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1 Introduction 

This chapter provides a breakdown of contrasting microsimulation approaches that come into 

play when we simulate societies with a computer. These approaches can in turn be broken 

down into approaches of purpose, scope, and methods on how populations are simulated.  

With respect to purpose, we mainly distinguish between prediction and explanation, which 

turns out to also be the distinction in purpose between data-driven empirical microsimulation 

on one hand and agent based simulation on the other. The prediction approach is further 

subdivided into a discussion of projections versus forecasts.  

There are two aspects covered on the scope of a simulation – we first distinguish general 

models from specialized ones, then population models from cohort models.  

Finally, looking at the methods on how we simulate populations, we focus our discussion in 

three ways. The first is the population type we simulate, thereby enabling us to distinguish 

both open versus closed population models, as well as cross-sectional versus synthetic starting 

populations. The second is the time framework used, either discrete or continuous. The third is 

the order in which lives are simulated, leading to either a case-based or time-based model.  
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2 Explanation versus Prediction 

Modeling is abstraction, a reduction of complexity by isolating the driving forces of studied 

phenomena. The quest to find a formula for human behaviour, especially in economics, is so 

strong that over-simplified assumptions are an often accepted price for the beauty or elegance 

of models. The notion that beauty lies in simplicity is even found in some agent based models. 

Epstein draws an especially appealing analogy between agent based simulation and the 

paintings of French impressionists, one of these paintings (a street scene) being displayed on 

the cover of ‘Generative Social Sciences’ (Epstein 2006). Individuals in all their diversity are 

only sketched by some dots, but looking from some distance, we are able to clearly recognize 

the scene.  

Can statistical and accounting models compete in beauty with the emergence of social 

phenomena from a set of simple rules? Hardly--they are complex in nature and require 

multitudes of parameters. While statisticians might still find elegance in regression functions, 

beauty is hard to maintain when it comes to filing tax returns or claiming pension benefits. 

Accounting is boring for most of us, and models based on a multitude of statistical equations 

and accounting rules can quickly become difficult to understand. So how can microsimulation 

models compensate for their lack in beauty? The answer is simple: usefulness. In essence, a 

microsimulation model is useful if it has predictive or explanatory power.  

In agent based simulation, explanation means generating social phenomena from the bottom 

up, the generative standard of explanation being epitomized in the slogan “If you didn’t grow 

it, you didn’t explain it” (which is regarded as a necessary but not sufficient condition for 

explanation). This slogan expresses the critique of the agent based community on the 

mainstream economics community, with the latter’s focus on equilibriums without paying too 

much attention to how or if those equilibriums can ever be reached in reality. Again, agent 

based models follow a bottom-up approach of generating a virtual society. Their starting 

points are theories of individual behaviour expressed in computer code. The spectrum of how 

behaviour is modeled thereby ranges from simple rules to a distributed artificial intelligence 

approach. In the latter case, the simulated actors are ‘intelligent’ agents. As such, they have 

receptors; they get input from the environment. They have cognitive abilities, beliefs and 

intentions. They have goals, develop strategies, and learn from both their own experiences and 

those of other agents. This type of simulation is currently almost exclusively done for 

explanatory purposes; the hope is that the phenomena emerging from the actions and 

interactions of the agents in the simulation have parallels in real societies. In this way, 

simulation supports the development of theory.  
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The contrast to explanation lies in detailed prediction, which constitutes the main purpose of 

data-driven microsimulation. If microsimulation is designed and used operatively for 

forecasting and policy recommendations, such models ‘need to be firmly based in an empirical 

reality and its relations should have been estimated from real data and carefully tested using 

well-established statistical and econometric methods. In this case the feasibility of an 

inference to a real world population or economic process is of great importance’ (Klevmarken, 

1997).  

To predict the future state of a system, there is also a distinction to make between projections 

and forecasts. Projections are ‘what if’ predictions. Projections are always ‘correct’, based on 

the assumptions that are provided (as long as there are no programming errors). Forecasts are 

attempts to predict the most likely future, and since there can only be one actual future 

outcome, most forecasts therefore turn out to be false. With forecasts, we are not just simply 

trying to find out ‘what happens if’ (as is the case with projections); instead, we aim to 

determine the most plausible assumptions and scenarios, thus yielding the most plausible 

resulting forecast. (It should be noted, however, that implausible assumptions are not 

necessarily without value. Steady-state assumptions are examples of assumptions that are 

conceptually appealing and therefore very common but usually implausible. Under such 

assumptions, individuals are aged in an unchanging world with respect to the socioeconomic 

context such as economic growth and policies, and the individual behaviour is 'frozen' not 

allowing for cohort or period effects. Since a cross-section of today’s population does not 

result from a steady-state world, the 'freezing' of individual behaviour and the socioeconomic 

context can help to isolate and study future dynamics and phenomena resulting from past 

changes, such as population momentum.) 

How different is explanation from prediction? Why can’t we rephrase the previous slogan to 

“If you didn’t predict it, you didn’t explain it”? First, being able to produce good predictions 

does not necessarily imply a full understanding of the operations underlying the studied 

processes. We don’t need a full theoretical understanding to predict that lightning is followed 

by thunder or that fertility is higher in certain life course situations than in others. Predictions 

can be fully based on observed regularities and trends. In fact, theory is often sacrificed in 

favour of a highly detailed model that offers a good fit to the data. This, of course, is not 

without danger. If behaviours are not modeled explicitly, then neither are the corresponding 

assumptions, which can make the models difficult to understand. We can end up with black-

box models. On the other hand, agent based models, while capable of ‘growing’ some social 

phenomena, do so in a very stylized way. So far, these models have not reached any sufficient 

predictive power. In the data-driven microsimulation community, agent based models are thus 

often regarded as toy models.  
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Whatever the reason for developing a microsimulation model, however, modellers will 

typically experience one positive side effect from the exercise: the clarification of concepts. 

By modeling behaviour, a level of precision (eventually transferred into computer code) is 

required that is not always found in social science which has an abundance of pure descriptive 

theory. It is safe to say that the process of modeling itself generates new insights into the 

processes being modeled (this idea is discussed in Burch 1999). While some of these benefits 

can be experienced in all statistical modeling, simulation adds to the potential. By running a 

simulation model, we always gain insights into both the reality we are trying to simulate plus 

the operation of our models and the consequences of our modeling assumptions. In this sense, 

microsimulation models are always explorative tools, whether their main purpose is 

explanation or prediction. Or to put it differently, microsimulation models provide 

experimental platforms for societies where the possibility of genuine natural experiments is 

limited by nature.  

3 General versus specialized models 

The development of larger-scale microsimulation models typically requires a considerable 

initial investment. This is especially true for policy simulations. Even if only interested in the 

simulation of one specific policy, we have to create a population and model the demographic 

changes before we can add the economic behaviour and accounting routines necessary for our 

study. This can create a situation where it becomes more logical to design microsimulation 

models as 'general purpose' models, thereby attracting potential investors from various fields. 

A model capable of detailed pension projections might easily be extended to other tax-benefit 

fields. A model including family structures might be extended to simulate informal care. A 

struggle for survival can even lead to rather exotic applications–for example, one of the largest 

models, the US Corsim model, survived difficult financial times by receiving a grant from a 

dentist’s association interested in a projection of future demands of teeth prosthesis!  

It is not surprising, therefore, that there is a general tendency to plan and develop 

microsimulation applications as general, multi-purpose models right from the beginning. In 

fact, large general models currently exist for many countries, as shown in the following table.  
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 Australia:  APPSIM, DYNAMOD 

 Canada:  DYNACAN, LifePaths 

 France:  DESTINIE 

 Norway: MOSART 

 Sweden: SESIM, SVERIGE 

 UK:  SAGEMOD 

 USA:  Corsim 

 

In creating general models, both the control of ambitions and modularity in the design are 

crucial for success. Only a few of today’s large models have actually reached and stayed at 

their initially planned sizes. Overambitious approaches have had to be corrected by 

considerable simplifications, as was the case with DYNAMOD which was initially planned as 

an integrated micro – macro model.  

Specialized microsimulation models concentrate on a few specific behaviours and/or 

population segments. An example is the NCCSU Long-term Care Model (Hancock et al., 

2006). This model simulates the incomes and assets of future cohorts of older people and their 

ability to contribute towards home care fees. It thereby concentrates on the simulation of the 

means test of long-term care policies, with the results fed into a macro model of future 

demands and costs.  

Historically, it has also been the case that some models which started off as rather specialized 

models ended up growing to more general ones. This happened with SESIM and LifePaths, 

both initially developed for the study of student loans. LifePaths is a particularly interesting 

example as it not only grew to a large general model but also constituted the base, in a 

stripped-off version, of a separate family of specialized health models (POHEM).  

4 Cohort versus population models 

Cohort models are specialized models, as opposed to general ones, since they only simulate 

one population segment, namely one birth cohort. This is a useful simplification if we are only 

interested in studying one cohort or comparing two distinct cohorts.  

Economic single cohort studies typically investigate lifetime income and the redistributive 

effects of tax-benefit systems over the life course. Examples of this kind of model include the 

HARDING and LIFEMOD models developed in parallel, the former for Australia, and the 

latter for Great Britain (Falkingham and Harding, 1996). This kind of model typically assumes 

a steady-state world, i.e., the HARDING cohort is born in 1960 and lives in a world that looks 

like Australia in 1986. 
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Population models deal with the entire population and not just specific cohorts. Not 

surprisingly, several limitations of cohort models are removed when simulating the whole 

population, including demographic change issues and distributional issues between cohorts 

(like intergenerational fairness). 

5 Open versus closed population models 

On a global scale, the human population is a closed one. Everybody has been born and will 

eventually die on this planet, has biological parents born on this planet, and interacts with 

other humans all sharing these same traits. But, when focusing on the population of a specific 

region or country, this no longer holds true. People migrate between regions, form 

partnerships with persons originating in other regions, etc. In such cases, we are dealing with 

open populations. Therefore, in a simulation model in which we are almost never interested in 

modeling the whole world population, how can we deal with this problem?  

Usually, the solution requires a degree of creativity. For example, when allowing immigration, 

we will always have the problem to find ways to model a specific country without modeling 

the rest of the world. With respect to immigration, many approaches have been adopted, 

ranging from the cloning of existing ‘recent immigrants’ to sampling from a host population or 

even from different ‘pools’ of host populations representing different regions. 

Conceptually more demanding is the simulation of partner matching. In microsimulation, the 

terms closed and open population usually correspond to whether the matching of spouses is 

restricted to persons within the population (closed) or whether spouses are ‘created on 

demand’ (open). When modeling a closed population, we have the problem that we usually 

simulate only a sample of a population and not the whole population of a country. If our 

sample is too small, it becomes unlikely that reasonable matches can be found within the 

simulated sample. This holds especially true if geography is also an important factor in our 

model. For example, if there are not many individuals representing the population of a small 

town, then very few of them will find a partner match within a realistic distance.  

The main advantages of closed models are that they allow kinship networks to be tracked and 

that they enforce more consistency (assuming that they have a large enough population to find 

appropriate matches). Major drawbacks of closed models, however, are sampling problems 

and the computational demands associated with partner matching. In a starting population 

derived from a sample, the model may not be balanced with respect to kinship linkages other 

than spouses, since a person's parents and siblings are not included in the base population if 

they do not live in the same household (Toder et al., 2000).  

The modeling of open populations requires some abstraction. Here, partners are created on 

demand - with characteristics synthetically generated or sampled from a host population – and 
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are treated more as attributes of a ‘dominant’ individual than as ‘full’ individuals. While their 

life courses (or some aspects of interest for the simulation of the dominant individual) are 

simulated, they themselves are not accounted for as individuals in aggregated output.  

6 Cross-sectional starting populations versus synthetic populations 

Every microsimulation model has to start somewhere in time, thus creating the need for a 

starting population. In population models, we can distinguish two main starting population 

types: cross-sectional and synthetic. In the first case, we read in a starting population from a 

cross-sectional dataset, and age all individuals from this moment until death (while of course 

also adding new individuals at birth events). In the second case we follow an approach 

typically also found in cohort models--all individuals are modeled from their moment of birth 

onwards.  

If we are only interested in the future, why would we want to start with a synthetic population 

that would also force us to simulate the past? Certainly, starting from a cross-sectional dataset 

can be simpler. When we start from representative ‘real data’, we therefore do not have to 

retrospectively generate a population, implying that we do not need historical data to model 

past behaviour. Nor do we have to concern ourselves with consistency problems, since 

simulations starting with synthetic populations typically lack full cross-sectional consistency.  

Unfortunately, many microsimulation applications do need at least some biographical 

information not available in cross-sectional datasets. For example, past employment and 

contribution histories determine future pensions. As a consequence, some retrospective or 

historical modeling will typically be required in most microsimulation applications.  

One idea to avoid a synthetic starting population when historical simulation is in fact needed 

could be to start from an old survey. This idea was followed in the Corsim model which used a 

starting population from a 1960 survey (which also makes this model an interesting subject of 

study itself). While the ensuing possibility to create retrospective forecasts can help assess the 

model’s quality against reality, such an approach nevertheless has its own problems. Corsim 

makes heavy use of alignment techniques to recalibrate its retrospective forecasts to published 

data. Even if many group and aggregate outcomes can be exactly aligned to recent data, there 

is no way of assuring that the joint distributions based on the 1960 data remain accurate after 

several decades. 

When creating a synthetic starting population, everything is imputed. We thus need models of 

individual behaviour going back a full century. While such an approach is demanding, it has 

its advantages. First, the population size is not limited by a survey; we are able to create larger 

populations, thus diminishing Monte Carlo variability. Second, being created synthetically, we 

omit confidentiality conflicts. (Statistics Canada follows this approach in its LifePaths model.) 
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Overall, the more that past information has to be imputed, or the more crucial that past 

information is for what the application is attempting to predict or explain, then the more the 

approach of a synthetic starting population becomes attractive. For example, Wachter 

(Wachter 1995) simulated the kinship patterns of the US population following a synthetic 

starting population approach that went back to the early 19th century. Such detailed kinship 

information is not found in any survey and thus can be constructed only by means of 

microsimulation.  

7 Continuous versus discrete time 

Models can be distinguished by their time framework which can be either continuous or 

discrete. Continuous time is usually associated with statistical models of durations to an event, 

following a competing risk approach. Beginning at a fixed starting point, a random process 

generates the durations to all considered events, with the event occurring closest to the starting 

point being the one that is executed while all others are censored. The whole procedure is then 

repeated at this new starting point in time, and this cycle keep on occurring until the ‘death’ 

event of the simulated individual takes place.  

Figure 1 illustrates the evolution of a simulated life course in a continuous time model. At the 

beginning, there are three events (E1, E2, E3), each of which has a randomly generated 

duration. In the example, E1 occurs first so it becomes the event that is executed; after that, 

durations for the three events are ‘re-determined’. But because E3 is not defined to be 

contingent on E1 in the example, its duration remains unchanged, whereas new durations are 

re-generated for E1 and E2. E3 ends up having the next smallest duration so it is executed 

next.  The cycle then continues as durations are again re-generated for all three events.  
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Figure 1: Evolution of a simulated life course 

 

Continuous time models are technically very convenient, as they allow new processes to be 

added without changing the models of the existing processes as long as the statistical 

requirements for competing risk models are met (See Galler 1997 for a description of 

associated problems). 

Modeling in continuous time, however, does not automatically imply that there are no discrete 

time (clock) events. Discrete time events can occur when time-dependent covariates are 

introduced, such as periodically updated economic indices (e.g. unemployment) or flow 

variables (e.g. personal income). The periodic update of indices then censors all other 

processes at every periodic time step. If the interruption periods are so short (e.g. one day) that 

the maximum number of other events within a period virtually becomes one, such a model has 

converged towards a discrete time model.  

Discrete time models determine the states and transitions for every time period while 

disregarding the exact points of time within the interval. Events are assumed to happen just 

once in a time period. As several events can take place within one discrete time period, either 

short periods have to be used to avoid the occurrence of multiple events or else all possible 

combinations of single events have to be modeled as events themselves. Discrete time 

frameworks are used in most dynamic tax-benefit models, with the older models usually using 

a yearly time framework mainly due to computational restrictions. With computer power 

becoming stronger and cheaper over time, however, shorter time steps can be expected to 

become predominant in future models. When time steps become so short that we can virtually 
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exclude the possibility of multiple events, we have reached “pseudo-continuity”. In this case 

we can even use statistical duration models. An example of the combination of both 

approaches is the Australian DYNAMOD model. 

8 Case-based versus time-based models 

The distinction between case-based and time-based models lies in the order in which 

individual lives are simulated. In case-based models one case is simulated from birth to death 

before the simulation of the next case begins. Cases can be individual persons or a person plus 

all ‘non-dominant’ persons that have been created on demand for this person. In the latter 

situation, all lives pertaining to one case are simulated simultaneously over time.  

Case-based modeling is only possible if there is no interaction between cases. Interactions are 

limited to the persons belonging to a case, thereby imposing significant restrictions on what 

can be modeled. The advantage of such models is of a technical nature--because each case is 

simulated independently of the others, it is easier to distribute the overall simulation job to 

several computers. Furthermore, memory can be freed after each case has been simulated, 

since the underlying information does not have to be stored for future use. (Case-based models 

can also only be used with open population models, not closed ones).  

In time-base models, all individuals are simulated simultaneously over a pre-defined time 

period. Because all individuals are aging simultaneously (as opposed to just the individuals in 

one case), the computational demands definitely increase. In a continuous time framework, the 

next event that happens is the first event scheduled in the whole population. Thus, computer 

power can still be a bottleneck for this kind of simulation – current models typically have 

population sizes of less than one million. 
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