire l'ajustement des modèles de régression, ainsi que sur les erreurs-types estimées à la deuxième phase. Nous présentons d'autres méthodes d'ajustement de modèles de régression, telles que la régression généralisée sur données d'enquête (RGE) (décrite dans Lohr (1999), chapitre 11) et celles utilisées dans les méthodes existantes d'estimations sur petits domaines, à savoir la méthode du meilleur prédicteur linéaire sans biais pseudo-empirique (pseudo-MPLSB) (You et Rao 2002) et la méthode itérative à équations d'estimation pondérées (IEEP) (You, Rao et Kovacevic 2003), et nous les comparons à la stratégie de modélisation de ELL. La différence la plus importante entre la méthode ELL et les autres techniques tient au fondement théorique de la méthode d'ajustement du modèle proposée par ELL. Nous nous servons d'un exemple fondé sur la Family Income and Expenses Survey des Philippines pour illustrer les différences entre les estimations des paramètres et leurs erreurs-types correspondantes, ainsi qu'entre les composantes de la variance générées par les diverses méthodes et nous étendons la discussion à l'effet de ces différences sur l'exactitude estimée des estimations sur petits domaines finales. Nous mettons l'accent sur la nécessité de produire de bonnes estimations des composantes de la variance, ainsi que des coefficients de régression et de leurs erreurs-types aux fins de l'estimation sur petits domaines de la pauvreté.

    Date de diffusion : 2010-12-21

  • Articles et rapports : 12-001-X201000111246
    Description :

    Dans le cas de nombreux sondages, des procédures d'ajustement des poids sont utilisées pour réduire le biais de non-réponse. Ces ajustements s'appuient sur les données auxiliaires disponibles. Le présent article traite de l'estimation de la variance par la méthode du jackknife pour les estimateurs qui ont été corrigés de la non-réponse. En suivant l'approche inversée d'estimation de la variance proposée par Fay (1991), ainsi que par Shao et Steel (1999), nous étudions l'effet dû au fait de ne pas recalculer l'ajustement des poids pour la non-réponse dans chaque réplique jackknife. Nous montrons que l'estimateur de variance jackknife « simplifié » résultant a tendance à surestimer la variance réelle des estimateurs ponctuels dans le cas de plusieurs procédures d'ajustement des poids utilisées en pratique. Ces résultats théoriques sont confirmés au moyen d'une étude par simulation dans laquelle nous comparons l'estimateur de variance jackknife simplifié à l'estimateur de variance jackknife complet obtenu en recalculant l'ajustement des poids pour la non-réponse dans chaque réplique jackknife.

    Date de diffusion : 2010-06-29

Références (0)

Références (0) (Aucun résultat)

Votre recherche pour «» n’a donné aucun résultat dans la présente section du site.

Vous pouvez essayer :

Date de modification :