MODGEN AND THE APPLICATION RISKPATHS FROM THE
MODEL DEVELOPER’S VIEW

Martin Spielauer

Statistics Canada — Modeling Division
R.H. Coats Building, 24-O
Ottawa, K1A 0T6

martin.spielauer@statcan.gc.ca

RiskPaths is a simple, competing risk, case-basetintious time microsimulation model. Its
main use is as a teaching tool, introducing mionogation to social scientists and
demonstrating how dynamic microsimulation modetls loa efficiently programmed using the
language Modgen.

Modgen is a generic microsimulation programminglaage developed and maintained at
Statistics Canada.

RiskPaths as well as the Modgen programming lareyaad other related documents are
available at www.statcan.gc.ca/microsimulation/mesdmodgen-eng.htm

1 Introduction

In this chapter we explore the microsimulation matkevelopment package Modgen and the
Modgen application RiskPaths from the model dewaisppoint of view. We first introduce
the Modgen programming environment, and then dsdssic Modgen language concepts
and the RiskPaths code. Modgen requires only mteleragramming skills; thus, after some
training, it enables social scientists to createirttown models without the need for
professional programmers. This is possible becdliseégen hides underlying mechanisms
like event queuing and automatically creates adstdone model with a complete visual
interface, including scenario management and mddelimentation (as introduced in the
previous chapter). Model developers can thereforecentrate on model specific code: the
declaration of parameters, the states definingitnelated actors, and the events changing the

states. High efficiency coding extends also to rhadgput. Modgen includes a powerful

language to handle continuous time tabulation. &tlebulations are created on-the-fly when
simulations are run and the programming to genehaten usually requires only a few lines of
code per table. Modgen also has a built-in mechanisr estimating the Monte Carlo

variation for any cell of any table, without redqng any programming by the model

developer.

Being a simple model, RiskPaths does not make tisleeofull range of available Modgen

language concepts and capabilities. The discussitims chapter does not intend to replace
existing Modgen documentation, such as the Modgeneper's Guide, either. But by

introducing the main concepts of Modgen programming aim to help you get started in

Modgen model development and to engage in furtkgloeation.

2 The Modgen programming environment

When installed on a computer, Modgen integratesdfiiato the (required) Microsoft Visual
Studio C++ environment. The visual components ofilygn are a separate toolbar as well as
additional items under the Tools and Help menugistial Studio. Modgen also appears as an
option in the file dialog box for creating a nevojact as well as in the dialog box for adding a
file to an existing project.

Figure 1 displays a screenshot of the programnmieyface as it appears after opening the
Modgen application ‘RiskPaths.sIn’. The Modgen bawlconsists of several icons for running
Modgen, accessing help, opening the BioBrowser, tadl switching the language (between
English and French).

Figure 1: The programming interface

@3 RiskPaths - Microsolt ¥isual Studio = [=] 3]
File Edit ‘iesw Project Buld Debug | Tools | Window Community Help
T UL OBE B (iG] o Runvediens | I = b Rickpaths Dot v winsz - i
(Open BioBrowser 4 | Fertility.mpp | - X
B2 & Change Modgen 9 languageNg French R L L L e e s i Ll b —
[Solution ‘RiskPaths (1 project) = hgine: BiskPaths.mpp DO NOT CHANGE THIS FILE s
E‘jggmskpaths 4 el AR b1 a a0 100 EE R EET I EEEEEE IR EEE LTI EEER R PIEEEE]
E} [C+ Ffiles 'i_l}; Connect ko Device...
- [DatFles ke The Modgen tool to be
B Base(RiskPaths). dat M| Conteitto Databoss., g . (RizkPaths) contains
& [Modules (mep) M Connect to Server... run before compiling |iacion engine. when
H |.A Fertility.mpp [code Srippets M Chrkek, Chl ally created by the
] Mortality.mpp X i i b M the mOdel cessary in its code.
i oose Toolbax Items... -
athe,mpp .
\ bl FEIEL TR TR I I SIS [I SRS T A
=) Tables. mpp Macros Model parameters
= g e, Con P TERE CorEaer I
£] Hniens. mpp e // Model wversion
The model code // model type
Datfuscator . d . fl £/ Continuous time mwodel
e rd OFgANIZed in .mpp files
ATLIMFC Trace Tool e R
ILDasm
Spy++
Wisual Studio 2005 Command Prompt
External Tools, . FEEEEEEE PP P T d i d i d i diddddiidddeddies
@f Device Emulator Manager. ..
Import and Export Settings. ..
Customize... function simulates a single case,
he Simulation function declared later
Options... i
E@Solutmn Explorer |Z§C\ass Wigw LEProperty Manager H 4 | | * |
Show output from: Modgen 9 = | | 4 Sk —T] Modgen Output error
Happing symbols to modules ... / -
messages, etc.
Modgen: 0 errors - 0 warnings
: y:
& Code Definition Windaw |:!.:TICaI\ Browser | =] Cutput |_ﬂ Find Resulks 1
Itemis) Saved 4

Modgen code is organized into several files, eaith the file extension .mpp. As can be seen
in the Solution Explorer window (Figure 1), RiskRPatonsists of eight .mpp files grouped in
the “Models (mpp)” folder. These are the esseriile of RiskPaths, i.e. the files containing
all Modgen code written by the model developer.

When invoking the Modgen tool (which can be acogdsem the toolbar, or from the first
item under the “Tools” menu), these .mpp files @amslated into C++ code. Thus Modgen
acts as a pre-compiler, creating one .cpp sourde @te for each .mpp file and putting the
resulting .cpp files in the “C++ Files” folder. TiModgen tool also adds model-independent
C++ code components to the “C++ Files” folder; thadditional file5 should not be changed
by the model developer and are essential in ordasé the C++ compiler to build the Modgen
application.

! ACTORS.CPP, ACTORS.H, app.ico, model.h, model R&RSE.INF, TABINIT.CPP, TABINIT.H.

The model parameters are contained in one or naatefiles organized in a folder labelled
“Scenarios’. These files are loaded at runtime ematain the actual values assigned to the
parameters.

When running the Modgen tool, Modgen — like the @empiler - produces log output that is
displayed in the Output window. Any error messagesalso displayed in this window, and
clicking on a particular error message leads yoacdy to the corresponding Modgen code
that produced the error.

Two steps are required to create a Modgen apmicdtom the Visual Studio environment.
First, Modgen has to translate the Modgen codéen.mpp files; this is done when invoking
the Modgen tool. Second, the resulting C++ appbeahas to be built and started. This can be
done in one step by selecting “Start Debuggingtha “Debug” menu or by clicking the
corresponding icon at the toolbar.

3 Basic Modgen Concepts

Actor: An actor is the entity whose life is simulatedairModgen model. A model’s actor is
often a person, although this is not a requiremethier models have been developed that use
dwellings or occupations as actors. NeverthelesfiskPaths, the actor is a person or more
specifically, a female (since it is a model for gtedy of childlessness)

State: States describe the characteristics of a modetsrs Some states can be continuous,
such as age, whereas others are categorical, sugénaer. For categorical states, the actual
categories or levels are defined via Modgeteéssificationcommand.

Overall, there are two major kinds of states indglen—simple statesandderived states
both of which are used by RiskPaths and both ofclwhare declared within an actor
declaration. A simple state is a state whose vesurebe initialized and changed by the code
that a model developer creates. Simple states lmrged by explicitly declared events. A
derived state, on the other hand, is a state whakes is given as an expression which is
normally derived from or based on other states.efived state’s values are automatically
maintained by Modgen throughout a simulation runugeful Modgen concept is the self-
scheduling derived state. This is a state whicinghla in a predefined time sequence, such as
integer age which will change at each birthday.

Event: In Modgen, simulation takes place through the ettecuof events. Each event
consists of two functions: a time function to detere the time of the next occurrence of the
event, and an implementation function to deterntiirgeconsequences when the event happens.
RiskPaths has several events, including a mortalgnt, union formation and dissolution
events, and a first pregnancy event.

Parameter: Parameters are used to give model users a defyjceatool over the simulations
they run. The ability to change different hazardprobabilities that affect various aspects of a
simulation allows different scenarios to be expdorBarameters can have many dimensions
(such as age, gender, and year) and are storethtirdata files. In RiskPaths, there is one
parameter file, Base(RiskPaths).dat, which stosesrpeters such as death probabilities by
age and risks of first pregnancy by age group. Monmaplex models will usually incorporate
more than one .dat file.

Table: Modgen has a powerful cross-tabulation facilityitin to report aggregated results in
the form of tables. There are two central elemesftsa table declaration—its captured
dimensions (defining when an actor enters and Eaveell) and its analysis dimension
(recording what happens while an actor is in that).cWhen running simulations, the
tabulations to fill a table are created on the thys removing the need to create and write to
large temporary interim files for subsequent repgrtSeveral examples of table declarations
will be shown later in this chapter for RiskPaths.

4 Organization of files

The Modgen code of RiskPaths is organized intotesgparate .mpp files, while all RiskPaths
parameter values (because RiskPaths is a simpleljreré contained in just a single .dat file.
In principle, a model developer has complete freedo decide how to organize the Modgen
code in different files, but a modular organizataanfound in RiskPaths is recommended.

Figure 2: RiskPaths file organization

General modules Filename
Simulation engine RiskPaths.mpp
Core actor file PersonCore.mpp
Table definitions Tables.mpp

Output tracking
French language translations

Behavioural modules

Tracking.mpp
RiskPathsFR.mpp

Filename

Mortality
Fertility
Union formations and dissolutions

Parameter file

Mortality.mpp
Fertility.mpp
Unions.mpp

Filename

Parameters of Baseline Scenario

Base(RiskPaths).dat

Note that the .mpp code files often contain comsémat resemble labels. Such comments are
placed beside the declarations of symbols suchatsss state levels, parameters, tables and
table dimensions. Modgen does in fact interpresegheomments as labels and subsequently
uses them when tables or parameters are displaitkth Wlodgen’s visual interface. These

labels are also used in the model's automaticatigegated encyclopaedic help file. Code
comments that are used as labels begin with a haoacter language identifier, e.g. //[EN
Union status. Many such comments can be seen inctde examples that follow for

RiskPaths.

Fore more detailed descriptions of modules, fumsti@and events, notes following the
following syntax example can be placed in the cddese notes — besides documenting the
code - are used in the automatically generatedoboagedic help file.

*NOTE(Person.Finish, EN)
The Finish function terminates the simulation of a n actor.
*/

4.1 RiskPaths.mpp (the main simulation file)

This file contains the code essential for the dedin of the model type (e.g. case-based,
continuous time) as well as the simulation engime the code that runs the whole simulation.
Because RiskPaths is a case-based model, the sonuémgine code loops through all cases
and processes the event queues of each case.l@hadsth identifies the languages of the
model. The code of this file is mostly model indegpent within a class of models (e.g.

continuous time, case-based) and a version of ipreavided automatically when using

Modgen'’s built-in wizards to start a new Modgenjpcb.

For the development of our case-based, continumesdohort RiskPaths model with an actor
‘Person’ the code provided by the wizard requiresyvfew modifications. The full code of
this .mpp file is less than one page in length.

4.2 PersonCore.mpp

The only actor in RiskPaths is a person. In the RersonCore.mpp, we have organized the
code which is part of the actor declaration butdicgctly related to a specific behaviour. The
file contains two age clocks defined as self-schedistates (integer_age and age_status) and
two actor functions, Start() and Finish(), whicle aerformed at the creation of an actor and at
her death, respectively.

In the Start() function we initialize the statesi¢i and age to 0. Both states are automatically
created and maintained by Modgen and can only laaggd in the Start() function. Their
types depend on the model type; because RiskPathsantinuous time model, time and age
are continuous states.

The Finish() function must be called at the deatné of an actor. Its role is to remove the
actor from tables and from the simulation, andetcuperate any computer memory used by
the actor.

All states and actor functions are declared in antdr Person { };” block. To allow
modularity in the organization of code by differdif¢ course domains, there can be multiple
actor blocks in a project, typically one for eadhavioural file.

The first code section of this module contains ¢hiyge definitions. We first define a range
LIFE.

range LIFE /[EN Simulated age range

0,100
%
Range is a Modgen type which defines a range efjgtvalues. RiskPaths limits the possible
age range of persons to 100 years. This type wilided to declare a derived state containing
the age of a person in completed years. The setyqgred definition will be used to divide
continuous age into 2.5 year age intervals stasdtrage 15.

partition AGEINT_STATE /[EN 2.5 year age intervals

15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40
I3
The third definition is a classification of uniogpes. In general, if a range, partition, or
classification is used in several files, it is gguectice to define it in the core actor file.

classification UNION_STATE /IEN Union status

{
US_NEVER_IN_UNION, /[EN Never in union
US_FIRST_UNION_PERIOD1, /IEN First union < 3 years
US_FIRST_UNION_PERIOD?2, /IEN First Union > 3 years
US_AFTER_FIRST_UNION, /[EN After first union
US_SECOND_UNION, /[EN Second union
US_AFTER_SECOND_UNION /[EN After second union

%

In the following code segment we declare two detiaetor states and two functions. The
derived states for time intervals are used to chahg values of parameters that vary over
time. In our model integer_age is needed becaustality risks are dependent on age in
years, whereas age_status comes into play becagséne risks for first conception and first
union formation are modelled to change in 2.5 yagervals after the 15th birthday. Both
integer_age and age_status have to be maintaire¥dtmes/simulation. The Modgen concept of
derived states allows us to have them maintainednaatically. Both are derived from the

state age (which is a special state, as it is gé@eiand maintained automatically by Modgen).
In order to split up age into the time intervaldimed in the AGEINT_STATE partition, we
make use of the Modgen function self schedulingt.sglhe second derived state,
integer_age, could be directly obtained using thed&n function self_scheduling_int. In
order to ensure that its value stays in the passdimige of LIFE we convert it to type LIFE,
which is done by the Modgen macro COERCE.

actor Person

{
/IEN Current age interval
int age_status = self_scheduling_split (age, AGEINT_STATE);
/IEN Current integer age
LIFE integer_age = COERCELIFE, self scheduling_int (age));
/IEN Function starting the life of an actor
void Start();
/IEN Function finishing the life of an actor
void Finish();
}

The remaining code of this module is the implemigonaof the Start() and Finish() functions.
The Finish() function is left empty as we do notume any actions, other than those
automatically performed by Modgen, to take placemhn actor dies.

void Person::Start()

/I Age and time are variables automatically maintai ned by
/ Modgen. They can be set only in the Start functi on
age =0;
time = 0;

}

*NOTE(Person.Finish, EN)
The Finish function terminates the simulation of a n actor.

*
void Person::Finish()

/I After the code in this function (if any) is exec uted,
/l Modgen removes the actor from tables and from th e simulation.
/ Modgen also recuperates any memory used by the a ctor.

4.3 Behavioural Files

In RiskPaths we distinguish three groups of behasgio mortality, fertility and union
formation/dissolution. Accordingly we have orgamiz¢he code into three .mpp files:

Mortality.mpp, Fertility.mpp and Unions.mpp. Behawial files are typically arranged in
three sections:

- Declaration of parameters
- Declarations of actor states and events

- Implementation of events

4.3.1 Mortality.mpp

This file defines the mortality event that ends lifeeof the simulated actor. Mortality.mpp is
a typical behavioural module, and we follow a stddorganization of the code: type
definitions, parameter declarations, actor dedlamatand event implementations.

Parameter declarations

Mortality is parameterized by death probabilitieg dge; thus, the probability to survive

another year changes at each birthday. We alsodunte a parameter which allows us to
‘switch off’ mortality. When it is used, every acteeaches the maximum age of 100 years
(which can be useful for some types of fertilityabsis). Figure 3 displays the mortality

parameter tables of the RiskPaths application.

Figure 3: Mortality parameters

'y RiskPathsd - C:\,C++5tuff\RiskPaths_NEW'Base.sce - |EI|5|
Scenatio Edit Wiew ‘Window Help

| DedE| =2 » O F + | &

| E-Martality

: Switch morkality onfoff

. Death probabilities

i [-Fertility

--Uninn patameters

[l Table Groups Caluriie
E-Life tables
B Fertility
--Unions

Simulated age range

File View Group View I
Ready o Z

Parameters are declared within a “parameters {.cgtle block. Modgen supports numeric
types, such as int, long, float, double, or Bool@&ygical” in the Modgen terminology). The
dimensionality of the parameters in the RiskPatlogleh is defined by classifications and
ranges. The following code generates the paramiteRiskPaths, as displayed in Figure 3.
For the annual death probabilities we use the raiige that was defined in PersonCore.mpp.
The following statemenpérameter_group) groups the two mortality parameters in order to
provide an ordered hierarchical selection list e user interface (again, as displayed in
Figure 3).

parameters

{
logical CanDie; /IEN Switch mortality on/off
double ProbMort[LIFE]; /IEN Death probabilities

I3

parameter_group P0O1_Mortality /IEN Mortality

{

CanDie, ProbMort
b

Actor declarations

Actors are described by states which are changezl/emts. States can be both continuous
(integer or real) or categorical. In the mortaliyodule, the state of interest is whether a
person is alive or not, thus making it categorinaiature. The levels of a categorical state are
defined with the Modgenlassificationcommand.

We declare a state life_status of type LIFE_STAWEIch is initialized with LS_ALIVE at
birth and set to LS_NOT_ALIVE by the death evehislgood practice to initialize all states
by assigning initial values. Each initial value wever, must be enclosed in braces, i.e. {}—
otherwise, the state is implemented as a deri\ad.st

classification LIFE_STATE /IEN Life status
{

LS _ALIVE, /IEN Alive

LS _NOT_ALIVE /IEN Dead
2

actor Person

LIFE_STATE life_status = {LS_ALIVE}; /IEN Life Status
event timeDeathEvent, DeathEvent; /IEN Death Event

10

Events are declared in the actor Person {..} blosikg the keywor@vent All events consist
of a function which returns the time of the nexemivand a function containing the code
describing the consequences of the event.

Event implementation

When mortality is activated, the timeDeathEventchion returns a random time based on the
mortality parameter for the given year of age. hiles to obtain random durations from
probabilities, we assume constant mortality hazaiitien each period, i.e. between birthdays.
(The exception is a death probability of 1, whiehds to death immediately at the start of the
age year). Note that any time later than the nittiday will lead to the birthday event taking
precedence over the mortality event; that is, thaday event will censor the mortality event.

TIME Person::timeDeathEvent()

{
TIME event_time = TIME_INFINITE ;
if (CanDie)
if (ProbMort[integer_age] >= 1)
{
event_time = WAIT(0);
}
else
{ |
event_time = WAIT(-log(RandUniform(3)) /
-log(1 - ProbMort[integer_age)));
}
/I Death event can not occur after the maximum dura tion of life
if (event_time > MAXLIFE))
event_time = MAXLIFE);
}
return event_time;
}

The event implementation function DeathEvent isighitforward. It sets the life_status to
LS_NOT_ALIVE and calls the function Finish(), theter which deletes the actor.

void Person::DeathEvent()

{
life_status =LS NOT_ALIVE;

Finish();

11

4.3.2 Fertility.mpp

This file defines and implements the first pregryaseent. As we are only interested in the
study of childlessness in RiskPaths, no otherlitgrtielated event is simulated. Fertility.mpp
is a behavioural module, and again we follow theesatandard organization of the code: type
definitions, parameter declarations, actor dedlamatand event implementations.

Parameter declarations

Fertility is parameterized by both a baseline paagy risk by 2.5 year age intervals starting at
the 18" birthday and a relative risk factor dependenthenunion status and duration. We thus
define two parameters: AgeBaselinePregl and Unain§®regl.

Figure 4: Fertility parameters

. RiskPathsd - C:\C+-+StufF\RiskPaths_NEW\Base.sce =1l x|

Scenario Edit Yiew Window Help

| FDEEES sy 1 s BE + |5

& Er.al\r’:'\Derttearl"tGyrnups = .~ Parameter: Age baseline for first preg i m| 5]
i o Swikch mortaliey onfoff Columns:
i - Death probabilities Age Interval
ertility
ge baseline for first pregnancy
i - elatelnskslof{fronlst 3ol Yprena) 015 |15175 |17.5.20 [20225 |22625 25275 |27.630 30325 |32636 |35375 [37.640 [40r |
BJ-Union parameters 02069 0.7591| 08450 0B167| 06727 05105 04882] 0.2562] 02597 01542 [
i Age baseline For first union Formation
- Uniion Duration Baseline of Dissolution Parameter: Relative risks of union status on first pregnancy =|of x|
i Separation Duration Baseling of 2nd Formatic ol
[=- Table Groups SIS
E‘ Life bables Unian status

i - Life Expectancy
i e Life table

ertility I Heverin First union First Uinion After first Second Lnion Alter second
qge-specific fertility union < 3years » 3 pears union uniohn
ertilicy rates by age group =) 1.0000 02523 00542 0.8048 0.0648
i I H i bk Farkilib I _’I—I
File Yiew Group View
Ready I T I

Fertility risks use a time partition to define thelumns. For the age baseline we use the
partition AGEINT_STATE that was defined in Person€mpp. The possible union states for
the relative risk factors use the classification ION_STATE which is declared in
PersonCore.mpp as well.

parameters
{
/IEN Age baseline for first pregnancy
double AgeBaselinePregl[AGEINT_STATE];
/IEN Relative risks of union status on first pregna ncy
double UnionStatusPreg1[UNION_STATE];

I3
parameter_group P02_Ferility /IEN Fertility
{
AgeBaselinePregl, UnionStatusPregl
I3

12

Actor declarations

The only state of the fertility module is parityatsts, which can only have two levels:
‘childless’ and ‘pregnant’. (This is because RigkBano longer simulates an actor’s fertility
events after first conception).

In Fertility.mpp, we only model one event: pregnanthe corresponding pair of event
functions is timeFirstPregEvent and FirstPregEvent.

classification PARITY_STATE /[EN Parity status
PS_CHILDLESS, /IEN Childless
PS _PREGNANT /[EN Pregnant

%

actor Person

{

/[EN Parity status derived from the state parity
PARITY_STATE parity_status = {PS_CHILDLESS};

/IEN First pregnancy event
event timeFirstPregEvent, FirstPregEvent;

I3
Event implementation

As is true with all Modgen events, the first pregeyevent is implemented in two parts. The
first determines the timing of the event, the secthe consequences if the event happens. The
timeFirstPregEvent function verifies if the actercurrently at risk and, if so, draws a random
duration based on the underlying piecewise promoal constant hazard regression model
parameterized by an age baseline and relativebsknion status. Accordingly, the hazard
rate is calculated from the two parameters AgeBssietegl and UnionStatusPregl. A
random duration can be obtained from a uniform rithisted random number by the
transformation:

randdur=-log(RandUniform(1)) / hazard.

The Modgen function RandUniform() returns a unifodistributed random number between
0-1. The function takes an integer argument useasgign a different independent random
number stream to each random number function in dbge. When omitted, Modgen
automatically writes back a unique index into timgp file before translation into C++ code.

When the event happens, the state “parity” is iasee by 1. (Note that the derived state
parity_status is changed to “PS_PREGNANT” autocadif).

TIME Person::timeFirstPregEvent()

double dHazard =0;

13

TIME event_time = TIME_INFINITE ;
if (parity_status == PS_CHILDLESS)

{

dHazard = AgeBaselinePregl[age_status]
* UnionStatusPregl1[union_status];
if (dHazard > 0)

{
event_time = WAIT(-log(RandUniform(1)) / dHazard);

}
} .
return event_time;

}

void Person::FirstPregEvent()

{
parity _status = PS_PREGNANT

4.3.3 Unions.mpp

The programming of union transitions introducesyomniinor new concepts in Modgen
programming--thus, the following code discussiomanly limited to union dissolutions. The
hazard rates for both first and second union didwml events are stored in the same
parameter table, as they each use the same tiereatg of union duration.

In order to construct a parameter with the dimarsittme and union order, we define a time

partition and a classification:

partition UNION_DURATION /IEN Duration of current union
{

b

classification UNION_ORDER /IEN Union order

1,35 0913

UO_FIRST, /IEN First union
UO_SECOND /[EN Second union

14

parameters

{

//EN Union Duration Baseline of Dissolution
double UnionDurationBaseline[UNION_ORDER][UNION_DURY];

b

Figure 5: Union dissolution parameters

j.-RiskPathsd - C:,C ++5tuff\RiskPaths_NEW\Base.sce

=101

Scenario Edit Wiew Window Help

D EE s 2R)» 1 s E + |2 7?

E3-Parameter Graups ISl Parameter: Union Duration Baseline of Dissolution
[=- Mortality =

i i Switch mortality onjoff Rows Columns:
L Death probabilities
- Fertility
- Age baseline for first pregnancy

.- Relative risks of union status on first pregnanc Mat in union |01 13 35 5.9 913 13+
- Union parameters Baseline risk first union dissolution 0.0096017| 0.0199994] 0.0199994] 0.0213172[0.0150836) 0.0110791
i+ Age baseline For first union formation

Baseline risk second union dissalution 0] 0.0370541] 0.0370641 0012775 0012775 0.0661167| 0.0EE1167

Union order Duration of curent union

i Union Duration Baseline of Dissolution |
H Separation Duration Baseline of 2nd Farmatior
[=1- Table Groups
=) Life tables
L llfe Expectancy

i Life table
=) Fertilizy

i i~ Age-specific Fertility =
. . -

File View Group View

Ready

I I

In the timeUnionl1DissolutionEvent() function, hatamates for first union dissolution are
obtained as:

dHazard = UnionDurationBaseline[UO_FIRST][union_du ration];

Accordingly, timeUnion2DissolutionEvent() referesdbe second row from the parameter:

dHazard = UnionDurationBaseline[UO_SECOND][union_d uration];

As opposed to the processes discussed so farntbe dissolution processes do not start at a
predefined time (e.g. the ©®irthday) but at union formation events. The urdemation spell
is defined as a derived self-scheduling stateenfaliowing form:

/[EN Currently in an union

logical in_union = (union_status == US_FIRST_UNION_PERIOD1
[| union_status == US_FIRST_UNION_PERIOD2
[| union_status == US_SECOND_UNION);

/IEN Time interval since union formation
int union_duration = self_scheduling_split (
active_spell_duration (in_union, TRUB, UNION_DURATION);

With respect to union formation, the implementatainthe clock which changes the union
duration state union_status from US_FIRST_UNION_ RHRL to
US_FIRST_UNION_PERIOD?2 after three years in a firsion deserves some discussion. In

15

contrast to the self-scheduling derived states desedll other clocks of the model, here —
mainly as an illustration of this alternative - weplicitly implement the clock as an event
itself. This event occurs after three years in fire union. The clock is set at first union
formation. The actor declaration includes a stdielwrecords the time of the status change as
well as the event declaration.

actor Person

{
/[EN Time of union period change
TIME union_period2_change = { TIME_INFINITE };
/[EN Union period change event
event timeUnionPeriod2Event, UnionPeriod2Event;
2

The time for the state change is set in the firgbm formation event. In the code sample,
WAIT is a built-in Modgen function that returns ttimme of the current event, plus a specified
time (in our example, three years).

void Person::Union1FormationEvent()

{
unions++;
union_status = US_FIRST_UNION_PERIOD1;
union_period2_change = WAIT(3);

}

The event implementation is straight forward:

TIME Person::timeUnionPeriod2Event()

{
}

void Person::UnionPeriod2Event()

{

return union_period2_change;

if (union_status == US_FIRST_UNION_PERIOD1)
{
union_status = US_FIRST_UNION_PERIOD2;

union_period2_change = TIME_INFINITE ;

16

4.4 Tables.mpp

Modgen provides a very powerful and flexible creasulation facility to report model results.

The programming of each output table usually rexpuonly a few lines of code. RiskPaths
contains only one table file which contains the ldetions of all of its output tables—

however, for more detailed models, it is advisablsplit up table declarations by behavioural
groups.

The basic syntax for tables is displayed in FigéreThe two central elements of a table
declaration are the captured classificatory dinmrsi(defining when an actor enters and
leaves a cell) and the analysis dimension (recgraihat happens while an actor is in that
cell). Typical classificatory dimensions are agetiore intervals (e.g. fertility by age), states
(e.g. fertility by union status), or a combinatiohboth. Modgen does not limit the number of
dimensions.

The analysis dimension can contain many expresswhish can be states or derived states.
Modgen provides a very useful list of special dedivstate functions which record, for
example, the number of occurrences of certain sydin¢ number of changes in states, or the
duration in states. Two particularly helpful contepre the keywordinit and the derived
state functionduration() -- unit records the number of actors entering a table vdedreas
duration() records the total time an actor stayed in the cell

Tables can contain filter criteria for defining d@nd under which conditions actor
characteristics will be recorded. The Modgen talmiecepts are best understood by concrete
examples as given below. As the full wealth of hedgen table language goes beyond the
scope of this chapter, you are also invited to atirike Modgen Developer's Guide.

Figure 6: Table Syntax

table actor_name table_name //EN table label
[filter_criteria]
{
dimension_a * /[EN dimension label
{ o
analysis_dimension_expression_x, //EN expression label
b .
* dimension_n /[EN dimension label
3

17

Table 1: Life expectancy

The first table example contains summary valuesuofsimulation and has no dimensions, i.e.
cells apply to the entire population over the ensimulation period. We make use of the
Modgen keywordunit, which counts the number of actors entering theate table (in our
example, the simulation itself), and the Modgencfion duration() which sums up the time
actors stay in this cell (in our example, the toédrs lived by all actors in the simulation).
The average age at death of all actors in the atioul is then obtained by dividirduration()

by unit. As for parameter declarations, comments placdtercode are used as labels in the
application. (Note that in the table declaratiofoixe the ‘decimals=3’ portion of the comment
is used to determine the number of decimal placdkea table; this part of the comment does
not carry through to the label used in the report).

table Person TO1_LifeExpectancy /IEN 1) Life Expectancy
{
{
unit /I EN Total simulated cases
duration (), /I EN Total duration
duration ()/ unit /I EN Life expectancy decimals=3
}
I3

Table 2: Life table

In the second table we record the population by Bgeoutput by age, we use integer_age as
table dimension.

table Person T02_TotalPopulationByYear /IEN Life table
/[EN Age
integer_age *
unit /[EN Population start of year
duration () /IEN Average population in year

b

Unit andduration() now refer to the number of entrances into - andatilums within - one
year age intervaldJnit thus counts the actors present at the beginningpoh year, while
duration() refers to the average population in the year.

18

Tables 3 and 4: Age-specific fertility

As well as the keywordanit and the derived state functialuration(), states and a set of
other derived state functions can be used in talflasing a state without a function, Modgen
records the change of the state while in a padratgll, i.e. the value of the state when the cell
is exited minus the value of the state when thienzzd entered.

The expression transitions(parity_status, PS_CHIEBE, PS_PREGNANT) / duration()
records the (age specific) fertility as the numisidoirth events divided by the average number
of women by year of age.

The second expression is used to calculate theratge i.e. the number of birth events by
exposure time. A woman is under exposure for firsgnancy when childless. We thus divide
the number of events by the term ‘duration(pastgitus, PS_CHILDLESS)'.

The table dimension is age in full years. As feytils O until age 15 and very low after 40, the
age periods before 15 and after 40 are not furtheided. We thus define a partition
AGE_FERTILEYEARS which is used in the self_schedglisplit which defines the table
dimension.

partition AGE_FERTILEYEARS //EN Fertile age partition

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2 7,28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40
I3
table Person TO3_FertilityByAge /IEN Age-specific fertility
/[EN Age
self_scheduling_split (age, AGE_FERTILEYEARS) *
{
/IEN First birth rate all women decimals=4
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT)/
duration (),
/IEN First birth rate woman at risk decimals=4
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT)/
duration (parity_status, PS_CHILDLESS)
}
I3

Table 4 produces first birth rates by the 2.5 yage groups used for parameterization. We
also add an additional dimension, namely the ustatus; we thus obtain simulated values of
the model parameters.

table Person T04_FertilityRatesByAgeGroup /[EN Fertility rates by age group
[parity_status == PS_CHILDLESS]
{

19

/IEN Fertility decimals=4
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) /
duration ()

}
* self_scheduling_split (age, AGEINT_STATE) /IEN Age interval
* union_status /[EN Union Status

Table 5: Cohort fertility

Table 5 calculates two cohort measures of fertiityaverage age at first conception and
childlessness. To obtain the age at pregnancy wethes Modgen derived state function
value_at_transitions(parity_status, PS_CHILDLESS JPREGNANT, age) which returns the
value of one state (age) at a specific transitibarmther state, namely when parity_status
changes from PS_CHILDLESS to PS_PREGNANT.

table Person TO5_CohortFertility /IEN Cohort fertility
{

/IEN Av. age at 1st pregnancy decimals=2
value_at_transitions (parity_status,PS_CHILDLESS,PS_PREGNANT,age)/
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT),

/IEN Childlessness decimals=4
1- transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) / unit ,

/IEN Percent one child decimals=4
transitions (parity_status, PS_CHILDLESS, PS_PREGNANT) / unit

Table 6: Pregnancies by union status and order

In table 6 we use an example of a filter whichges a person exactly at the entrance of a
state, in our case at the occurrence of pregnafleyare interested in the union status at first
conception. Note that this filter also excludes vweoarnwho stay childless.

table Person T06_BirthsByUnion /IEN Pregnancies by union status & order
[trigger_entrances (parity_status, PS_PREGNANT)]

{
}

*union_status+ /[EN Union Status at pregnancy

unit /[EN Number of pregnancies

20

Table 7: First union formation risks

Like table 4 this table reproduces a parameteretailhile such an output table does not
contain any information (for a sufficiently largamsple size it will come close to the original
model parameters) it is useful for model valida@onl to assess Monte Carlo variability.

table Person TO7_FirstUnionFormation /IEN First union formation
[parity_status == PS_CHILDLESS]
{

/[EN Age group
self_scheduling_split (age, AGEINT_STATE) *

/IEN First union formation risk decimals=4

entrances (union_status, US_FIRST_UNION_PERIOD1)
[duration (union_status, US_NEVER_IN_UNION)

b

4.4.1 Grouping of table output

Like parameters, output tables can also be grodged more meaningful presentation of
results. In the application RiskPaths, we distisguhree groups of tables: life tables, fertility
tables, and tables for union status.

table_group TGOl _Life_Tables /I[EN Life tables

TO1_LifeExpectancy, TO2_TotalPopulationByYear
I3

table group TGO02_Birth_Tables /[EN Fertility

TO3_FertilityByAge, TO4_FertilityRatesByAgeGroup, TO5_CohortFertility
I3

table_group TGO3_Union_Tables /[EN Unions

TO6_BirthsByUnion, TO7_FirstUnionFormation

4.5 Tracking.mpp

The track{} code block defines the list of states lde recorded longitudinally for visual
BioBrowser output. This command is frequently pthae table files. In our model, however,
we have decided to code a separate Tracking.mpp dihce we also track risk patterns
calculated as derived states.

21

track Person

{

b

integer_age,
life_status,
age_status,
union_duration,
dissolution_duration,
unions,

parity _status,
union_status,
preg_hazard,

formation_hazard,

dissolution_hazard

The file also includes the declaration of threevder states. We have used the derived state
concept to calculate the three main hazard ratesgijancy, union formation, and union

dissolution) for BioBrowser output. They are fdudtrative purposes only, as all hazard rates,
broken down by union order, are calculated in trenéfunctions.

The declaration of the derived states preg_haZarthation_hazard, and dissolution_hazard
are also good syntax examples of how derived statede built from simple states by if-else
constructs.

actor

{

&&

Person

/[EN Pregnancy hazard

double preg_hazard = (parity_status == PS_CHILDLESS) ?
AgeBaselinePregl[age_status] *
UnionStatusPregl1[union_status] : O;

/IEN Union formation hazard

double formation_hazard = (union_status '= US_NEVER_IN_UN
&& union_status = US_AFTER_FIRST_UNION) ?0:
((union_status == US_NEVER_IN_UNION) ?
AgeBaselineForml[age_status] :
SeparationDurationBaseline[dissolution_duration]

/IEN Union dissolution hazard
double dissolution_hazard = (union_status !'= US_FIRST_UNI

union_status != US_FIRST_UNION_PERIOD?2 &&
union_status '=US_SECOND_UNION) ? 0 :
((union_status == US_SECOND_UNION) ?
UnionDurationBaseline[UO_SECOND][union_duration]
UnionDurationBaseline[UO_FIRST][union_duration]);

22

ION

ON_PERIOD1

4.6 Language translation file RiskPathsFR.mpp

This .mpp file will only exist for models that adefined in Modgen to be multilingual (which
for RiskPaths implies English and French). Even dobilingual model, however, one of
English or French is still deemed to be the firspomary language of the model. English was
chosen as the primary language when RiskPaths wigsally developed, and so the
RiskPathsFR.mpp file essentially contains transhetifor the model’'s labels and notes in the
other language, i.e. French. (If the original pmynknguage of RiskPaths had been French,
this translation file would have been called RigskBEN.mpp and it would have contained
English translations of the labels and notes ferrttodel.)

Normally, all notes and labels are entered as codanents in the source .mpp files, using the
primary language of the model, as has been illiestraeveral times in the previous examples.
The corresponding translations are subsequenttedlan this separate .mpp file.

23

