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1 Introduction

This chapter provides a breakdown of contrastingr@simulation approaches that come into
play when we simulate societies with a computeresEhapproaches can in turn be broken
down into approaches of purpose, scope, and methotdsw populations are simulated.

With respect to purpose, we mainly distinguish lestw prediction and explanation, which
turns out to also be the distinction in purposeveen data-driven empirical microsimulation
on one hand and agent based simulation on the.ofliner prediction approach is further
subdivided into a discussion of projections verfsuscasts.

There are two aspects covered on the scope of alation — we first distinguish general
models from specialized ones, then population neofiem cohort models.

Finally, looking at the methods on how we simulptpulations, we focus our discussion in
three ways. The first is the population type weudate, thereby enabling us to distinguish
both open versus closed population models, asaseatross-sectional versus synthetic starting
populations. The second is the time framework usgher discrete or continuous. The third is
the order in which lives are simulated, leadingitber a case-based or time-based model.



2 Explanation versus Prediction

Modeling is abstraction, a reduction of complexty isolating the driving forces of studied
phenomena. The quest to find a formula for humdrabeur, especially in economics, is so
strong that over-simplified assumptions are annoéfecepted price for the beauty or elegance
of models. The notion that beauty lies in simpjicgt even found in some agent based models.
Epstein draws an especially appealing analogy twegent based simulation and the
paintings of French impressionists, one of thesetipgs (a street scene) being displayed on
the cover of ‘Generative Social Sciences’ (Epsg@6). Individuals in all their diversity are
only sketched by some dots, but looking from somsedce, we are able to clearly recognize
the scene.

Can statistical and accounting models compete iautyewith the emergence of social
phenomena from a set of simple rules? Hardly--theyy complex in nature and require
multitudes of parameters. While statisticians mgfiit find elegance in regression functions,
beauty is hard to maintain when it comes to filtag returns or claiming pension benefits.
Accounting is boring for most of us, and modelsdolasn a multitude of statistical equations
and accounting rules can quickly become difficalubderstand. So how can microsimulation
models compensate for their lack in beauty? Thevanss simple: usefulness. In essence, a
microsimulation model is useful if it has predietior explanatory power.

In agent based simulation, explanation means gengrsocial phenomena from the bottom
up, the generative standard of explanation beintgpmized in the slogan “If you didn’t grow
it, you didn’t explain it” (which is regarded asnacessary but not sufficient condition for
explanation). This slogan expresses the critiquethef agent based community on the
mainstream economics community, with the lattessus on equilibriums without paying too
much attention to how or if those equilibriums @rer be reached in reality. Again, agent
based models follow a bottom-up approach of geimgrad virtual society. Their starting
points are theories of individual behaviour expeess computer code. The spectrum of how
behaviour is modeled thereby ranges from simplesrtib a distributed artificial intelligence
approach. In the latter case, the simulated aeasintelligent’ agents. As such, they have
receptors; they get input from the environment. yThave cognitive abilities, beliefs and
intentions. They have goals, develop strategied J@arn from both their own experiences and
those of other agents. This type of simulation isrently almost exclusively done for
explanatory purposes; the hope is that the phenarmamerging from the actions and
interactions of the agents in the simulation haeealels in real societies. In this way,
simulation supports the development of theory.



The contrast to explanation lies in detailed preali which constitutes the main purpose of
data-driven microsimulation. If microsimulation idesigned and used operatively for
forecasting and policy recommendations, such mddekd to be firmly based in an empirical

reality and its relations should have been estich&tem real data and carefully tested using
well-established statistical and econometric methold this case the feasibility of an

inference to a real world population or econommcess is of great importance’ (Klevmarken,
1997).

To predict the future state of a system, therdsis a distinction to make between projections
and forecasts. Projections are ‘what if predicsioRrojections are always ‘correct’, based on
the assumptions that are provided (as long as #rerao programming errors). Forecasts are
attempts to predict the most likely future, andceirthere can only be one actual future
outcome, most forecasts therefore turn out to Iz faVith forecasts, we are not just simply
trying to find out ‘what happens if' (as is the eawith projections); instead, we aim to
determine the most plausible assumptions and dosnhahus yielding the most plausible
resulting forecast. (It should be noted, howevéiat timplausible assumptions are not
necessarily without value. Steady-state assumptayasexamples of assumptions that are
conceptually appealing and therefore very common uswally implausible. Under such
assumptions, individuals are aged in an unchangmrid with respect to the socioeconomic
context such as economic growth and policies, &edindividual behaviour is 'frozen' not
allowing for cohort or period effects. Since a srggction of today’'s population does not
result from a steady-state world, the ‘freezinghdividual behaviour and the socioeconomic
context can help to isolate and study future dycanand phenomena resulting from past
changes, such as population momentum.)

How different is explanation from prediction? Whgntt we rephrase the previous slogan to
“If you didn’t predict it, you didn’t explain it"First, being able to produce good predictions
does not necessarily imply a full understandingthed operations underlying the studied
processes. We don't need a full theoretical undadshg to predict that lightning is followed
by thunder or that fertility is higher in certaifelcourse situations than in others. Predictions
can be fully based on observed regularities anadgeln fact, theory is often sacrificed in
favour of a highly detailed model that offers a ddua to the data. This, of course, is not
without danger. If behaviours are not modeled expli then neither are the corresponding
assumptions, which can make the models difficuliiderstand. We can end up with black-
box models. On the other hand, agent based maadkeile capable of ‘growing’ some social
phenomena, do so in a very stylized way. So fasehmodels have not reached any sufficient
predictive power. In the data-driven microsimulatmommunity, agent based models are thus
often regarded as toy models.



Whatever the reason for developing a microsimutatmodel, however, modellers will
typically experience one positive side effect frtme exercise: the clarification of concepts.
By modeling behaviour, a level of precision (evetiutransferred into computer code) is
required that is not always found in social sciewb&ch has an abundance of pure descriptive
theory. It is safe to say that the process of mdelself generates new insights into the
processes being modeled (this idea is discussBdnch 1999). While some of these benefits
can be experienced in all statistical modeling,u$ation adds to the potential. By running a
simulation model, we always gain insights into btbté reality we are trying to simulate plus
the operation of our models and the consequencesrahodeling assumptions. In this sense,
microsimulation models are always explorative tpolhether their main purpose is
explanation or prediction. Or to put it differentlymicrosimulation models provide
experimental platforms for societies where the ibagy of genuine natural experiments is
limited by nature.

3 General versus specialized models

The development of larger-scale microsimulation etedypically requires a considerable
initial investment. This is especially true for pylsimulations. Even if only interested in the
simulation of one specific policy, we have to cesatpopulation and model the demographic
changes before we can add the economic behavidua@ounting routines necessary for our
study. This can create a situation where it becomese logical to design microsimulation
models as 'general purpose' models, thereby atigagbtential investors from various fields.
A model capable of detailed pension projectionshinegpsily be extended to other tax-benefit
fields. A model including family structures mighe lextended to simulate informal care. A
struggle for survival can even lead to rather exapiplications—for example, one of the largest
models, the US Corsim model, survived difficultdircial times by receiving a grant from a
dentist’'s association interested in a projectiofutire demands of teeth prosthesis!

It is not surprising, therefore, that there is anegal tendency to plan and develop
microsimulation applications as general, multi-ppg® models right from the beginning. In
fact, large general models currently exist for maoyntries, as shown in the following table.



Australia: APPSIM, DYNAMOD
Canada: DYNACAN, LifePaths
France: DESTINIE

Norway: MOSART

Sweden: SESIM, SVERIGE
UK: SAGEMOD

USA: Corsim

In creating general models, both the control of @iois and modularity in the design are
crucial for success. Only a few of today's largedels have actually reached and stayed at
their initially planned sizes. Overambitious apmiues have had to be corrected by
considerable simplifications, as was the case BINAMOD which was initially planned as
an integrated micro — macro model.

Specialized microsimulation models concentrate orfea specific behaviours and/or
population segments. An example is the NCCSU LengrtCare Model (Hancock et al.,
2006). This model simulates the incomes and as$dtture cohorts of older people and their
ability to contribute towards home care fees. déréioy concentrates on the simulation of the
means test of long-term care policies, with theultssfed into a macro model of future
demands and costs.

Historically, it has also been the case that sorodets which started off as rather specialized
models ended up growing to more general ones. Adppened with SESIM and LifePaths,
both initially developed for the study of studeaars. LifePaths is a particularly interesting
example as it not only grew to a large general rhdé also constituted the base, in a
stripped-off version, of a separate family of spézed health models (POHEM).

4  Cohort versus population models

Cohort models are specialized models, as opposegeérteral ones, since they only simulate
one population segment, namely one birth cohoris Bha useful simplification if we are only
interested in studying one cohort or comparing dedinct cohorts.

Economic single cohort studies typically investggédifetime income and the redistributive
effects of tax-benefit systems over the life couESeamples of this kind of model include the
HARDING and LIFEMOD models developed in paralld¢le tformer for Australia, and the
latter for Great Britain (Falkingham and Hardin§986). This kind of model typically assumes
a steady-state world, i.e., the HARDING cohortasrbin 1960 and lives in a world that looks
like Australia in 1986.



Population models deal with the entire populatiard aot just specific cohorts. Not
surprisingly, several limitations of cohort modelee removed when simulating the whole
population, including demographic change issues d@isttibutional issues between cohorts
(like intergenerational fairness).

5 Open versus closed population models

On a global scale, the human population is a clasex Everybody has been born and will
eventually die on this planet, has biological ptadmorn on this planet, and interacts with
other humans all sharing these same traits. Bugnviticusing on the population of a specific
region or country, this no longer holds true. Peophigrate between regions, form
partnerships with persons originating in other @agi etc. In such cases, we are dealing with
open populations. Therefore, in a simulation madelhich we are almost never interested in
modeling the whole world population, how can welagth this problem?

Usually, the solution requires a degree of cregtivior example, when allowing immigration,
we will always have the problem to find ways to rabd specific country without modeling
the rest of the world. With respect to immigrationany approaches have been adopted,
ranging from the cloning of existing ‘recent imnagts’ to sampling from a host population or
even from different ‘pools’ of host populations regenting different regions.

Conceptually more demanding is the simulation afra matching. In microsimulation, the
terms closed and open population usually corresponshether the matching of spouses is
restricted to persons within the population (clgsed whether spouses are ‘created on
demand’ (open). When modeling a closed populaties have the problem that we usually
simulate only a sample of a population and notwiele population of a country. If our
sample is too small, it becomes unlikely that reabte matches can be found within the
simulated sample. This holds especially true ifggaphy is also an important factor in our
model. For example, if there are not many individuapresenting the population of a small
town, then very few of them will find a partner riatwithin a realistic distance.

The main advantages of closed models are thatathewy kinship networks to be tracked and
that they enforce more consistency (assuming kiegt have a large enough population to find
appropriate matches). Major drawbacks of closed etspchowever, are sampling problems
and the computational demands associated with grartratching. In a starting population
derived from a sample, the model may not be bathmath respect to kinship linkages other
than spouses, since a person's parents and silaliagsot included in the base population if
they do not live in the same household (Toder.eRAD0).

The modeling of open populations requires someratigin. Here, partners are created on
demand - with characteristics synthetically geregtatr sampled from a host population — and



are treated more as attributes of a ‘dominant’viidial than as ‘full’ individuals. While their
life courses (or some aspects of interest for thaulation of the dominant individual) are
simulated, they themselves are not accounted fordagduals in aggregated output.

6 Cross-sectional starting populations ver sus synthetic populations

Every microsimulation model has to start somewharéme, thus creating the need for a
starting population. In population models, we castiniguish two main starting population
types: cross-sectional and synthetic. In the Giete, we read in a starting population from a
cross-sectional dataset, and age all individuals: fthis moment until death (while of course
also adding new individuals at birth events). Ie thecond case we follow an approach
typically also found in cohort models--all indivials are modeled from their moment of birth
onwards.

If we are only interested in the future, why wowld want to start with a synthetic population

that would also force us to simulate the past?aldyt, starting from a cross-sectional dataset
can be simpler. When we start from representatieal ‘data’, we therefore do not have to
retrospectively generate a population, implyingt the do not need historical data to model
past behaviour. Nor do we have to concern ourselis consistency problems, since

simulations starting with synthetic populationsitgtly lack full cross-sectional consistency.

Unfortunately, many microsimulation applications deed at least some biographical

information not available in cross-sectional datms&or example, past employment and

contribution histories determine future pensions. & consequence, some retrospective or
historical modeling will typically be required inast microsimulation applications.

One idea to avoid a synthetic starting populatidrenvhistorical simulation is in fact needed
could be to start from an old survey. This idea feiewed in the Corsim model which used a
starting population from a 1960 survey (which aisakes this model an interesting subject of
study itself). While the ensuing possibility to ate retrospective forecasts can help assess the
model’s quality against reality, such an approaehentheless has its own problems. Corsim
makes heavy use of alignment techniques to readdibis retrospective forecasts to published
data. Even if many group and aggregate outcomedeaxactly aligned to recent data, there
is no way of assuring that the joint distributidresed on the 1960 data remain accurate after
several decades.

When creating a synthetic starting population, gbéng is imputed. We thus need models of
individual behaviour going back a full century. Whsuch an approach is demanding, it has
its advantages. First, the population size is inoitéd by a survey; we are able to create larger
populations, thus diminishing Monte Carlo variailiSecond, being created synthetically, we
omit confidentiality conflicts. (Statistics Canafddlows this approach in its LifePaths model.)



Overall, the more that past information has to bputed, or the more crucial that past
information is for what the application is attenmgtito predict or explain, then the more the
approach of a synthetic starting population becoradmctive. For example, Wachter
(Wachter 1995) simulated the kinship patterns ef S population following a synthetic
starting population approach that went back toehgy 19" century. Such detailed kinship
information is not found in any survey and thus dan constructed only by means of
microsimulation.

7 Continuousversusdiscretetime

Models can be distinguished by their time framewathich can be either continuous or
discrete. Continuous time is usually associatetl statistical models of durations to an event,
following a competing risk approach. Beginning dfixad starting point, a random process
generates the durations to all considered eveiits thne event occurring closest to the starting
point being the one that is executed while all ctfa@e censored. The whole procedure is then
repeated at this new starting point in time, and tlycle keep on occurring until the ‘death’
event of the simulated individual takes place.

Figure 1 illustrates the evolution of a simulatée tourse in a continuous time model. At the
beginning, there are three events (E1, E2, E3)h edcwhich has a randomly generated
duration. In the example, E1 occurs first so itdmees the event that is executed; after that,
durations for the three events are ‘re-determin@&ilit because E3 is not defined to be
contingent on E1 in the example, its duration rermainchanged, whereas new durations are
re-generated for E1 and E2. E3 ends up having éxé smallest duration so it is executed
next. The cycle then continues as durations aa@ag-generated for all three events.



Figure1: Evolution of a simulated life course
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Continuous time models are technically very coneenias they allow new processes to be
added without changing the models of the existimgcgsses as long as the statistical
requirements for competing risk models are met (&ader 1997 for a description of
associated problems).

Modeling in continuous time, however, does not eagtcally imply that there are no discrete
time (clock) events. Discrete time events can oocsben time-dependent covariates are
introduced, such as periodically updated economdices (e.g. unemployment) or flow
variables (e.g. personal income). The periodic tgpda indices then censors all other
processes at every periodic time step. If the iapgion periods are so short (e.g. one day) that
the maximum number of other events within a pevioaially becomes one, such a model has
converged towards a discrete time model.

Discrete time models determine the states and ii@ms for every time period while
disregarding the exact points of time within théemal. Events are assumed to happen just
once in a time period. As several events can ték@epwithin one discrete time period, either
short periods have to be used to avoid the ocooerefh multiple events or else all possible
combinations of single events have to be modelede\ents themselves. Discrete time
frameworks are used in most dynamic tax-benefitetgdvith the older models usually using
a yearly time framework mainly due to computationasdtrictions. With computer power
becoming stronger and cheaper over time, howeVventey time steps can be expected to
become predominant in future models. When timessibegome so short that we can virtually



exclude the possibility of multiple events, we hagached “pseudo-continuity”. In this case
we can even use statistical duration models. Anmgka of the combination of both
approaches is the Australian DYNAMOD model.

8 Case-based versustime-based models

The distinction between case-based and time-basedels lies in the order in which
individual lives are simulated. In case-based n®dek case is simulated from birth to death
before the simulation of the next case begins. £aae be individual persons or a person plus
all ‘non-dominant’ persons that have been createdl®@mand for this person. In the latter
situation, all lives pertaining to one case areusated simultaneously over time.

Case-based modeling is only possible if there isteraction between cases. Interactions are
limited to the persons belonging to a case, themeiposing significant restrictions on what
can be modeled. The advantage of such modelsag@thnical nature--because each case is
simulated independently of the others, it is eatedistribute the overall simulation job to
several computers. Furthermore, memory can be fedted each case has been simulated,
since the underlying information does not havedatored for future use. (Case-based models
can also only be used with open population modelsclosed ones).

In time-base models, all individuals are simulasashultaneously over a pre-defined time
period. Because all individuals are aging simultarsdy (as opposed to just the individuals in
one case), the computational demands definitekgase. In a continuous time framework, the
next event that happens is the first event schddnléhe whole population. Thus, computer
power can still be a bottleneck for this kind afailation — current models typically have

population sizes of less than one million.
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