Adaptive survey designs to minimize survey mode effects – a case study on the Dutch Labor Force Survey 3. An algorithm for solving the multi-mode optimization problem

In the previous section, we introduced the quality and cost functions and constructed a multi-mode optimization problem. The subpopulation comparability constraint, i.e., the upper limit to the maximum absolute difference between group method effects, makes the problem nonconvex and hard to solve. As a consequence, when trying to solve the multi-mode optimization problem, most general-purpose nonlinear solvers cannot do better than a local optimum. Therefore, the choice of starting points in the solvers plays an important role. As such, we propose a two-step approach. In the first step, we solve a linear programming problem (LP) that addresses the linear constraints (2.1), (2.5), (2.6) and (2.9) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOeI0caaa@3864@ (2.10). In the second step, we use the optimal solution obtained in step 1 as a starting point for a local search algorithm to solve the nonconvex nonlinear problem (NNLP).

We reformulate the optimization problem to make it computationally more tractable. Since | f( x ) |=max{ f( x ),f( x ) }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8UaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaa wEa7caGLiWoacqGH9aqpciGGTbGaaiyyaiaacIhadaGadaqaaiaadA gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaISaGaeyOeI0IaamOz amaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaacY caaaa@5060@ we can rewrite the objective function via an additional variable t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3870@ and impose that f ( x ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiEaaGaayjkaiaawMcaaiabgsMiJkaadshaaaa@3D96@ and f ( x ) t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam OzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgsMiJkaadshacaGG Uaaaaa@3F35@ Clearly, t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3870@ has to be nonnegative. The constraints themselves do not change, they are simply replaced. The multi-mode optimization problem is given in (3.2).

We can derive the LP by removing the non-linear constraints on the comparability of method effects across subpopulations and by replacing the non-linear objective function by one of the linear constraints. We choose for minimization of costs as the LP objective. The resulting LP problem formulation is given by

minimize p( s,g ) s,g N g p( s,g )c( s,g ) subject to s S R N g p( s,g )ρ( s,g ) R g ,gG s,g N g p( s,g ) S max 0p( s,g )1,sS,gG sS p( s,g ) =1,gG s S R p( s,g ) >0,gG. (3.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=jFfea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaa aabaWaaCbeaeaacaqGTbGaaeyAaiaab6gacaqGPbGaaeyBaiaabMga caqG6bGaaeyzaaWcbaGaamiCamaabmaabaGaam4CaiaaiYcacaWGNb aacaGLOaGaayzkaaaabeaaaOqaamaaqafabaGaamOtamaaBaaaleaa caWGNbaabeaaaeaacaWGZbGaaGilaiaadEgaaeqaniabggHiLdGcca WGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaacaWG JbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaeaaca qGZbGaaeyDaiaabkgacaqGQbGaaeyzaiaabogacaqG0bGaaeiiaiaa bshacaqGVbaabaWaaabuaeaacaWGobWaaSbaaSqaaiaadEgaaeqaaa qaaiaadohacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=jr8tnaaCaaameqabaGaamOuaaaaaSqab0GaeyyeIu oakiaadchadaqadaqaaiaadohacaaISaGaam4zaaGaayjkaiaawMca aiabeg8aYnaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaa GaeyyzImRaamOuamaaBaaaleaacaWGNbaabeaakiaaiYcacaaMe8Ua eyiaIiIaam4zaiabgIGiolab=zq8hbqaaaqaamaaqafabaGaamOtam aaBaaaleaacaWGNbaabeaaaeaacaWGZbGaaGilaiaadEgaaeqaniab ggHiLdGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcaca GLPaaacqGHKjYOcaWGtbWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqa baaakeaaaeaacaaIWaGaeyizImQaamiCamaabmaabaGaam4CaiaaiY cacaWGNbaacaGLOaGaayzkaaGaeyizImQaaGymaiaaiYcacaaMe8Ua eyiaIiIaam4CaiabgIGiolab=jr8tjaaiYcacaaMe8Uaam4zaiabgI Giolab=zq8hbqaaaqaamaaqafabaGaamiCamaabmaabaGaam4Caiaa iYcacaWGNbaacaGLOaGaayzkaaaaleaacaWGZbGaeyicI4Sae8NeXp fabeqdcqGHris5aOGaeyypa0JaaGymaiaacYcacaaMe8UaeyiaIiIa am4zaiabgIGiolab=zq8hbqaaaqaamaaqafabaGaamiCamaabmaaba Gaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaleaacaWGZbGaeyic I4Sae8NeXp1aaWbaaWqabeaacaWGsbaaaaWcbeqdcqGHris5aOGaaG jbVlaab6dacaaMe8UaaGimaiaacYcacaaMe8UaeyiaIiIaam4zaiab gIGiolab=zq8hjaai6caaaGaaGzbVlaaywW7caaMf8UaaGzbVlaayw W7caGGOaGaaG4maiaac6cacaaIXaGaaiykaaaa@E9DD@

Minimize t subject to s,g w g p( s,g )ρ( s,g )D( s,g ) s S R p( s ,g )ρ( s ,g ) t s,g w g p( s,g )ρ( s,g )D( s,g ) s S R p( s ,g )ρ( s ,g ) t s,g N g p( s,g )c( s,g )B s S R N g p( s,g )ρ( s,g ) R g ,gG s S R p( s,g )ρ( s,g )D( s,g ) s S R p( s,g )ρ( s,g ) s S R p( s,h )ρ( s,h )D( s,h ) s S R p( s,h )ρ( s,h ) M s,g N g p( s,g ) S max 0p( s,g )1,sS,gG sS p( s,g ) =1,gG s S R p( s,g )>0,gG 0t. (3.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=jFfea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabSGaaa aaaeaacaqGnbGaaeyAaiaab6gacaqGPbGaaeyBaiaabMgacaqG6bGa aeyzaaqaaiaadshaaeaacaqGZbGaaeyDaiaabkgacaqGQbGaaeyzai aabogacaqG0bGaaeiiaiaabshacaqGVbaabaWaaabuaeqaleaacaWG ZbGaaGilaiaadEgaaeqaniabggHiLdGcdaWcaaqaaiaadEhadaWgaa WcbaGaam4zaaqabaGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadEga aiaawIcacaGLPaaacqaHbpGCdaqadaqaaiaadohacaaISaGaam4zaa GaayjkaiaawMcaaiaadseadaqadaqaaiaadohacaaISaGaam4zaaGa ayjkaiaawMcaaaqaamaaqafabeWcbaGabm4CayaafaGaeyicI48efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaah aaadbeqaaiaadkfaaaaaleqaniabggHiLdGccaWGWbWaaeWaaeaace WGZbGbauaacaaISaGaam4zaaGaayjkaiaawMcaaiabeg8aYnaabmaa baGabm4CayaafaGaaGilaiaadEgaaiaawIcacaGLPaaaaaGaeyizIm QaamiDaaqaaaqaaiabgkHiTmaaqafabeWcbaGaam4CaiaaiYcacaWG NbaabeqdcqGHris5aOWaaSaaaeaacaWG3bWaaSbaaSqaaiaadEgaae qaaOGaamiCamaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzk aaGaeqyWdi3aaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPa aacaWGebWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaa aeaadaaeqbqabSqaaiqadohagaqbaiabgIGiolab=jr8tnaaCaaame qabaGaamOuaaaaaSqab0GaeyyeIuoakiaadchadaqadaqaaiqadoha gaqbaiaaiYcacaWGNbaacaGLOaGaayzkaaGaeqyWdi3aaeWaaeaace WGZbGbauaacaaISaGaam4zaaGaayjkaiaawMcaaaaacqGHKjYOcaWG 0baabaaabaWaaabuaeaacaWGobWaaSbaaSqaaiaadEgaaeqaaaqaai aadohacaaISaGaam4zaaqab0GaeyyeIuoakiaadchadaqadaqaaiaa dohacaaISaGaam4zaaGaayjkaiaawMcaaiaadogadaqadaqaaiaado hacaaISaGaam4zaaGaayjkaiaawMcaaiabgsMiJkaadkeaaeaaaeaa daaeqbqabSqaaiaadohacqGHiiIZcqWFse=udaahaaadbeqaaiaadk faaaaaleqaniabggHiLdGccaWGobWaaSbaaSqaaiaadEgaaeqaaOGa amiCamaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaGaeq yWdi3aaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaacqGH LjYScaWGsbWaaSbaaSqaaiaadEgaaeqaaOGaaGilaiaaysW7cqGHai IicaWGNbGaeyicI4Sae8NbXFeabaaabaWaaSaaaeaadaaeqbqabSqa aiaadohacqGHiiIZcqWFse=udaahaaadbeqaaiaadkfaaaaaleqani abggHiLdGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIca caGLPaaacqaHbpGCdaqadaqaaiaadohacaaISaGaam4zaaGaayjkai aawMcaaiaadseadaqadaqaaiaadohacaaISaGaam4zaaGaayjkaiaa wMcaaaqaamaaqafabeWcbaGaam4CaiabgIGiolab=jr8tnaaCaaame qabaGaamOuaaaaaSqab0GaeyyeIuoakiaadchadaqadaqaaiaadoha caaISaGaam4zaaGaayjkaiaawMcaaiabeg8aYnaabmaabaGaam4Cai aaiYcacaWGNbaacaGLOaGaayzkaaaaaiabgkHiTmaalaaabaWaaabu aeqaleaacaWGZbGaeyicI4Sae8NeXp1aaWbaaWqabeaacaWGsbaaaa WcbeqdcqGHris5aOGaamiCamaabmaabaGaam4CaiaaiYcacaWGObaa caGLOaGaayzkaaGaeqyWdi3aaeWaaeaacaWGZbGaaGilaiaadIgaai aawIcacaGLPaaacaWGebWaaeWaaeaacaWGZbGaaGilaiaadIgaaiaa wIcacaGLPaaaaeaadaaeqbqabSqaaiaadohacqGHiiIZcqWFse=uda ahaaadbeqaaiaadkfaaaaaleqaniabggHiLdGccaWGWbWaaeWaaeaa caWGZbGaaGilaiaadIgaaiaawIcacaGLPaaacqaHbpGCdaqadaqaai aadohacaaISaGaamiAaaGaayjkaiaawMcaaaaacqGHKjYOcaWGnbaa baaabaWaaabuaeaacaWGobWaaSbaaSqaaiaadEgaaeqaaaqaaiaado hacaaISaGaam4zaaqab0GaeyyeIuoakiaadchadaqadaqaaiaadoha caaISaGaam4zaaGaayjkaiaawMcaaiabgsMiJkaadofadaWgaaWcba GaaeyBaiaabggacaqG4baabeaaaOqaaaqaaiaaicdacqGHKjYOcaWG WbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaacqGHKj YOcaaIXaGaaGilaiaaysW7cqGHaiIicaWGZbGaeyicI4Sae8NeXpLa aGilaiaaysW7caWGNbGaeyicI4Sae8NbXFeabaaabaWaaabuaeaaca WGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaSqa aiaadohacqGHiiIZcqWFse=uaeqaniabggHiLdGccqGH9aqpcaaIXa GaaiilaiaaysW7cqGHaiIicaWGNbGaeyicI4Sae8NbXFeabaaabaWa aabuaeqaleaacaWGZbGaeyicI4Sae8NeXp1aaWbaaWqabeaacaWGsb aaaaWcbeqdcqGHris5aOGaamiCamaabmaabaGaam4CaiaaiYcacaWG NbaacaGLOaGaayzkaaGaaGjbVlaab6dacaaMe8UaaGimaiaacYcaca aMe8UaeyiaIiIaam4zaiabgIGiolab=zq8hbqaaaqaaiaaicdacqGH KjYOcaWG0bGaaGOlaaaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aacIcacaaIZaGaaiOlaiaaikdacaGGPaaaaa@9C82@

To solve the linear problem, we use the simplex method available in R in package b o o t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOyaiaad+ gacaWGVbGaamiDaiaac6caaaa@3B23@ Our proposed two-step algorithm thus handles (3.1) in the first step. Denote by x LP * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaDa aaleaacaqGmbGaaeiuaaqaaiaacQcaaaaaaa@3AF1@ the optimal solution obtained in the LP. In the second step, x LP * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaDa aaleaacaqGmbGaaeiuaaqaaiaacQcaaaaaaa@3AF1@ is submitted to a nonlinear optimization algorithm as a starting point in order to solve (3.2). For this step, we use nonlinear algorithms available in NLOPT (see Johnson 2013), an open-source library for nonlinear optimization that can be called from R through the n l o p t r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaiaadY gacaWGVbGaamiCaiaadshacaWGYbaaaa@3C66@ package. The NNLP second step of the algorithm is performed only if the minimal required budget found in the LP first step is smaller than or equal to the available budget B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqaiaac6 caaaa@38F0@ If the minimal budget is larger, then there is no feasible solution to the optimization problem.

Given that the performance of these algorithms is problem-dependent, we choose to combine two local search algorithms in order to increase the convergence speed. Global optimization algorithms are available in the NLOPT library but their performance for our problem was significantly worse than the selected local optimization algorithms. The two selected local search algorithms are COBYLA (Constrained Optimization by Linear Approximations), introduced by Powell (1998) (see Roy 2007 for an implementation in C ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFce=qcaGGPaaaaa@436B@ and the Augmented Lagrangian Algorithm (AUGLAG), described in Conn, Gould and Toint (1991) and Birgin and Martinez (2008). The COBYLA method builds successive linear approximations of the objective function and constraints via a simplex of n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaiabgU caRiaaigdaaaa@3A07@ points (in n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@386A@ dimensions), and optimizes these approximations in a trust region at each step. The AUGLAG method combines the objective function and the nonlinear constraints into a single function, i.e., the objective plus a penalty for any violated constraint. The resulting function is then passed to another optimization algorithm as an unconstrained problem. If the constraints are violated by the solution of this sub-problem, then the size of the penalties is increased and the process is repeated. Eventually, the process must converge to the desired solution, if that exists.

As local optimizer for the AUGLAG method we choose MMA (Method of Moving Asymptotes, introduced in Svanberg 2002), based on its performance for our numerical experiments. The strategy behind MMA is as follows. At each point x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWHRbaabeaakiaacYcaaaa@3A52@ MMA forms a local approximation, that is both convex and separable, using the gradient of f ( x k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaaCiEamaaBaaaleaacaWHRbaabeaaaOGaayjkaiaawMcaaaaa @3C16@ and the constraint functions, plus a quadratic penalty term to make the approximations conservative, e.g., upper bounds for the exact functions. Optimizing the approximation leads to a new candidate point x k + 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWHRbGaey4kaSIaaCymaaqabaGccaGGUaaaaa@3BF0@ If the constraints are met, then the process continues from the new point x k + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWHRbGaey4kaSIaaCymaaqabaGccaGGSaaaaa@3BEE@ otherwise, the penalty term is increased and the process is repeated.

The reason for using two local search algorithms is that AUGLAG performs better in finding the neighborhood of the global optimum but COBYLA provides a greater accuracy in locating the optimum. Therefore, the LP optimal solution is first submitted to AUGLAG and after a number of iterations, when the improvement in the objective value is below a specified threshold, the current solution of AUGLAG is submitted to COBYLA for increased accuracy. For our case study, given the precision requirements of the obtained statistics in the survey (0.5%), the results are considered accurate enough if the obtained objective value is within 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaisdaaaaaaa@3AC4@ away from the global optimum. Any further accuracy gains are completely blurred by the sampling variation and accuracy of the input parameters themselves. The computational times can run up to a few hours. Since the optimization problem does not need to be solved during data collection, this will, however, not pose practical problems.

Date modified: