
 1

MODGEN AND THE APPLICATION RISKPATHS FROM THE

MODEL DEVELOPER’S VIEW

Martin Spielauer

Statistics Canada – Modeling Division

R.H. Coats Building, 24-O

Ottawa, K1A 0T6

martin.spielauer@statcan.gc.ca

RiskPaths is a simple, competing risk, case-based continuous time microsimulation model. Its

main use is as a teaching tool, introducing microsimulation to social scientists and

demonstrating how dynamic microsimulation models can be efficiently programmed using the

language Modgen.

Modgen is a generic microsimulation programming language developed and maintained at

Statistics Canada.

RiskPaths as well as the Modgen programming language and other related documents are

available at www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm

1 Introduction

In this chapter we explore the microsimulation model development package Modgen and the

Modgen application RiskPaths from the model developer’s point of view. We first introduce

the Modgen programming environment, and then discuss basic Modgen language concepts

and the RiskPaths code. Modgen requires only moderate programming skills; thus, after some

training, it enables social scientists to create their own models without the need for

professional programmers. This is possible because Modgen hides underlying mechanisms

like event queuing and automatically creates a stand-alone model with a complete visual

interface, including scenario management and model documentation (as introduced in the

previous chapter). Model developers can therefore concentrate on model specific code: the

declaration of parameters, the states defining the simulated actors, and the events changing the

 2

states. High efficiency coding extends also to model output. Modgen includes a powerful

language to handle continuous time tabulation. These tabulations are created on-the-fly when

simulations are run and the programming to generate them usually requires only a few lines of

code per table. Modgen also has a built-in mechanism for estimating the Monte Carlo

variation for any cell of any table, without requiring any programming by the model

developer.

Being a simple model, RiskPaths does not make use of the full range of available Modgen

language concepts and capabilities. The discussion in this chapter does not intend to replace

existing Modgen documentation, such as the Modgen Developer’s Guide, either. But by

introducing the main concepts of Modgen programming, we aim to help you get started in

Modgen model development and to engage in further exploration.

2 The Modgen programming environment

When installed on a computer, Modgen integrates itself into the (required) Microsoft Visual

Studio C++ environment. The visual components of Modgen are a separate toolbar as well as

additional items under the Tools and Help menus of Visual Studio. Modgen also appears as an

option in the file dialog box for creating a new project as well as in the dialog box for adding a

file to an existing project.

Figure 1 displays a screenshot of the programming interface as it appears after opening the

Modgen application ‘RiskPaths.sln’. The Modgen toolbar consists of several icons for running

Modgen, accessing help, opening the BioBrowser tool, and switching the language (between

English and French).

 3

Figure 1: The programming interface

The Modgen tool to be
run before compiling

the model

Model parameters

The model code
organized in .mpp files

Modgen output: error
messages, etc.

Modgen code is organized into several files, each with the file extension .mpp. As can be seen

in the Solution Explorer window (Figure 1), RiskPaths consists of eight .mpp files grouped in

the “Models (mpp)” folder. These are the essential files of RiskPaths, i.e. the files containing

all Modgen code written by the model developer.

When invoking the Modgen tool (which can be accessed from the toolbar, or from the first

item under the “Tools” menu), these .mpp files are translated into C++ code. Thus Modgen

acts as a pre-compiler, creating one .cpp source code file for each .mpp file and putting the

resulting .cpp files in the “C++ Files” folder. The Modgen tool also adds model-independent

C++ code components to the “C++ Files” folder; these additional files1 should not be changed

by the model developer and are essential in order to use the C++ compiler to build the Modgen

application.

1 ACTORS.CPP, ACTORS.H, app.ico, model.h, model.RC, PARSE.INF, TABINIT.CPP, TABINIT.H.

 4

The model parameters are contained in one or more .dat files organized in a folder labelled

“Scenarios”. These files are loaded at runtime and contain the actual values assigned to the

parameters.

When running the Modgen tool, Modgen – like the C++ compiler - produces log output that is

displayed in the Output window. Any error messages are also displayed in this window, and

clicking on a particular error message leads you directly to the corresponding Modgen code

that produced the error.

Two steps are required to create a Modgen application from the Visual Studio environment.

First, Modgen has to translate the Modgen code in the .mpp files; this is done when invoking

the Modgen tool. Second, the resulting C++ application has to be built and started. This can be

done in one step by selecting “Start Debugging” in the “Debug” menu or by clicking the

corresponding icon at the toolbar.

3 Basic Modgen Concepts

Actor: An actor is the entity whose life is simulated in a Modgen model. A model’s actor is

often a person, although this is not a requirement--other models have been developed that use

dwellings or occupations as actors. Nevertheless, in RiskPaths, the actor is a person or more

specifically, a female (since it is a model for the study of childlessness)

State: States describe the characteristics of a model’s actors. Some states can be continuous,

such as age, whereas others are categorical, such as gender. For categorical states, the actual

categories or levels are defined via Modgen’s classification command.

 Overall, there are two major kinds of states in Modgen—simple states and derived states,
both of which are used by RiskPaths and both of which are declared within an actor

declaration. A simple state is a state whose value can be initialized and changed by the code

that a model developer creates. Simple states are changed by explicitly declared events. A

derived state, on the other hand, is a state whose value is given as an expression which is

normally derived from or based on other states. A derived state’s values are automatically

maintained by Modgen throughout a simulation run. A useful Modgen concept is the self-

scheduling derived state. This is a state which changes in a predefined time sequence, such as

integer age which will change at each birthday.

Event: In Modgen, simulation takes place through the execution of events. Each event

consists of two functions: a time function to determine the time of the next occurrence of the

event, and an implementation function to determine the consequences when the event happens.

RiskPaths has several events, including a mortality event, union formation and dissolution

events, and a first pregnancy event.

 5

Parameter: Parameters are used to give model users a degree of control over the simulations

they run. The ability to change different hazards or probabilities that affect various aspects of a

simulation allows different scenarios to be explored. Parameters can have many dimensions

(such as age, gender, and year) and are stored in .dat data files. In RiskPaths, there is one

parameter file, Base(RiskPaths).dat, which stores parameters such as death probabilities by

age and risks of first pregnancy by age group. More complex models will usually incorporate

more than one .dat file.

Table: Modgen has a powerful cross-tabulation facility built in to report aggregated results in

the form of tables. There are two central elements of a table declaration—its captured

dimensions (defining when an actor enters and leaves a cell) and its analysis dimension

(recording what happens while an actor is in that cell). When running simulations, the

tabulations to fill a table are created on the fly, thus removing the need to create and write to

large temporary interim files for subsequent reporting. Several examples of table declarations

will be shown later in this chapter for RiskPaths.

4 Organization of files

The Modgen code of RiskPaths is organized into eight separate .mpp files, while all RiskPaths

parameter values (because RiskPaths is a simple model) are contained in just a single .dat file.

In principle, a model developer has complete freedom to decide how to organize the Modgen

code in different files, but a modular organization as found in RiskPaths is recommended.

Figure 2: RiskPaths file organization

General modules Filename
Simulation engine RiskPaths.mpp
Core actor file PersonCore.mpp
Table definitions Tables.mpp
Output tracking Tracking.mpp
French language translations RiskPathsFR.mpp

Behavioural modules Filename
Mortality Mortality.mpp
Fertility Fertility.mpp
Union formations and dissolutions Unions.mpp

Parameter file Filename
Parameters of Baseline Scenario Base(RiskPaths).dat

Note that the .mpp code files often contain comments that resemble labels. Such comments are

placed beside the declarations of symbols such as states, state levels, parameters, tables and

table dimensions. Modgen does in fact interpret these comments as labels and subsequently

uses them when tables or parameters are displayed within Modgen’s visual interface. These

 6

labels are also used in the model’s automatically generated encyclopaedic help file. Code

comments that are used as labels begin with a two-character language identifier, e.g. //EN

Union status. Many such comments can be seen in the code examples that follow for

RiskPaths.

Fore more detailed descriptions of modules, functions and events, notes following the

following syntax example can be placed in the code. These notes – besides documenting the

code - are used in the automatically generated encyclopaedic help file.

/*NOTE(Person.Finish, EN)
 The Finish function terminates the simulation of a n actor.
*/

4.1 RiskPaths.mpp (the main simulation file)

This file contains the code essential for the definition of the model type (e.g. case-based,

continuous time) as well as the simulation engine, i.e. the code that runs the whole simulation.

Because RiskPaths is a case-based model, the simulation engine code loops through all cases

and processes the event queues of each case. The file also identifies the languages of the

model. The code of this file is mostly model independent within a class of models (e.g.

continuous time, case-based) and a version of it is provided automatically when using

Modgen’s built-in wizards to start a new Modgen project.

For the development of our case-based, continuous time cohort RiskPaths model with an actor

‘Person’ the code provided by the wizard requires very few modifications. The full code of

this .mpp file is less than one page in length.

4.2 PersonCore.mpp

The only actor in RiskPaths is a person. In the file PersonCore.mpp, we have organized the

code which is part of the actor declaration but not directly related to a specific behaviour. The

file contains two age clocks defined as self-scheduling states (integer_age and age_status) and

two actor functions, Start() and Finish(), which are performed at the creation of an actor and at

her death, respectively.

In the Start() function we initialize the states time and age to 0. Both states are automatically

created and maintained by Modgen and can only be changed in the Start() function. Their

types depend on the model type; because RiskPaths is a continuous time model, time and age

are continuous states.

 7

The Finish() function must be called at the death event of an actor. Its role is to remove the

actor from tables and from the simulation, and to recuperate any computer memory used by

the actor.

All states and actor functions are declared in an “actor Person { };” block. To allow

modularity in the organization of code by different life course domains, there can be multiple

actor blocks in a project, typically one for each behavioural file.

The first code section of this module contains three type definitions. We first define a range

LIFE.

range LIFE //EN Simulated age range
{
 0,100
};

Range is a Modgen type which defines a range of integer values. RiskPaths limits the possible

age range of persons to 100 years. This type will be used to declare a derived state containing

the age of a person in completed years. The second type definition will be used to divide

continuous age into 2.5 year age intervals starting at age 15.

partition AGEINT_STATE //EN 2.5 year age intervals
{
 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40

};

The third definition is a classification of union types. In general, if a range, partition, or

classification is used in several files, it is good practice to define it in the core actor file.

classification UNION_STATE //EN Union status
{
 US_NEVER_IN_UNION, //EN Never in union
 US_FIRST_UNION_PERIOD1, //EN First union < 3 years
 US_FIRST_UNION_PERIOD2, //EN First Union > 3 years
 US_AFTER_FIRST_UNION, //EN After first union
 US_SECOND_UNION, //EN Second union
 US_AFTER_SECOND_UNION //EN After second union

};

In the following code segment we declare two derived actor states and two functions. The

derived states for time intervals are used to change the values of parameters that vary over

time. In our model integer_age is needed because mortality risks are dependent on age in

years, whereas age_status comes into play because baseline risks for first conception and first

union formation are modelled to change in 2.5 year intervals after the 15th birthday. Both

integer_age and age_status have to be maintained over the simulation. The Modgen concept of

derived states allows us to have them maintained automatically. Both are derived from the

 8

state age (which is a special state, as it is generated and maintained automatically by Modgen).

In order to split up age into the time intervals defined in the AGEINT_STATE partition, we

make use of the Modgen function self_scheduling_split. The second derived state,

integer_age, could be directly obtained using the Modgen function self_scheduling_int. In

order to ensure that its value stays in the possible range of LIFE we convert it to type LIFE,

which is done by the Modgen macro COERCE.

actor Person
{
 //EN Current age interval
 int age_status = self_scheduling_split (age, AGEINT_STATE);

 //EN Current integer age
 LIFE integer_age = COERCE(LIFE, self_scheduling_int (age));

 //EN Function starting the life of an actor
 void Start();

 //EN Function finishing the life of an actor
 void Finish();

}

The remaining code of this module is the implementation of the Start() and Finish() functions.

The Finish() function is left empty as we do not require any actions, other than those

automatically performed by Modgen, to take place when an actor dies.

void Person::Start()
{
 // Age and time are variables automatically maintai ned by
 // Modgen. They can be set only in the Start functi on
 age = 0;
 time = 0;
}

/*NOTE(Person.Finish, EN)
 The Finish function terminates the simulation of a n actor.
*/
void Person::Finish()
{
 // After the code in this function (if any) is exec uted,
 // Modgen removes the actor from tables and from th e simulation.
 // Modgen also recuperates any memory used by the a ctor.

}

 9

4.3 Behavioural Files

In RiskPaths we distinguish three groups of behaviours: mortality, fertility and union

formation/dissolution. Accordingly we have organized the code into three .mpp files:

Mortality.mpp, Fertility.mpp and Unions.mpp. Behavioural files are typically arranged in

three sections:

- Declaration of parameters

- Declarations of actor states and events

- Implementation of events

4.3.1 Mortality.mpp

This file defines the mortality event that ends the life of the simulated actor. Mortality.mpp is

a typical behavioural module, and we follow a standard organization of the code: type

definitions, parameter declarations, actor declarations and event implementations.

Parameter declarations

Mortality is parameterized by death probabilities by age; thus, the probability to survive

another year changes at each birthday. We also introduce a parameter which allows us to

‘switch off’ mortality. When it is used, every actor reaches the maximum age of 100 years

(which can be useful for some types of fertility analysis). Figure 3 displays the mortality

parameter tables of the RiskPaths application.

Figure 3: Mortality parameters

 10

Parameters are declared within a “parameters {…};” code block. Modgen supports numeric

types, such as int, long, float, double, or Boolean (“logical” in the Modgen terminology). The

dimensionality of the parameters in the RiskPaths model is defined by classifications and

ranges. The following code generates the parameters for RiskPaths, as displayed in Figure 3.

For the annual death probabilities we use the range LIFE that was defined in PersonCore.mpp.

The following statement (parameter_group) groups the two mortality parameters in order to

provide an ordered hierarchical selection list in the user interface (again, as displayed in

Figure 3).

parameters
{
 logical CanDie; //EN Switch mortality on/off
 double ProbMort[LIFE]; //EN Death probabilities
};

parameter_group P01_Mortality //EN Mortality
{
 CanDie, ProbMort
};

Actor declarations

Actors are described by states which are changed in events. States can be both continuous

(integer or real) or categorical. In the mortality module, the state of interest is whether a

person is alive or not, thus making it categorical in nature. The levels of a categorical state are

defined with the Modgen classification command.

We declare a state life_status of type LIFE_STATE, which is initialized with LS_ALIVE at

birth and set to LS_NOT_ALIVE by the death event. It is good practice to initialize all states

by assigning initial values. Each initial value, however, must be enclosed in braces, i.e. {}—

otherwise, the state is implemented as a derived state.

classification LIFE_STATE //EN Life status
{
 LS_ALIVE, //EN Alive
 LS_NOT_ALIVE //EN Dead
};

actor Person

{
 LIFE_STATE life_status = {LS_ALIVE}; //EN Life Status
 event timeDeathEvent, DeathEvent; //EN Death Event
};

 11

Events are declared in the actor Person {..} block using the keyword event. All events consist

of a function which returns the time of the next event and a function containing the code

describing the consequences of the event.

Event implementation

When mortality is activated, the timeDeathEvent function returns a random time based on the

mortality parameter for the given year of age. In order to obtain random durations from

probabilities, we assume constant mortality hazards within each period, i.e. between birthdays.

(The exception is a death probability of 1, which leads to death immediately at the start of the

age year). Note that any time later than the next birthday will lead to the birthday event taking

precedence over the mortality event; that is, the birthday event will censor the mortality event.

TIME Person::timeDeathEvent()
{
 TIME event_time = TIME_INFINITE ;
 if (CanDie)
 {
 if (ProbMort[integer_age] >= 1)
 {
 event_time = WAIT(0);
 }
 else
 {
 event_time = WAIT(-log(RandUniform(3)) /
 -log(1 - ProbMort[integer_age]));
 }
 }
 // Death event can not occur after the maximum dura tion of life
 if (event_time > MAX(LIFE))
 {
 event_time = MAX(LIFE);
 }
 return event_time;
}

The event implementation function DeathEvent is straightforward. It sets the life_status to

LS_NOT_ALIVE and calls the function Finish(), the latter which deletes the actor.

void Person::DeathEvent()
{
 life_status = LS_NOT_ALIVE;
 Finish();

}

 12

4.3.2 Fertility.mpp

This file defines and implements the first pregnancy event. As we are only interested in the

study of childlessness in RiskPaths, no other fertility-related event is simulated. Fertility.mpp

is a behavioural module, and again we follow the same standard organization of the code: type

definitions, parameter declarations, actor declarations and event implementations.

Parameter declarations

Fertility is parameterized by both a baseline pregnancy risk by 2.5 year age intervals starting at

the 15th birthday and a relative risk factor dependent on the union status and duration. We thus

define two parameters: AgeBaselinePreg1 and UnionStatusPreg1.

Figure 4: Fertility parameters

Fertility risks use a time partition to define the columns. For the age baseline we use the

partition AGEINT_STATE that was defined in PersonCore.mpp. The possible union states for

the relative risk factors use the classification UNION_STATE which is declared in

PersonCore.mpp as well.

parameters
{
 //EN Age baseline for first pregnancy
 double AgeBaselinePreg1[AGEINT_STATE];
 //EN Relative risks of union status on first pregna ncy
 double UnionStatusPreg1[UNION_STATE];
};

parameter_group P02_Ferility //EN Fertility
{
 AgeBaselinePreg1, UnionStatusPreg1
};

 13

Actor declarations

The only state of the fertility module is parity_status, which can only have two levels:

‘childless’ and ‘pregnant’. (This is because RiskPaths no longer simulates an actor’s fertility

events after first conception).

In Fertility.mpp, we only model one event: pregnancy. The corresponding pair of event

functions is timeFirstPregEvent and FirstPregEvent.

classification PARITY_STATE //EN Parity status
{
 PS_CHILDLESS, //EN Childless
 PS_PREGNANT //EN Pregnant
};

actor Person
{
 //EN Parity status derived from the state parity

PARITY_STATE parity_status = {PS_CHILDLESS};

 //EN First pregnancy event
 event timeFirstPregEvent, FirstPregEvent;
};

Event implementation

As is true with all Modgen events, the first pregnancy event is implemented in two parts. The

first determines the timing of the event, the second the consequences if the event happens. The

timeFirstPregEvent function verifies if the actor is currently at risk and, if so, draws a random

duration based on the underlying piecewise proportional constant hazard regression model

parameterized by an age baseline and relative risk by union status. Accordingly, the hazard

rate is calculated from the two parameters AgeBaselinePreg1 and UnionStatusPreg1. A

random duration can be obtained from a uniform distributed random number by the

transformation:

randdur=-log(RandUniform(1)) / hazard.

The Modgen function RandUniform() returns a uniform distributed random number between

0-1. The function takes an integer argument used to assign a different independent random

number stream to each random number function in the code. When omitted, Modgen

automatically writes back a unique index into the .mpp file before translation into C++ code.

When the event happens, the state “parity” is increased by 1. (Note that the derived state

parity_status is changed to “PS_PREGNANT” automatically).

TIME Person::timeFirstPregEvent()
{
 double dHazard = 0;

 14

 TIME event_time = TIME_INFINITE ;
 if (parity_status == PS_CHILDLESS)
 {

 dHazard = AgeBaselinePreg1[age_status]
 * UnionStatusPreg1[union_status];
 if (dHazard > 0)
 {
 event_time = WAIT(-log(RandUniform(1)) / dHazard);
 }
 }
 return event_time;
}

void Person::FirstPregEvent()
{
 parity_status = PS_PREGNANT
}

4.3.3 Unions.mpp

The programming of union transitions introduces only minor new concepts in Modgen

programming--thus, the following code discussion is mainly limited to union dissolutions. The

hazard rates for both first and second union dissolution events are stored in the same

parameter table, as they each use the same time intervals of union duration.

In order to construct a parameter with the dimensions time and union order, we define a time

partition and a classification:

partition UNION_DURATION //EN Duration of current union
{
 1, 3, 5, 9, 13
};

classification UNION_ORDER //EN Union order
{
 UO_FIRST, //EN First union
 UO_SECOND //EN Second union
};

 15

parameters
{

…
 //EN Union Duration Baseline of Dissolution
 double UnionDurationBaseline[UNION_ORDER][UNION_DUR];

…
};

Figure 5: Union dissolution parameters

In the timeUnion1DissolutionEvent() function, hazard rates for first union dissolution are

obtained as:

 dHazard = UnionDurationBaseline[UO_FIRST][union_du ration];

Accordingly, timeUnion2DissolutionEvent() references the second row from the parameter:

 dHazard = UnionDurationBaseline[UO_SECOND][union_d uration];

As opposed to the processes discussed so far, the union dissolution processes do not start at a

predefined time (e.g. the 15th birthday) but at union formation events. The union duration spell

is defined as a derived self-scheduling state in the following form:

 //EN Currently in an union

logical in_union = (union_status == US_FIRST_UNION_PERIOD1
|| union_status == US_FIRST_UNION_PERIOD2
|| union_status == US_SECOND_UNION);

 //EN Time interval since union formation
 int union_duration = self_scheduling_split (
 active_spell_duration (in_union, TRUE), UNION_DURATION);

With respect to union formation, the implementation of the clock which changes the union

duration state union_status from US_FIRST_UNION_PERIOD1 to

US_FIRST_UNION_PERIOD2 after three years in a first union deserves some discussion. In

 16

contrast to the self-scheduling derived states used for all other clocks of the model, here –

mainly as an illustration of this alternative - we explicitly implement the clock as an event

itself. This event occurs after three years in the first union. The clock is set at first union

formation. The actor declaration includes a state which records the time of the status change as

well as the event declaration.

actor Person
{
 …

 //EN Time of union period change
 TIME union_period2_change = { TIME_INFINITE };

 //EN Union period change event
 event timeUnionPeriod2Event, UnionPeriod2Event;
};

The time for the state change is set in the first union formation event. In the code sample,

WAIT is a built-in Modgen function that returns the time of the current event, plus a specified

time (in our example, three years).

void Person::Union1FormationEvent()
{
 unions++;
 union_status = US_FIRST_UNION_PERIOD1;
 union_period2_change = WAIT(3);
}

The event implementation is straight forward:

TIME Person::timeUnionPeriod2Event()
{
 return union_period2_change;
}

void Person::UnionPeriod2Event()
{
 if (union_status == US_FIRST_UNION_PERIOD1)
 {
 union_status = US_FIRST_UNION_PERIOD2;
 }
 union_period2_change = TIME_INFINITE ;
}

 17

4.4 Tables.mpp

Modgen provides a very powerful and flexible cross-tabulation facility to report model results.

The programming of each output table usually requires only a few lines of code. RiskPaths

contains only one table file which contains the declarations of all of its output tables—

however, for more detailed models, it is advisable to split up table declarations by behavioural

groups.

The basic syntax for tables is displayed in Figure 6. The two central elements of a table

declaration are the captured classificatory dimensions (defining when an actor enters and

leaves a cell) and the analysis dimension (recording what happens while an actor is in that

cell). Typical classificatory dimensions are age or time intervals (e.g. fertility by age), states

(e.g. fertility by union status), or a combination of both. Modgen does not limit the number of

dimensions.

The analysis dimension can contain many expressions, which can be states or derived states.

Modgen provides a very useful list of special derived state functions which record, for

example, the number of occurrences of certain events, the number of changes in states, or the

duration in states. Two particularly helpful concepts are the keyword unit and the derived

state function duration() -- unit records the number of actors entering a table cell whereas

duration() records the total time an actor stayed in the cell.

Tables can contain filter criteria for defining if and under which conditions actor

characteristics will be recorded. The Modgen table concepts are best understood by concrete

examples as given below. As the full wealth of the Modgen table language goes beyond the

scope of this chapter, you are also invited to consult the Modgen Developer’s Guide.

Figure 6: Table Syntax

table actor_name table_name //EN table label
[filter_criteria]
{
 dimension_a * //EN dimension label
 …
 {
 analysis_dimension_expression_x, //EN expression label
 …

}
 * dimension_n //EN dimension label
 …

};

 18

Table 1: Life expectancy

The first table example contains summary values of our simulation and has no dimensions, i.e.

cells apply to the entire population over the entire simulation period. We make use of the

Modgen keyword unit , which counts the number of actors entering the cell of a table (in our

example, the simulation itself), and the Modgen function duration() which sums up the time

actors stay in this cell (in our example, the total years lived by all actors in the simulation).

The average age at death of all actors in the simulation is then obtained by dividing duration()

by unit . As for parameter declarations, comments placed in the code are used as labels in the

application. (Note that in the table declaration below, the ‘decimals=3’ portion of the comment

is used to determine the number of decimal places in the table; this part of the comment does

not carry through to the label used in the report).

table Person T01_LifeExpectancy //EN 1) Life Expectancy
{
 {
 unit , // EN Total simulated cases
 duration (), // EN Total duration
 duration ()/ unit // EN Life expectancy decimals=3
 }
};

Table 2: Life table

In the second table we record the population by age. For output by age, we use integer_age as

table dimension.

table Person T02_TotalPopulationByYear //EN Life table
{
 //EN Age
 integer_age *
 {
 unit , //EN Population start of year
 duration () //EN Average population in year
 }
};

Unit and duration() now refer to the number of entrances into - and durations within - one

year age intervals. Unit thus counts the actors present at the beginning of each year, while

duration() refers to the average population in the year.

 19

Tables 3 and 4: Age-specific fertility

As well as the keywords unit and the derived state function duration() , states and a set of

other derived state functions can be used in tables. If using a state without a function, Modgen

records the change of the state while in a particular cell, i.e. the value of the state when the cell

is exited minus the value of the state when the cell was entered.

The expression transitions(parity_status, PS_CHILDLESS, PS_PREGNANT) / duration()

records the (age specific) fertility as the number of birth events divided by the average number

of women by year of age.

The second expression is used to calculate the true rate, i.e. the number of birth events by

exposure time. A woman is under exposure for first pregnancy when childless. We thus divide

the number of events by the term ‘duration(parity_status, PS_CHILDLESS)’.

The table dimension is age in full years. As fertility is 0 until age 15 and very low after 40, the

age periods before 15 and after 40 are not further divided. We thus define a partition

AGE_FERTILEYEARS which is used in the self_scheduling_split which defines the table

dimension.

partition AGE_FERTILEYEARS //EN Fertile age partition
{
 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2 7, 28, 29, 30, 31,
 32, 33, 34, 35, 36, 37, 38, 39, 40
};

table Person T03_FertilityByAge //EN Age-specific fertility
{
 //EN Age
 self_scheduling_split (age,AGE_FERTILEYEARS) *
 {
 //EN First birth rate all women decimals=4
 transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) /
 duration () ,
 //EN First birth rate woman at risk decimals=4
 transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) /
 duration (parity_status, PS_CHILDLESS)
 }
};

Table 4 produces first birth rates by the 2.5 year age groups used for parameterization. We

also add an additional dimension, namely the union status; we thus obtain simulated values of

the model parameters.

table Person T04_FertilityRatesByAgeGroup //EN Fertility rates by age group
[parity_status == PS_CHILDLESS]
{

 20

 {
//EN Fertility decimals=4
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) /

duration ()
 }
 * self_scheduling_split (age, AGEINT_STATE) //EN Age interval
 * union_status //EN Union Status
};

Table 5: Cohort fertility

Table 5 calculates two cohort measures of fertility -- average age at first conception and

childlessness. To obtain the age at pregnancy we use the Modgen derived state function

value_at_transitions(parity_status, PS_CHILDLESS ,PS_PREGNANT, age) which returns the

value of one state (age) at a specific transition of another state, namely when parity_status

changes from PS_CHILDLESS to PS_PREGNANT.

table Person T05_CohortFertility //EN Cohort fertility
{
 {
 //EN Av. age at 1st pregnancy decimals=2
 value_at_transitions (parity_status,PS_CHILDLESS,PS_PREGNANT,age)/
 transitions (parity_status, PS_CHILDLESS, PS_PREGNANT),

 //EN Childlessness decimals=4
 1 - transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) / unit ,

 //EN Percent one child decimals=4
 transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) / unit

 }
};

Table 6: Pregnancies by union status and order

In table 6 we use an example of a filter which triggers a person exactly at the entrance of a

state, in our case at the occurrence of pregnancy. We are interested in the union status at first

conception. Note that this filter also excludes women who stay childless.

table Person T06_BirthsByUnion //EN Pregnancies by union status & order
[trigger_entrances (parity_status, PS_PREGNANT)]
{
 {
 unit //EN Number of pregnancies
 }
 *union_status+ //EN Union Status at pregnancy
};

 21

Table 7: First union formation risks

Like table 4 this table reproduces a parameter table. While such an output table does not

contain any information (for a sufficiently large sample size it will come close to the original

model parameters) it is useful for model validation and to assess Monte Carlo variability.

table Person T07_FirstUnionFormation //EN First union formation
[parity_status == PS_CHILDLESS]
{
 //EN Age group
 self_scheduling_split (age, AGEINT_STATE) *
 {
 //EN First union formation risk decimals=4
 entrances (union_status, US_FIRST_UNION_PERIOD1)
 / duration (union_status, US_NEVER_IN_UNION)

 }
};

4.4.1 Grouping of table output

Like parameters, output tables can also be grouped for a more meaningful presentation of

results. In the application RiskPaths, we distinguish three groups of tables: life tables, fertility

tables, and tables for union status.

table_group TG01_Life_Tables //EN Life tables
{
 T01_LifeExpectancy, T02_TotalPopulationByYear
};

table_group TG02_Birth_Tables //EN Fertility
{
 T03_FertilityByAge, T04_FertilityRatesByAgeGroup, T05_CohortFertility
};

table_group TG03_Union_Tables //EN Unions
{
 T06_BirthsByUnion, T07_FirstUnionFormation
};

4.5 Tracking.mpp

The track{} code block defines the list of states to be recorded longitudinally for visual

BioBrowser output. This command is frequently placed in table files. In our model, however,

we have decided to code a separate Tracking.mpp file, since we also track risk patterns

calculated as derived states.

 22

track Person
{
 integer_age,
 life_status,
 age_status,
 union_duration,
 dissolution_duration,
 unions,
 parity_status,
 union_status,
 preg_hazard,
 formation_hazard,
 dissolution_hazard
};

The file also includes the declaration of three derived states. We have used the derived state

concept to calculate the three main hazard rates (pregnancy, union formation, and union

dissolution) for BioBrowser output. They are for illustrative purposes only, as all hazard rates,

broken down by union order, are calculated in the event functions.

The declaration of the derived states preg_hazard, formation_hazard, and dissolution_hazard

are also good syntax examples of how derived states can be built from simple states by if-else

constructs.

actor Person
{
 //EN Pregnancy hazard
 double preg_hazard = (parity_status == PS_CHILDLESS) ?
 AgeBaselinePreg1[age_status] *
 UnionStatusPreg1[union_status] : 0;

 //EN Union formation hazard
 double formation_hazard = (union_status != US_NEVER_IN_UN ION
 && union_status != US_AFTER_FIRST_UNION) ? 0 :
 ((union_status == US_NEVER_IN_UNION) ?
 AgeBaselineForm1[age_status] :
 SeparationDurationBaseline[dissolution_duration]);

 //EN Union dissolution hazard
 double dissolution_hazard = (union_status != US_FIRST_UNI ON_PERIOD1
&&
 union_status != US_FIRST_UNION_PERIOD2 &&
 union_status != US_SECOND_UNION) ? 0 :
 ((union_status == US_SECOND_UNION) ?
 UnionDurationBaseline[UO_SECOND][union_duration] :
 UnionDurationBaseline[UO_FIRST][union_duration]);
};

 23

4.6 Language translation file RiskPathsFR.mpp

This .mpp file will only exist for models that are defined in Modgen to be multilingual (which

for RiskPaths implies English and French). Even for a bilingual model, however, one of

English or French is still deemed to be the first or primary language of the model. English was

chosen as the primary language when RiskPaths was originally developed, and so the

RiskPathsFR.mpp file essentially contains translations for the model’s labels and notes in the

other language, i.e. French. (If the original primary language of RiskPaths had been French,

this translation file would have been called RiskPathsEN.mpp and it would have contained

English translations of the labels and notes for the model.)

Normally, all notes and labels are entered as code comments in the source .mpp files, using the

primary language of the model, as has been illustrated several times in the previous examples.

The corresponding translations are subsequently placed in this separate .mpp file.

