Bayesian predictive inference of a proportion under a two-fold small area model with heterogeneous correlations
Section 3. Numerical study and comparisons

In this section, we perform empirical studies to assess the performance of the HeC model that we compare with the HoC model. In Section 3.1, we discuss an illustrative example and, in Section 3.2, we present a simulation study.

3.1 An illustrative example

We use data from the Third Grade US population; see Nandram (2015) for a brief discussion of these data. The dataset, collected in 1999, consists of 2,477 students who participated in the Third International Mathematics and Science Study (TIMSS). Foy, Rust, and Schleicher (1996) described the probability proportional to size (PPS) systematic sampling design used in TIMSS data collection and Caslyn, Gonzales and Frase (1999) gave highlights from TIMSS. Areas are formed crossing four regions (Northeast, South, Central and West) and three communities of the US (village or rural area, outskirts of a town or city and close to the center of a town or city). Thus, there are twelve areas. The binary variable is whether a student’s mathematics score is below average. Clusters are schools while units within the clusters are the students.

To assess the quality of the Bayesian predictive inference, as suggested by a referee, Nandram (2015) took a half sample of the original data, which he called a synthetic sample. The original sample was used as the population, and the half sample was used for analysis, thereby providing a method to assess the predictive power of the models in Nandram (2015). In the current paper, as suggested by a referee, we do not use a half sample and we use the original dataset available to us; see Table 3.1 for the entire dataset which we analyze in this paper. The predictive power of the HeC model is assessed mainly through the simulation study.

Unfortunately, as in many complex surveys, the sample fractions are unknown to secondary data analysts. However, typically for many of these complex surveys, the sample fractions are relatively small. For the TIMSS data we assume that the dataset is a 5% sample of the population. For example, if there are four sampled schools for an area, say i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@3681@ area ( i = 1, , l ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiabloriSbGaayjk aiaawMcaaiaacYcaaaa@3BEC@ the total number of clusters, M i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGPbaabeaaaaa@3570@ is assumed to be 80. If there are 17 observed students within a sampled school, say j th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@3682@ school, the total number of students, N i j ( j = 1, , m i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaGcdaqadaqaaiaadQgacaaI9aGaaGym aiaaiYcacqWIMaYscaaISaGaamyBamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaaa@3F08@ is assumed to be 340. For the nonsampled schools, N i j ( j = m i + 1, , M i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaGcdaqadaqaaiaadQgacaaI9aGaamyB amaaBaaaleaacaWGPbaabeaakiabgUcaRiaaigdacaaISaGaeSOjGS KaaGilaiaad2eadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa aaa@41E0@ is assumed to be the average of the total number of students within the sampled schools for each area. Moreover, there are many schools in which all or many students were either below or above average. In other words, this dataset is far sparse, thereby making direct estimation difficult.

Table 3.1
Number of US students below average in mathematics within schools by area
Table summary
This table displays the results of Number of US students below average in mathematics within schools by area. The information is grouped by Area (appearing as row headers), (s, n), m and Schools (appearing as column headers).
Area (s, n) m Schools
NR 40 4 9 10 11 10 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
74 This is an empty cell 17 16 21 20 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
NO 60 9 8 7 12 3 12 8 7 1 2 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
173 This is an empty cell 20 21 17 19 16 25 22 14 19 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
NC 135 11 9 20 1 22 20 11 26 10 1 12 3 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
222 This is an empty cell 15 23 16 25 22 25 27 19 16 22 12 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
SR 84 8 6 14 14 9 14 10 12 5 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
140 This is an empty cell 16 21 16 14 23 19 22 9 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
SO 164 16 14 9 12 10 18 11 3 0 13 9 13 8 11 10 19 4
298 This is an empty cell 19 14 13 18 22 18 21 16 18 15 26 9 19 22 25 23
SC 150 13 16 11 13 6 8 9 13 6 11 15 15 18 9 This is an empty cell This is an empty cell This is an empty cell
225 This is an empty cell 16 13 17 16 19 16 18 12 19 16 19 21 23 This is an empty cell This is an empty cell This is an empty cell
CR 17 2 7 10 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
39 This is an empty cell 16 23 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
CO 59 7 13 11 5 15 3 2 10 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
140 This is an empty cell 22 18 9 19 24 23 25 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
CC 145 14 21 1 12 9 12 13 16 13 7 12 7 8 4 10 This is an empty cell This is an empty cell
259 This is an empty cell 21 26 22 13 16 18 21 18 17 18 17 19 16 17 This is an empty cell This is an empty cell
WR 54 7 13 11 4 2 7 11 6 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
118 This is an empty cell 15 19 10 16 16 20 22 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell
WO 117 13 8 11 15 9 7 10 1 15 14 9 7 6 5 This is an empty cell This is an empty cell This is an empty cell
224 This is an empty cell 13 13 25 16 20 12 20 18 20 17 17 17 16 This is an empty cell This is an empty cell This is an empty cell
WC 331 31 9 17 10 12 15 15 8 22 20 7 18 7 13 15 13 8
This is an empty cell This is an empty cell 6 8 17 13 9 6 12 7 11 4 9 8 2 3 7 This is an empty cell
515 This is an empty cell 18 22 10 14 15 15 8 23 22 7 18 10 26 29 13 17
This is an empty cell This is an empty cell 16 14 18 15 13 23 21 26 16 11 14 14 17 15 15 This is an empty cell

We perform three goodness-of-fit procedures, the deviance information criterion (DIC), the Bayesian posterior predictive p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaayk W7cqGHsislaaa@36F1@ value (BPP) and the log pseudo marginal likelihood (LPML), which is a measure based on the same cross-validation (leave-one-out) procedure. We can assess the overall fit of the models with these procedures.

In the HeC model, s i j | p i j ind Binomial ( n i j , p i j ) , p i j ind Beta ( μ i ( 1 ρ i ) / ρ i , ( 1 μ i ) ( 1 ρ i ) / ρ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaysW7caaMc8 +aaCbiaeaarqqr1ngBPrgifHhDYfgaiuaacqWF8iIoaSqabeaacaqG PbGaaeOBaiaabsgaaaGccaaMe8UaaGPaVlaabkeacaqGPbGaaeOBai aab+gacaqGTbGaaeyAaiaabggacaqGSbWaaeWaaeaacaWGUbWaaSba aSqaaiaadMgacaWGQbaabeaakiaaiYcacaWGWbWaaSbaaSqaaiaadM gacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcacaaIGaGaamiCamaa BaaaleaacaWGPbGaamOAaaqabaGccaaMe8UaaGPaVpaaxacabaGae8 hpIOdaleqabaGaaeyAaiaab6gacaqGKbaaaOGaaGjbVlaaykW7caqG cbGaaeyzaiaabshacaqGHbWaaeWaaeaadaWcgaqaaiabeY7aTnaaBa aaleaacaWGPbaabeaakmaabmaabaGaaGymaiabgkHiTiabeg8aYnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiabeg8aYnaaBa aaleaacaWGPbaabeaaaaGccaaISaWaaSGbaeaadaqadaqaaiaaigda cqGHsislcqaH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aadaqadaqaaiaaigdacqGHsislcqaHbpGCdaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGaamyAaaqaba aaaaGccaGLOaGaayzkaaGaaiOlaaaa@8D1B@ Thus, by integrating out the p i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@373C@ we can obtain the following beta-binomial probability mass function, 

f ( s | μ , ρ ) = i = 1 l j = 1 m i ( n i j s i j ) B ( s i j + μ i ( 1 ρ i ) / ρ i , n i j s i j + ( 1 μ i ) ( 1 ρ i ) / ρ i ) B ( μ i ( 1 ρ i ) / ρ i , ( 1 μ i ) ( 1 ρ i ) / ρ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaWaaqGaaeaacaWHZbGaaGPaVdGaayjcSdGaaGPaVlaahY7acaaI SaGaaGjbVlaahg8aaiaawIcacaGLPaaacaaI9aWaaebCaeqaleaaca WGPbGaaGypaiaaigdaaeaacqWItecBa0Gaey4dIunakmaarahabeWc baGaamOAaiaai2dacaaIXaaabaGaamyBamaaBaaameaacaWGPbaabe aaa0Gaey4dIunakmaabmaabaqbaeaabeqaaaqaauaabaqaceaaaeaa caWGUbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaadohadaWgaa WcbaGaamyAaiaadQgaaeqaaaaaaaaakiaawIcacaGLPaaadaWcaaqa aiaadkeadaqadaqaamaalyaabaGaam4CamaaBaaaleaacaWGPbGaam OAaaqabaGccqGHRaWkcqaH8oqBdaWgaaWcbaGaamyAaaqabaGcdaqa daqaaiaaigdacqGHsislcqaHbpGCdaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGaamyAaaqabaaaaOGa aGilaiaad6gadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Iaam 4CamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkdaWcgaqaamaa bmaabaGaaGymaiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiabeg8aYnaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiabeg8aYnaaBaaale aacaWGPbaabeaaaaaakiaawIcacaGLPaaaaeaacaWGcbWaaeWaaeaa daWcgaqaaiabeY7aTnaaBaaaleaacaWGPbaabeaakmaabmaabaGaaG ymaiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaqaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaaGccaaISaWaaS GbaeaadaqadaqaaiaaigdacqGHsislcqaH8oqBdaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcqaHbp GCdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGC daWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaiaac6caaa a@9E26@

It is also true that E ( s i j | μ i , ρ i ) = n i j μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaWaaqGaaeaacaWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa ykW7aiaawIa7aiaaykW7cqaH8oqBdaWgaaWcbaGaamyAaaqabaGcca aISaGaaGjbVlabeg8aYnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaiaai2dacaWGUbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabeY 7aTnaaBaaaleaacaWGPbaabeaaaaa@4C2C@ and Var ( s i j | μ i , ρ i ) = n i j { 1 + ( n i j 1 ) ρ i } μ i ( 1 μ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvaiaabg gacaqGYbWaaeWaaeaadaabcaqaaiaadohadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlabeY7aTnaaBaaaleaaca WGPbaabeaakiaaiYcacaaMe8UaeqyWdi3aaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaGaaGypaiaad6gadaWgaaWcbaGaamyAaiaadQ gaaeqaaOWaaiWaaeaacaaIXaGaey4kaSYaaeWaaeaacaWGUbWaaSba aSqaaiaadMgacaWGQbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPa aacqaHbpGCdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baacqaH 8oqBdaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaaigdacqGHsislcq aH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaGGUaaa aa@61C4@

Let μ i ( h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0 baaSqaaiaadMgaaeaadaqadaqaaiaadIgaaiaawIcacaGLPaaaaaaa aa@38CB@ and ρ i ( h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaadIgaaiaawIcacaGLPaaaaaaa aa@38D5@ ( i = 1, , l , h = 1, , H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiabloriSjaaiYca caaMe8UaamiAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGib aacaGLOaGaayzkaaaaaa@4349@ denote the iterates from the blocked Gibbs sampler. Let μ ¯ i = h = 1 H μ i ( h ) / H ( i = 1, , l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mbae badaWgaaWcbaGaamyAaaqabaGccaaI9aWaaabmaeaadaWcgaqaaiab eY7aTnaaDaaaleaacaWGPbaabaWaaeWaaeaacaWGObaacaGLOaGaay zkaaaaaaGcbaGaamisaiaaysW7aaaaleaacaWGObGaaGypaiaaigda aeaacaWGibaaniabggHiLdGcdaqadaqaaiaadMgacaaI9aGaaGymai aaiYcacqWIMaYscaaISaGaeS4eHWgacaGLOaGaayzkaaaaaa@4BFE@ and ρ ¯ i = h = 1 H ρ i ( h ) / H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaamyAaaqabaGccaaI9aWaaabmaeaadaWcgaqaaiab eg8aYnaaDaaaleaacaWGPbaabaWaaeWaaeaacaWGObaacaGLOaGaay zkaaaaaaGcbaGaamisaaaaaSqaaiaadIgacaaI9aGaaGymaaqaaiaa dIeaa0GaeyyeIuoakiaac6caaaa@437F@ Letting D ( μ ¯ , ρ ¯ ) = 2 log { p ( s | μ ¯ , ρ ¯ ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGabCiVdyaaraGaaiilaiqahg8agaqeaaGaayjkaiaawMcaaiab g2da9iabgkHiTiaaikdaciGGSbGaai4BaiaacEgadaGadaqaaiaadc hadaqadaqaamaaeiaabaGaaC4CaiaaykW7aiaawIa7aiaaykW7ceWH 8oGbaebacaGGSaGabCyWdyaaraaacaGLOaGaayzkaaaacaGL7bGaay zFaaaaaa@4C96@ and D ¯ = 2 h = 1 H log { p ( s | μ ( h ) , ρ ( h ) ) } / H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaara GaaGypaiabgkHiTiaaikdadaaeWaqaaiaabYgacaqGVbGaae4zamaa lyaabaWaaiWaaeaacaWGWbWaaeWaaeaadaabcaqaaiaahohacaaMc8 oacaGLiWoacaaMc8UaaCiVdmaaCaaaleqabaWaaeWaaeaacaWGObaa caGLOaGaayzkaaaaaOGaaiilaiaahg8adaahaaWcbeqaamaabmaaba GaamiAaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaaGaay5Eaiaa w2haaaqaaiaadIeaaaaaleaacaWGObGaaGypaiaaigdaaeaacaWGib aaniabggHiLdGccaGGSaaaaa@5371@ deviance information criterion is given by

DIC = 2 D ¯ D ( μ ¯ , ρ ¯ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiraiaabM eacaqGdbGaaGypaiaaikdaceWGebGbaebacqGHsislcaWGebWaaeWa aeaaceWH8oGbaebacaGGSaGabCyWdyaaraaacaGLOaGaayzkaaGaaG Olaaaa@3FAC@

Models with smaller DIC are more preferred over those with larger DIC. However, since DIC tends to select over-fitted models, Nandram (2015) described the Bayesian predictive p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaayk W7cqGHsislaaa@36F1@ values as a backup. For the HeC model, the discrepancy function is

T ( s ; μ , ρ ) = i = 1 l j = 1 m i { s i j E ( s i j | μ i , ρ i ) } 2 Var ( s i j | μ i , ρ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaabm aabaGaaC4CaiaacUdacaaMe8UaaCiVdiaacYcacaaMe8UaaCyWdaGa ayjkaiaawMcaaiabg2da9maaqahabeWcbaGaamyAaiaai2dacaaIXa aabaGaeS4eHWganiabggHiLdGcdaaeWbqabSqaaiaadQgacaaI9aGa aGymaaqaaiaad2gadaWgaaadbaGaamyAaaqabaaaniabggHiLdGcda WcaaqaamaacmaabaGaam4CamaaBaaaleaacaWGPbGaamOAaaqabaGc cqGHsislcaWGfbWaaeWaaeaadaabcaqaaiaadohadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlabeY7aTnaaBaaa leaacaWGPbaabeaakiaacYcacaaMe8UaeqyWdi3aaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaa caaIYaaaaaGcbaGaaeOvaiaabggacaqGYbWaaeWaaeaadaabcaqaai aadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGPaVdGaayjcSdGa aGPaVlabeY7aTnaaBaaaleaacaWGPbaabeaakiaacYcacaaMe8Uaeq yWdi3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiaac6ca aaa@798E@

Let s ( rep ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4CamaaCa aaleqabaWaaeWaaeaacaqGYbGaaeyzaiaabchaaiaawIcacaGLPaaa aaaaaa@3906@ denote repeated (rep) samples from the posterior predictive distribution of s . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Caiaac6 caaaa@3531@ Then the BPP is p { T ( s ( rep ) ; μ , ρ ) T ( s ( obs ) ; μ , ρ ) | s } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaacm aabaGaamivamaabmaabaGaaC4CamaaCaaaleqabaWaaeWaaeaacaqG YbGaaeyzaiaabchaaiaawIcacaGLPaaaaaGccaGG7aGaaGjbVlaahY 7acaGGSaGaaGjbVlaahg8aaiaawIcacaGLPaaacaaMe8UaaGjbVlab gwMiZkaaysW7caaMe8UaamivamaabmaabaGaaC4CamaaCaaaleqaba WaaeWaaeaacaqGVbGaaeOyaiaabohaaiaawIcacaGLPaaaaaGccaGG 7aGaaGjbVlaahY7acaGGSaGaaGjbVlaahg8aaiaawIcacaGLPaaada abbaqaaiaaykW7caWHZbaacaGLhWoaaiaawUhacaGL9baacaGGSaaa aa@6184@ which is calculated over its corresponding iterates ( μ ( h ) , ρ ( h ) ) , h = 1 , , H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WH8oWaaWbaaSqabeaadaqadaqaaiaadIgaaiaawIcacaGLPaaaaaGc caaMb8UaaiilaiaaysW7caWHbpWaaWbaaSqabeaadaqadaqaaiaadI gaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGGSaGaaGjbVlaa dIgacqGH9aqpcaaIXaGaaiilaiablAciljaacYcacaaMe8Uaamisai aac6caaaa@4B3C@ If the value of this probability is close to 0 or 1, it indicates poor fit of the model. In fact, models with BPPs in (0.05, 0.95) are considered reasonable.

In addition to these quantities, we can evaluate the goodness-of-fit of models with another measure, the LPML which is a summary statistic of the conditional predictive ordinate (CPO) values, and it is based on a cross validation. Unlike the DIC, larger values of LPML indicate better fitting models (e.g., Geisser and Eddy 1979).

For the HeC model, the CPO can be estimated by

CPO ^ i j = [ 1 H h = 1 H 1 f ( s i j | p i j ( h ) ) ] 1 , j = 1 , , m i , i = 1 , , l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca qGdbGaaeiuaiaab+eaaiaawkWaamaaBaaaleaacaWGPbGaamOAaaqa baGccqGH9aqpdaWadaqaamaalaaabaGaaGymaaqaaiaadIeaaaWaaa bCaeaadaWcaaqaaiaaigdaaeaacaWGMbWaaeWaaeaacaWGZbWaaSba aSqaaiaadMgacaWGQbaabeaakmaaeeaabaGaaGPaVlaadchadaqhaa WcbaGaamyAaiaadQgaaeaadaqadaqaaiaadIgaaiaawIcacaGLPaaa aaaakiaawEa7aaGaayjkaiaawMcaaaaaaSqaaiaadIgacqGH9aqpca aIXaaabaGaamisaaqdcqGHris5aaGccaGLBbGaayzxaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaaGzaVlaacYcacaaMf8UaamOAaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad2gadaWgaaWcbaGaamyA aaqabaGccaGGSaGaaGzbVlaadMgacqGH9aqpcaaIXaGaaiilaiablA ciljaacYcacqWItecBcaGGSaaaaa@6841@

where p i j ( h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaamiAaaGaayjkaiaawMca aaaaaaa@38F9@ is the samples from p i j | s i j , μ i , ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaiYcacaaMe8 UaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7cqaHbpGC daWgaaWcbaGaamyAaaqabaaaaa@487D@ and s i j | p i j iid Binomial ( n i j , p i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaysW7caaMe8 +aaCbiaeaarqqr1ngBPrgifHhDYfgaiuaacqWF8iIoaSqabeaacaqG PbGaaeyAaiaabsgaaaGccaaMe8UaaGjbVlaabkeacaqGPbGaaeOBai aab+gacaqGTbGaaeyAaiaabggacaqGSbWaaeWaaeaacaWGUbWaaSba aSqaaiaadMgacaWGQbaabeaakiaaiYcacaaMe8UaamiCamaaBaaale aacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@5F10@ Note that for each ( i , j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbaacaGLOaGaayzkaaGaaiilaaaa@39DD@ CPO ^ i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca qGdbGaaeiuaiaab+eaaiaawkWaamaaBaaaleaacaWGPbGaamOAaaqa baaaaa@38BA@ is the harmonic mean of the likelihoods f ( s i j | p i j ( h ) ) , h = 1, , H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaWaaqGaaeaacaWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa ykW7aiaawIa7aiaaykW7caWGWbWaa0baaSqaaiaadMgacaWGQbaaba WaaeWaaeaacaWGObaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGa aGilaiaaiccacaWGObGaaGypaiaaigdacaaISaGaeSOjGSKaaGilai aadIeacaGGUaaaaa@4B0A@ Then, the LPML is

LPML = i = 1 l j = 1 m i log ( CPO ^ i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeitaiaabc facaqGnbGaaeitaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiabloriSbqdcqGHris5aOWaaabCaeaaciGGSbGaai4BaiaacE gadaqadaqaamaaHaaabaGaae4qaiaabcfacaqGpbaacaGLcmaadaWg aaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGQb GaaGypaiaaigdaaeaacaWGTbWaaSbaaWqaaiaadMgaaeqaaaqdcqGH ris5aOGaaGOlaaaa@4E94@

These three model evaluation measures have similar forms under the HoC model. For the HoC (HeC) model, DIC = 774.421 (773.173), BPP = 0.349 (0.408), LPML = -352.064 (-346.171), thereby indicating that the HeC model gives a better fit. At a finer level, we also looked at the individual CPO values from the two models for each school. In Figure 3.1 we compare the CPOs from the HeC and the HoC models, and we found that generally CPO values for the HeC model are higher that those of HoC model. In fact, under the HoC (HeC) model we found that the percent of the CPOs less than 0.025 is 3.70% (2.96%) and percent of the CPOs less than 0.014 is 0.74% (0.00%). These results do not show any indication of serious departure from model assumptions; see Ntzoufras (2009). Therefore, these measures give prima facie evidence that the HeC model fits the TIMSS data somewhat better than the HoC model.

Figure 3.1

Description for Figure 3.1

Figure made of two scatter plots. The first compares the individual CPO values from the HeC and HoC models for each school. The school is on the y-axis, going from 0 to 150. CPOs are on the x-axis, going from 0.00 to 0.35. Most of the data points are concentrated between CPO values of 0.00 and 0.15 for both models.

The second graph compares the CPOs for HeC and HoC models. CPOs for HeC model are on the y-axis, ranging from 0.00 to 0.30. CPOs for HoC model are on the x-axis, ranging from 0.0 to 0.25. Generally CPO values for the HeC model are higher than those of HoC model.

Now, consider inference about θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@353A@ and γ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai Olaaaa@35DD@ First, consider θ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaai Olaaaa@35EC@ Under the HoC model, the posterior mean (PM) is 0.519, posterior standard deviation (PSD) is 0.068 and 95% credible interval (Cre) is (0.390, 0.639). Under the HeC model PM = 0.515, PSD = 0.065 and 95% Cre is (0.383, 0.639). Second, consider γ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai Olaaaa@35DD@ Under the HoC model PM = 0.207, PSD = 0.011, and 95% Cre is (0.190, 0.224). Under the HeC model γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@352B@ PM = 0.208, PSD = 0.011 and 95% Cre is (0.190, 0.225). Thus, it is good that inference about θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@353A@ and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@352B@ are very close for the two competitors (HoC and HeC models).

In Table 3.2, we present posterior inference about the finite population proportions for mathematics scores by areas. There are differences between the posterior means under the HoC and HeC models. Most of them are small but there are a few large differences. For NC, SR and CR, we have 0.560 (0.543), 0.568 (0.584) and 0.465 (0.445) under the HoC (HeC) model, respectively. The posterior standard deviations are also close but there are a few moderately large differences (e.g., for NR we have 0.113 under the HoC model and 0.077 under the HeC model). These differences are reflected in the credible and highest posterior density (HPD) intervals.

Table 3.2
Comparison of posterior inference from the two-fold models with homogeneous correlation (HoC) and heterogeneous correlations (HeC) for the finite population proportions for US students below average in mathematics by area
Table summary
This table displays the results of Comparison of posterior inference from the two-fold models with homogeneous correlation (HoC) and heterogeneous correlations (HeC) for the finite population proportions for US students below average in mathematics by area. The information is grouped by Area (appearing as row headers), HoC Model and HeC Model (appearing as column headers).
Area HoC Model HeC Model
PM PSD 95% Cre 95% HPD PM PSD 95% Cre 95% HPD
NR 0.522 0.113 (0.299, 0.735) (0.310, 0.741) 0.525 0.077 (0.363, 0.662) (0.361, 0.658)
NO 0.365 0.075 (0.227, 0.524) (0.227, 0.520) 0.359 0.072 (0.228, 0.511) (0.236, 0.516)
NC 0.560 0.070 (0.420, 0.701) (0.408, 0.680) 0.543 0.082 (0.370, 0.695) (0.396, 0.710)
SR 0.568 0.080 (0.405, 0.725) (0.424, 0.731) 0.584 0.062 (0.454, 0.699) (0.456, 0.699)
SO 0.537 0.058 (0.423, 0.648) (0.417, 0.639) 0.537 0.063 (0.409, 0.655) (0.408, 0.653)
SC 0.646 0.064 (0.552, 0.766) (0.522, 0.766) 0.654 0.059 (0.521, 0.763) (0.544, 0.774)
CR 0.465 0.137 (0.195, 0.719) (0.185, 0.709) 0.445 0.125 (0.212, 0.716) (0.199, 0.700)
CO 0.437 0.085 (0.279, 0.603) (0.276, 0.596) 0.439 0.091 (0.257, 0.620) (0.265, 0.620)
CC 0.549 0.064 (0.415, 0.671) (0.423, 0.672) 0.550 0.066 (0.414, 0.681) (0.422, 0.685)
WR 0.461 0.086 (0.297, 0.629) (0.295, 0.626) 0.460 0.085 (0.289, 0.626) (0.276, 0.611)
WO 0.516 0.066 (0.384, 0.643) (0.387, 0.644) 0.516 0.058 (0.401, 0.626) (0.409, 0.633)
WC 0.670 0.042 (0.581, 0.748) (0.586, 0.749) 0.662 0.047 (0.569, 0.748) (0.568, 0.746)

Table 3.3 shows summaries of the PM, PSD and 95% HPD for intracluster correlations under the HeC model. We can see that the intracluster correlations vary over the areas. The largest estimate is 0.337 for NC and the smallest one is 0.073 for SR. Both areas have a few large difference between the posterior means under the HoC and HeC models. The 95% HPD interval for the common correlation in the HoC model is (0.160, 0.260) and this interval is contained by all the intervals except for NR, NC, SR and WC. Thus, it is reasonable to study the HeC model.

Table 3.3
Posterior summaries for the intracluster correlations of the two-fold models with heterogeneous correlations for US students below average in mathematics by area
Table summary
This table displays the results of Posterior summaries for the intracluster correlations of the two-fold models with heterogeneous correlations for US students below average in mathematics by area. The information is grouped by Area (appearing as row headers), PM , PSD , 95% Cre and 95% HPD (appearing as column headers).
Area PM PSD 95% Cre 95% HPD
NR 0.076 0.084 (0.002, 0.301) (0.001, 0.251)
NO 0.184 0.087 (0.053, 0.380) (0.042, 0.358)
NC 0.337 0.087 (0.190, 0.520) (0.184, 0.513)
SR 0.073 0.067 (0.003, 0.252) (0.001, 0.216)
SO 0.237 0.075 (0.113, 0.393) (0.110, 0.387)
SC 0.176 0.079 (0.055, 0.356) (0.048, 0.329)
CR 0.149 0.147 (0.003, 0.523) (0.001, 0.445)
CO 0.233 0.103 (0.079, 0.486) (0.050, 0.434)
CC 0.235 0.077 (0.105, 0.388) (0.099, 0.381)
WR 0.181 0.099 (0.033, 0.413) (0.021, 0.378)
WO 0.181 0.075 (0.059, 0.362) (0.048, 0.327)
WC 0.301 0.063 (0.191, 0.437) (0.188, 0.434)

In Figure 3.2, we compare the posterior densities of the intracluster correlations (twelve correlations) from the HeC model and the HoC model (one correlation). The distributions under the HeC model are more variable and are mostly to the left or right of those under the HoC model with not much overlap for some areas (e.g., NR, NC and SR).

Figure 3.2

Description for Figure 3.2

Figure made of twelve graphs presenting the posterior densities of intracluster correlations for mathematics scores by areas (NR, NO, NC, SR, SO, SC, CR, CO, CC, WR, WO and WC) for HeC and HoC models. For each graph, density is on the y-axis, ranging from 0 to 15 and correlations are on the x-axis, ranging from 0.0 to 0.8. The distributions under the HeC model are more variable and are mostly to the left or right of those under the HoC model. Areas NR, NC and SR show a weak overlap between the two distributions. Areas NO, SC, CR, WR, WO and WC show an overlap a little bit bigger. Finally, densities for areas SO, CO and CC overlap more, but not completely.

In Figures 3.3, 3.4 and 3.5, we compare the posterior density plots of the finite population proportions for the mathematics score and all areas for the two models. There are noticeable differences between the HoC and HeC models (e.g., areas NR, NC, SR, CR and WC).

Figure 3.3

Description for Figure 3.3

Figure made of four graphs presenting the posterior densities of finite population proportions for mathematics scores by areas (NR, NO, NC and SR) for HeC and HoC models. For each graph, density is on the y-axis, ranging from 0 to 6 and proportions are on the x-axis, ranging from 0.0 to 0.8. There are noticeable differences between the HoC and HeC models for areas NR, NC and SR. The distributions are closer for area NO.

Figure 3.4

Description for Figure 3.4

Figure made of four graphs presenting the posterior densities of finite population proportions for mathematics scores by areas (SO, SC, CR and CO) for HeC and HoC models. For each graph, density is on the y-axis, ranging from 0 to 6 and proportions are on the x-axis, ranging from 0.0 to 0.8. There are noticeable differences between the HoC and HeC models for area CR. The distributions are closer for areas SO, SC and CO.

Figure 3.5

Description for Figure 3.5

Figure made of four graphs presenting the posterior densities of finite population proportions for mathematics scores by areas (CC, WR, WO and WC) for HeC and HoC models. For each graph, density is on the y-axis, ranging from 0 to 6 for CC and WR and from 0 to 8 for WO and WC and proportions are on the x-axis, ranging from 0.0 to 0.8. There are noticeable differences between the HoC and HeC models for area WC. The distributions are closer for areas CC, WR and WO.

3.2 Simulation study

In order to further assess the performance of the HeC model and to compare it to the HoC model, we perform a simulation study. Here we use two factors, each at three levels, to get nine design points.

We have set 100 as the number of clusters (schools) in each area and 15 as the number of individuals (students) within each cluster. In other words, we take N i j = 15, j = 1, , M i , M i = 100, i = 1, , l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaaGymaiaaiwdacaaISaGa amOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGnbWaaSbaaS qaaiaadMgaaeqaaOGaaGilaiaaiccacaWGnbWaaSbaaSqaaiaadMga aeqaaOGaaGypaiaaigdacaaIWaGaaGimaiaaiYcacaaIGaGaamyAai aai2dacaaIXaGaaGilaiablAciljaaiYcacqWItecBaaa@4E31@ where l = 12. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaIYaGaaiOlaaaa@37A5@ Let a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaaaa@346E@ denote a vector of posterior means and b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaaaa@346F@ denote the vector of posterior standard deviations corresponding to the μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaaaa@3654@ or the ρ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@371A@ Specifically, for the ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaaaa@365E@ we use a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBa aaleaacaaIXaaabeaaaaa@3555@ and b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyamaaBa aaleaacaaIXaaabeaaaaa@3556@ and for the μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaaaa@3654@ we use a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBa aaleaacaaIYaaabeaaaaa@3556@ and b 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyamaaBa aaleaacaaIYaaabeaakiaac6caaaa@3613@ When we simulate data from the HeC model, the levels of the ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaaaa@365E@ are ( 1 : a 1 0.5 b 1 ; 2 : a 1 ; 3 : a 1 + 0.5 b 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiOoaiaahggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaI WaGaaiOlaiaaiwdacaWHIbWaaSbaaSqaaiaaigdaaeqaaOGaai4oai aaikdacaGG6aGaaCyyamaaBaaaleaacaaIXaaabeaakiaacUdacaaI ZaGaaiOoaiaahggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIWa GaaiOlaiaaiwdacaWHIbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaaaaa@4A67@ and the levels of the μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaaaa@3654@ are ( 1 : a 2 0.5 b 2 ; 2 : a 2 ; 3 : a 2 + 0.5 b 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiOoaiaahggadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaaI WaGaaiOlaiaaiwdacaWHIbWaaSbaaSqaaiaaikdaaeqaaOGaai4oai aaikdacaGG6aGaaCyyamaaBaaaleaacaaIYaaabeaakiaacUdacaaI ZaGaaiOoaiaahggadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIWa GaaiOlaiaaiwdacaWHIbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaaiOlaaaa@4B1E@ For the twelve areas a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBa aaleaacaaIXaaabeaaaaa@3555@ takes values 0.09, 0.19, 0.32, 0.08, 0.22, 0.18, 0.15, 0.22, 0.23, 0.17, 0.18, 0.30; b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyamaaBa aaleaacaaIXaaabeaaaaa@3556@ 0.08, 0.09, 0.08, 0.06, 0.07, 0.08, 0.13, 0.09, 0.07, 0.09, 0.07, 0.06; a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBa aaleaacaaIYaaabeaaaaa@3556@ 0.53, 0.37, 0.54, 0.58, 0.54, 0.65, 0.46, 0.44, 0.55, 0.46, 0.52, 0.66; and b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyamaaBa aaleaacaaIYaaabeaaaaa@3557@ 0.08, 0.08, 0.08, 0.06, 0.06, 0.06, 0.12, 0.09, 0.07, 0.08, 0.06, 0.05.

We also take a simple random sample of five clusters among the 100 population clusters, and a simple random sample of ten individuals from each sampled cluster (i.e., m i = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGPbaabeaakiaai2dacaaI1aaaaa@3720@ and n i j = 10 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaaGymaiaaicdacaGGPaGa aiOlaaaa@3A25@ These numbers are much smaller than those of data used in Section 3.1, which makes inference a little more challenging (Nandram 2015). Note that the dataset has about 7% of the sampled clusters where all students were either below or above average. We call this quantity the percent of sparseness. The setting of this simulation study also leads to even sparser data. For nine design points, all the average percents of sparseness are greater than 7% and most are around 10%. Figure 3.6 shows the histograms of sparseness percents for each design point.

Figure 3.6

Description for Figure 3.6

Figure made of nine graphs presenting the histograms of the percent of sparseness when data are drawn from the HeC model by design point [ ( i,j )i,j=1,2,3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada qadaqaaiaadMgacaGGSaGaamOAaaGaayjkaiaawMcaaiaabQdacaqG GaGaamyAaiaacYcacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaai ilaiaaiodaaiaawUfacaGLDbaaaaa@4286@ in which the first factor corresponds to ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@35B7@ and the second factor to μ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maai Olaaaa@365F@ For each graph, the frequency is on the y-axis ranging from 0 to 200 and the percent of sparseness is on the x-axis ranging from 0.00 to 0.30 when μ=3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaaG4maaaa@3770@ and from 0.00 to 0.20 otherwise. For the three graphs where μ=1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaaGymaiaacYcaaaa@381E@ the percent of sparseness peaks at about 10%, with a higher frequency below than above 10%. For the three graphs where μ=2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaaGOmaiaacYcaaaa@381F@ the percent of sparseness peaks at about 10%, with a higher frequency above than below 10%. For the three graphs where μ=3, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fFD0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaaG4maiaacYcaaaa@3820@ the percent of sparseness peaks at about 10%, with a very low frequency for percent lower than 10%.

We consider two scenarios. In the first scenario, we generate data from the HeC model and fit both models, and in the second scenario, we generate data from the HoC model and fit both models. When data are simulated from the HeC model, we have nine design points [ ( 1,1 ) , ( 1,2 ) , ( 1,3 ) , , ( 3,1 ) , ( 3,2 ) , ( 3,3 ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaiI cacaaIXaGaaGilaiaaigdacaaIPaGaaGilaiaaiIcacaaIXaGaaGil aiaaikdacaaIPaGaaGilaiaaiIcacaaIXaGaaGilaiaaiodacaaIPa GaaGilaiablAciljaaiYcacaaIOaGaaG4maiaaiYcacaaIXaGaaGyk aiaaiYcacaaIOaGaaG4maiaaiYcacaaIYaGaaGykaiaaiYcacaaIOa GaaG4maiaaiYcacaaIZaGaaGykaiaai2facaGGSaaaaa@50D8@ the first factor corresponds to the ρ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@371A@ When we simulate data from the HoC model, we have three design points ( 1 : a 2 0.5 b 2 ; 2 : a 2 ; 3 : a 2 + 0.5 b 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiOoaiaaysW7caWHHbWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaaGimaiaac6cacaaI1aGaaCOyamaaBaaaleaacaaIYaaabeaaki aacUdacaaMe8UaaGOmaiaacQdacaaMe8UaaCyyamaaBaaaleaacaaI YaaabeaakiaacUdacaaMe8UaaG4maiaacQdacaaMe8UaaCyyamaaBa aaleaacaaIYaaabeaakiabgUcaRiaaicdacaGGUaGaaGynaiaahkga daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@522D@ for the three levels for the μ i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaOGaai4oaaaa@371D@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@3544@ is kept fixed at its posterior mean.

In the first scenario, at each design point we simulate binary data from the HeC model,

p i j | μ i , ρ i ind Beta [ μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ] , y i j k | p i j ind Bernoulli ( p i j ) , k = 1, , N i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaamaaeiaabaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaGccaaM c8oacaGLiWoacaaMc8UaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaG ilaiaaysW7cqaHbpGCdaWgaaWcbaGaamyAaaqabaaakeaadaWfGaqa aebbfv3ySLgzGueE0jxyaGqbaiab=XJi6aWcbeqaaiaabMgacaqGUb GaaeizaaaakiaaysW7caaMc8UaaeOqaiaabwgacaqG0bGaaeyyamaa dmaabaGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaaIXa GaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3a aSbaaSqaaiaadMgaaeqaaaaakiaaiYcadaqadaqaaiaaigdacqGHsi slcqaH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaWc aaqaaiaaigdacqGHsislcqaHbpGCdaWgaaWcbaGaamyAaaqabaaake aacqaHbpGCdaWgaaWcbaGaamyAaaqabaaaaaGccaGLBbGaayzxaaGa aGilaaqaamaaeiaabaGaamyEamaaBaaaleaacaWGPbGaamOAaiaadU gaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaadchadaWgaaWcbaGaamyA aiaadQgaaeqaaaGcbaWaaCbiaeaacqWF8iIoaSqabeaacaqGPbGaae OBaiaabsgaaaGccaaMe8UaaGPaVlaabkeacaqGLbGaaeOCaiaab6ga caqGVbGaaeyDaiaabYgacaqGSbGaaeyAamaabmaabaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaaGzb VlaadUgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaGccaaIUaaaaaaa@98B5@

So we have the true values of P i = j = 1 M i k = 1 N i j y i j k / j = 1 M i N i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqabSqaaiaadQgacaaI9aGa aGymaaqaaiaad2eadaWgaaqaaiaadMgaaeqaaaqdcqGHris5aOWaaa bmaeaadaWcgaqaaiaadMhadaWgaaWcbaGaamyAaiaadQgacaWGRbaa beaaaOqaamaaqadabaGaamOtamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamOAaiaai2dacaaIXaaabaGaamytamaaBaaameaacaWGPbaa beaaa0GaeyyeIuoaaaaaleaacaWGRbGaaGypaiaaigdaaeaacaWGob WaaSbaaWqaaiaadMgacaWGQbaabeaaa0GaeyyeIuoaaaa@513C@ for i = 1, , l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacqWItecBcaGGUaaaaa@3A65@ We take 1,000 samples at each of the nine design points. For each sample we perform the blocked griddy Gibbs sampler in the same manner as for the data.

Like Nandram (2015), we calculate AB i h = | PM i h P i h | , RAB i h = AB i h / P i h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk eadaWgaaWcbaGaamyAaiaadIgaaeqaaOGaaGypamaaemaabaGaaGPa VlaabcfacaqGnbWaaSbaaSqaaiaadMgacaWGObaabeaakiabgkHiTi aadcfadaWgaaWcbaGaamyAaiaadIgaaeqaaOGaaGPaVdGaay5bSlaa wIa7aiaaiYcacaqGsbGaaeyqaiaabkeadaWgaaWcbaGaamyAaiaadI gaaeqaaOGaaGypamaalyaabaGaaeyqaiaabkeadaWgaaWcbaGaamyA aiaadIgaaeqaaaGcbaGaamiuamaaBaaaleaacaWGPbGaamiAaaqaba aaaaaa@521C@ and RPMSE i h = PSD i h 2 + AB i h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabc facaqGnbGaae4uaiaabweadaWgaaWcbaGaamyAaiaadIgaaeqaaOGa aGypamaakaaabaGaaeiuaiaabofacaqGebWaa0baaSqaaiaadMgaca WGObaabaGaaGOmaaaakiabgUcaRiaabgeacaqGcbWaa0baaSqaaiaa dMgacaWGObaabaGaaGOmaaaaaeqaaaaa@44EF@ to study the frequentist properties of our procedure ( i = 1, , l , h = 1, , 1,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiabloriSjaaiYca caWGObGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaabgdacaqGSa GaaeimaiaabcdacaqGWaaacaGLOaGaayzkaaGaaiOlaaaa@451D@ We also obtain the 95% credible interval and HPD interval for each of the 1,000 simulated runs, and we study the width W i h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGPbGaamiAaaqabaaaaa@3667@ and the credible incidence I i h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGPbGaamiAaaqabaGccaGGUaaaaa@3715@ If the 95% credible (or HPD) interval of h th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@3680@ run contains the true value P i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@362D@ I i h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGPbGaamiAaaqabaaaaa@3659@ is equal to one, otherwise it is equal to zero. Thus, the estimated probability content of the 95% credible interval for the i th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@3680@ area is C i = h = 1 1,000 I i h / 1,000 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqaamaalyaabaGaamysamaa BaaaleaacaWGPbGaamiAaaqabaaakeaacaqGXaGaaeilaiaabcdaca qGWaGaaeimaaaaaSqaaiaadIgacaaI9aGaaGymaaqaaiaabgdacaqG SaGaaeimaiaabcdacaqGWaaaniabggHiLdGccaGGUaaaaa@4551@

Table 3.4 shows comparison of the HoC and HeC models. Under the HeC model the coverages are much higher than those under the HoC model. Note that the coverages of HPD intervals for the HeC model are much closer to the nominal value of 95% and they are conservative. However, the 95% credible and HPD intervals are wider than those from the HoC model. These effects are much larger as ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyWdaaa@34D0@ becomes larger. All measures AB, RAB and RPMSE under the HeC model are smaller than those under the HoC model. Thus, based on these measures, the HeC model is preferred over the HoC model.

Table 3.4
Simulation under the HeC model: Comparison of the HeC and HoC models using mean coverage and widths of 95% credible intervals and absolute bias, relative absolute bias and root posterior mean squared error for finite poulation proportions by design point
Table summary
This table displays the results of Simulation under the HeC model: Comparison of the HeC and HoC models using mean coverage and widths of 95% credible intervals and absolute bias. The information is grouped by Design Point (appearing as row headers), Model , C-Cre , W-Cre , C-HPD , W-HPD, AB , AB and RPMSE (appearing as column headers).
Design Point Model C-Cre W-Cre C-HPD W-HPD AB RAB RPMSE
(1,1) HeC 0.989 0.620 0.961 0.603 0.112 0.227 0.206
HoC 0.930 0.555 0.893 0.541 0.130 0.266 0.207
(1,2) HeC 0.984 0.622 0.960 0.603 0.112 0.227 0.206
HoC 0.926 0.558 0.889 0.545 0.132 0.249 0.209
(1,3) HeC 0.980 0.623 0.955 0.608 0 .120 0.211 0.210
HoC 0.923 0.558 0.892 0.546 0.134 0.236 0.212
(2,1) HeC 0.982 0.621 0.953 0.603 0.119 0.242 0.212
HoC 0.922 0.564 0.879 0.549 0.137 0.281 0.215
(2,2) HeC 0.980 0.625 0.952 0.609 0.122 0.228 0.214
HoC 0.918 0.566 0.879 0.552 0.139 0.264 0.217
(2,3) HeC 0.981 0.628 0.956 0.611 0.121 0.211 0.214
HoC 0.930 0.570 0.895 0.556 0.135 0.239 0.214
(3,1) HeC 0.982 0.627 0.949 0.608 0.121 0.245 0.215
HoC 0.934 0.583 0.892 0.566 0.136 0.278 0.218
(3,2) HeC 0.980 0.628 0.947 0.610 0.123 0.242 0.217
HoC 0.928 0.583 0.885 0.566 0.138 0.274 0.220
(3,3) HeC 0.976 0.632 0.951 0.614 0.124 0.218 0.218
HoC 0.928 0.581 0.889 0.565 0.139 0.246 0.220

In Table 3.5 we compare summaries of DIC, BPP and LPML. All the DICs under the HeC model are smaller than the corresponding ones under the HoC model and all the LPMLs under the HeC model are larger than those under the HoC model. Under the HoC model, all the BPPs vary in (0.06, 0.09) but under the HeC model they vary in (0.2, 0.4). Again, these measures show that the HeC model is superior to the HoC model.

In a similar manner, for the second scenario we generate binary data from

p i j | μ i , ρ ind Beta [ μ i 1 ρ ρ , ( 1 μ i ) 1 ρ ρ ] , y i j k | p i j ind Bernoulli ( p i j ) , k = 1, , N i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaamaaeiaabaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaGccaaM c8oacaGLiWoacaaMc8UaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaG ilaiaaysW7cqaHbpGCaeaadaWfGaqaaebbfv3ySLgzGueE0jxyaGqb aiab=XJi6aWcbeqaaiaabMgacaqGUbGaaeizaaaakiaaysW7caaMc8 UaaeOqaiaabwgacaqG0bGaaeyyamaadmaabaGaeqiVd02aaSbaaSqa aiaadMgaaeqaaOWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdihabaGaeq yWdihaaiaaiYcadaqadaqaaiaaigdacqGHsislcqaH8oqBdaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaadaWcaaqaaiaaigdacqGHsi slcqaHbpGCaeaacqaHbpGCaaaacaGLBbGaayzxaaGaaGilaaqaamaa eiaabaGaaGPaVlaaykW7caaMc8UaamyEamaaBaaaleaacaWGPbGaam OAaiaadUgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaadchadaWgaaWc baGaamyAaiaadQgaaeqaaaGcbaWaaCbiaeaacqWF8iIoaSqabeaaca qGPbGaaeOBaiaabsgaaaGccaaMe8UaaGPaVlaabkeacaqGLbGaaeOC aiaab6gacaqGVbGaaeyDaiaabYgacaqGSbGaaeyAamaabmaabaGaam iCamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaaI SaGaaGzbVlaadUgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaam OtamaaBaaaleaacaWGPbGaamOAaaqabaGccaaIUaaaaaaa@97A2@

In Table 3.6 we present comparison of the HoC and HeC models. Here AB, RAB and RPMSE are only slightly smaller under the HoC model. The coverages of the credible and HPD intervals under the HeC model are closer to the nominal value of 95%, while those under the HoC model are smaller. Table 3.7 shows summaries of DIC, BPP and LPML. All the DICs under the HeC model are smaller than those under the HeC model, while the BPPs and LPMLs are similar for the two models, with those under the HoC model being slightly better.

Table 3.5
Simulation under the HeC model: Comparison of the HeC and HoC models using the deviance information criterion (DIC), the Bayesian predictive p-value (BPP) and the log pseudo marginal likelihood (LPML) by design point
Table summary
This table displays the results of Simulation under the HeC model: Comparison of the HeC and HoC models using the deviance information criterion (DIC). The information is grouped by Design Point (appearing as row headers), HoC Model and HeC Model (appearing as column headers).
Design Point HoC Model HeC Model
DIC BPP LPML DIC BPP LPML
(1,1) 419.275 0.090 -285.452 402.044 0.429 -267.990
(1,2) 418.351 0.091 -286.250 400.647 0.439 -266.377
(1,3) 416.784 0.088 -286.290 400.414 0.446 -267.203
(2,1) 436.980 0.067 -307.028 416.264 0.300 -292.756
(2,2) 437.306 0.062 -308.816 414.955 0.318 -292.404
(2,3) 430.531 0.080 -302.258 410.436 0.351 -285.206
(3,1) 441.204 0.090 -316.126 424.010 0.227 -308.825
(3,2) 442.165 0.083 -318.223 424.363 0.235 -309.815
(3,3) 438.305 0.071 -315.159 418.827 0.260 -306.619
Table 3.6
Simulation under the HoC model: Comparison of the HeC and HoC models using mean coverage and widths of 95% credible intervals and absolute bias, relative absolute bias and root posterior mean squared error for finite poulation proportions by design point
Table summary
This table displays the results of Simulation under the HoC model: Comparison of the HeC and HoC models using mean coverage and widths of 95% credible intervals and absolute bias. The information is grouped by Design Point (appearing as row headers), Model , C-Cre , W-Cre , C-HPD , W-HPD, AB , RAB and RPMSE (appearing as column headers).
Design Point Model C-Cre W-Cre C-HPD W-HPD AB RAB RPMSE
1 HeC 0.985 0.627 0.969 0.608 0.117 0.242 0.212
HoC 0.944 0.575 0.919 0.559 0.107 0.240 0.210
2 HeC 0.988 0.634 0.952 0.616 0.122 0.234 0.216
HoC 0.938 0.585 0.917 0.568 0.115 0.214 0.211
3 HeC 0.977 0.628 0.940 0.611 0.126 0.222 0.218
HoC 0.933 0.572 0.908 0.556 0.113 0.202 0.208
Table 3.7
Simulation under the HoC model: Comparison of the HeC and HoC models using the deviance information criterion (DIC), the Bayesian predictive p-value (BPP) and the log pseudo marginal likelihood (LPML) by design point
Table summary
This table displays the results of Simulation under the HoC model: Comparison of the HeC and HoC models using the deviance information criterion (DIC). The information is grouped by Design Point (appearing as row headers), HoC Model and HeC Model (appearing as column headers).
Design Point HoC Model HeC Model
DIC BPP LPML DIC BPP LPML
1 428.647 0.308 -300.526 416.626 0.302 -303.001
2 430.113 0.371 -295.191 417.557 0.317 -296.531
3 429.598 0.379 -295.613 414.877 0.335 -297.250

Thus, when data actually come from the HeC model, there are some important differences among the two models, with the HeC model being preferred. However, when data actually come from the HoC model, there are minor differences between the two models. Of course, the HeC model (unequal correlations) has more parameters than the HoC model (one correlation).


Date modified: