ENHANCING DATA SHARING VIA "SAFE DESIGNS"

Generating Knowledge
To Inform Scientific Practice

Kristine Witkowski

Inter-university Consortium for Political & Social Research, University of Michigan

DATA SHARING CONTEXT

- ➤ U.S. policy requires submission of data sharing plan, when applying for research funding
- Current effort to revamp process for protecting human subjects (ANPRM 7/22/2011)
- Multifaceted approach when formulating data for safe and optimal use (Lane 2007)
- Need to think about data sharing early and often, using specialized knowledge

GUIDING PRINCIPLE

Producers must be able to effectively draw upon disclosure research to accurately determine the work required to optimally meet data sharing goals

AIM

- Enhance the value and safe use of social science data particularly for contextualized microdata
- Simulate scientific practice to generate knowledge for broad and responsive use

RESEARCH PROJECT

- > 5-year project supported by National Institute for Child Health & Development
- Dan Brown Michael Elliott Trivellore Raghunathan Kristine Witkowski Kevin Leicht

University of Michigan

University of Iowa

ADVISORY BOARD

- ► John Abowd, Cornell University
- Marc Armstrong, University of Iowa
- > Jerry Reiter, Duke University
- Natalie Shlomo, University of Southhampton
- Christopher Skinner, London School of Economics & Political Sci.
- Laura Zayatz, U.S. Census Bureau

DISCLOSURE SIMULATIONS

- Simulate disclosure work for representative series of artificial microdata files
- Estimate disclosure outcomes, as measured for a comprehensive set of risk, utility, and cost elements
- As determined by alternative specifications of sampling and database design parameters
- Controlling for iterative sets of survey-sites (or a specific set targeted for collection)

DISCLOSURE SIMULATIONS

- Restricted microdata from the American Community Survey provides geographically-specific information used throughout project
- Artificial files offer methodological flexibility as well as data confidentiality
- Project conducts experiments to assess the accuracy of estimates derived from artificial data

MODELS FOR ARTIFICIAL DATA & POPULATION REIDENTIFICATION PROBABILITIES

- Estimate composition of likely-participants as well as general study population
- Multiple imputation
- > Joint probability distributions for 1-km² pixels
 - Identifying personal attributes and non-identifying health outcomes
 - LandScan, decennial census, ACS microdata, BRFSS
 - Areal weighting methods to estimate pixel data from more aggregate data (i.e., blockgroups)
 - Controlling for non-response (weighted vs. unweighted)

METADATA

$$\mu^{m}_{a}$$
; σ^{m}_{a} ; $\delta^{m} = f[s, r, d]$

For any given disclosure outcome (m) resulting from sample (s), release (r), and SDL (d) design elements as estimated from replicating artificial files (a, f)

Where:

 $\mu_a^m = Estimated outcome (mean)$

 σ^{m}_{a} = Variance of estimated outcome (reliability, precision)

 $\delta^{\rm m}$ = Difference from observed outcome (validity, accuracy)

$$o_{ra,f}^{m} = m(o_{ra,f}^{m}) + m(o_{ra,f}^{m}) + e(o_{ra,f}^{m})$$

Where:

f = File as compiled from specific sample iteration ra = Experiment using either real (r) or artificial (a) data m = Different measures of disclosure outcomes $o_{ra,f}^m = Disclosure$ outcome for file $m(o_{--,-}^m) = Grand$ mean outcome across all files $m(o_{ra,-}^m) = Mean$ outcome for real or artificial files $e(o_{ra,f}^m) = Variation$ among real or artificial files

Accuracy of estimated outcome

$$\delta_{\mu}^{m} = [m(o_{a,-}^{m}) - m(o_{r,-}^{m})] / m(o_{r,-}^{m})$$

$$\delta_{\sigma}^{m} = [s(o_{a,-}^{m}) - s(o_{r,-}^{m})] / s(o_{r,-}^{m})$$

$$\Phi^{m} = s(o_{r,-}^{m}) / s(o_{a,-}^{m})$$

$$\theta^{m} = m(o_{r,-}^{m}) - [\phi^{m} * m(o_{a,-}^{m})]$$

Estimated outcome (adjusted)

$$\mu_{a}^{m} = E(\theta_{a}^{m}) + [E(\phi_{a}^{m}) * m(o_{a,-}^{m})]$$

Variance of estimated outcome (adjusted)

$$\sigma_a^m = E(\varphi^m) * s(o_{a,-}^m)$$

METADATA

$$\mu^{m}_{a}$$
; σ^{m}_{a} ; $\delta^{m} = f[s, r, d]$

For any given disclosure outcome (m) resulting from sample (s), release (r), and SDL (d) design elements as estimated from replicating artificial files (a, f)

Where:

 $\mu_a^m = Estimated outcome (mean)$

 σ^{m}_{a} = Variance of estimated outcome (reliability, precision)

 $\delta^{\rm m}$ = Difference from observed outcome (validity, accuracy)

SAMPLE ELEMENTS (s)

- Study population of adults (age 18 +)
- Limited study region: Indiana, Illinois, Michigan, Ohio, Wisconsin
- Household survey based on two-stage sample of tracts and housing units clustered within
- Total sample size
- ➤ Detailed sampling design locations, target populations, and sampling rates

RELEASE ELEMENTS (r)

Person-Level

- Identifying characteristics of respondent (e.g., age, sex, race/ethnicity, obesity-status, household composition, spousal attributes)
- Non-identifying health outcomes: Self-reported health, chronic condition (e.g., diabetic)
- Sets of 6 or 10 attributes, held constant

RELEASE ELEMENTS (r)

- Geography-Level
 - Direct identifiers of region, state, & population density (e.g., MSA-status)
 - Indirect identifiers or contextual variables
 - Administrative and georeferenced spatial-units:
 Counties, tracts, blockgroups, & 1-km² pixels
 - Public-use data: Census, EPA, NASA, others
 - Sets of variables of broad interest (wishlists)
 - Samples representative of all possible sets.

RELEASE ELEMENTS (r)

- Geography-Level
 - Indirect identifiers or contextual variables
 - Domain or measurement: Population and housing characteristics, air quality, tree coverage, proximity to incinerators, miles of road
 - Type or areal size of underlying geography:
 Pixels, blockgroups, tracts, & counties
 - Number of variables to be released
 - Entropy

SDL ELEMENTS (d)

- Linkage Experiments: Geographic-Level
 - Strangers and acquaintance intruders
 - Link to public sources of contextual variables
 - Complete and accurate data
 - Matches: Geographies (in population) with same attributes as surveyed locations
 - Blocks: Region, state, population density
 - Personal attributes, coupled with geographic attributes, used to refine estimates that particular areas have been drawn into study

SDL ELEMENTS (d)

- SDL Techniques: Geographic-Level
 - Assume personal identifying variables are not masked
 - Applied after collection: Global recoding and synthetic values of contextual variables
 - Deterministic linkage, probabilistic linkage, k-nearest neighbor, Mahalanobis distance, others
 - Applied before collection: The "Safe Design"

SAFE DESIGN

- Formulate innovative SDL technique for addressing reidentifying personal attributes, holding constant geographic attributes
- Study that supplements their sample and responsively collects data to minimize risk of being a sample unique (i.e., k-anonymity)
- Circumvents constraints from established practice of addressing disclosure after data are collected

SAFE DESIGN

- ➤ Baseline sample: Sampling design formulated to meet analytical goals (U_b, C_b)
- ▶ Preemptive disclosure review: Disclosure risk of baseline sample (R_b)
- Supplemental sample: Sampling design formulated to meet confidentiality goals ($R_s \sim o$, $U_s > U_b$, $C_s > C_b$)

Where: R = Risk, U = Utility, C = Cost

DISCLOSURE OUTCOMES (m)

Risk

- Identity disclosure: Population reidentification probabilities and k-anonymity
 - Persons in study population sharing similar geographic and personal attributes
 - Respondents sharing similar geographic and personal attributes within data release
- Continuous cell sizes; at-risk status with thresholds defined by content sensitivity
- Per record per target subpopulation per design

DISCLOSURE OUTCOMES (m)

Utility

- Information loss: Characterizing release as a whole, including both continuous and categorical measures, scale-invariant
 - 12 measures provided by Domingo-Ferrer, Torra, and Mateo-Sanz
- Suppression bias: Geographies and subpopulations most at-risk
- Statistical inference: Relationships between health outcomes and spatial contexts

DISCLOSURE OUTCOMES (m)

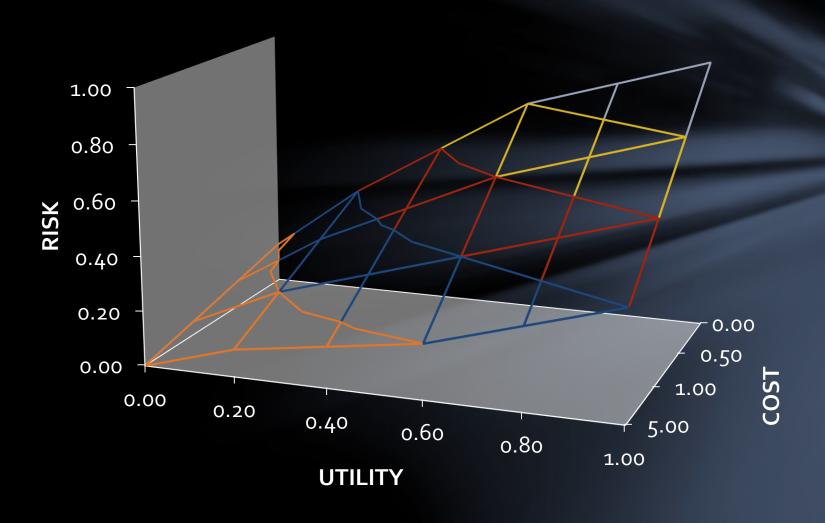
Cost

- Average dollar values of survey expense
- Function of number of draws required to meet targeted sample sizes for broadly defined and detailed subpopulations
- Directly informed by scientific practice

ADDITIONAL CONSIDERATIONS

- Added value and cost of spatially-dispersed samples that maximize variance in geographic attributes (s)
- Trading-off data on personal attributes for geographic detail (r)
- Protection offered by measurement error and concentration of hard-to-count populations (d)
- The role of administrative data sources (d)

RISK-UTILITY-COST MAP



IMPLICATIONS

- Flexible framework for generating empirical data that can broadly inform decision-making
- Supports sharing and consumption of complex and highly specialized knowledge
- Supports policies regarding data sharing and protection of human subjects
- Audiences: Established and new studies of federal statistical agencies and academic institutions; DRBs, IRBs, archives; funders

