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Abstract 

 
Standard statistical methods that do not take proper account of the complexity of survey design can lead to erroneous 

inferences when applied to survey data. In particular, the actual type I error rates of tests of hypotheses based on standard 

tests can be much bigger than the nominal level. Methods that take account of survey design features in testing hypotheses 

have been proposed, including Wald tests and quasi-score tests (Rao, Scott and Skinner 1998) that involve the estimated 

covariance matrices of parameter estimates. The bootstrap method of Rao and Wu (1983) is often applied at Statistics Canada 
to estimate the covariance matrices, using the data file containing columns of bootstrap weights. Standard statistical packages 

often permit the use of survey weighted test statistics and it is attractive to approximate their distributions under the null 

hypothesis by their bootstrap analogues computed from the bootstrap weights supplied in the data file. Beaumont and Bocci 
(2009) applied this bootstrap method to testing hypotheses on regression parameters under a linear regression model, using 

weighted F statistics. In this paper, we present a unified approach to the above method by constructing bootstrap 

approximations to weighted likelihood ratio statistics and weighted quasi-score statistics. We report the results of a simulation 
study on testing independence in a two way table of categorical survey data. We studied the relative performance of the 

proposed method to alternative methods, including Rao-Scott corrected chi-squared statistic for categorical survey data. 
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1.  Introduction 

 
Testing statistical hypothesis is one of the fundamental problem of statistics. In the parametric model approach, testing 

statistical hypothesis can be implemented using Wald test, likelihood ratio test, or score test. In each test, a test statistic 

is computed and then is compared with the 100 % -quantile of the reference distribution which is the limiting 

distribution of the test statistic under the null hypothesis. The limiting distribution is often a chi-squared distribution 

due to the central limit theorem of the point estimators. 

 

In survey sampling, however, the samples are selected with complex sampling methods involving clustering, 

stratification, or unequal probability selection. If the design features are ignored in the statistical analysis, the standard 

errors are usually underestimated. As a result, the associated coverage rates are underestimated and the test level are 

inflated. In fact, the limiting distribution of the test statistic is not necessarily a chi-squared distribution. Rather, it can 

be expressed as a weighted sum of p  independent random variables from 
2 (1)  distribution and the weights 

depend on unknown parameters which depend on the sampling design. To handle such problem, one may consider 

some correction of the test statistics to obtain a chi-square limiting distribution. Such an approach usually involves 

computing the design effect (Rao and Scott, 1984) to the test statistics. Rao, Scott and Skinner (1998) used this 

approach to obtain quasi-score tests in survey data. 

 

In this paper, we use a different approach of computing the limiting distribution using parametric bootstrap. Use of 

bootstrap to compute the limiting distribution of test statistics under complex sampling has been discussed by 

Beaumont and Bocci (2009), and did not discuss extensions to likelihood ratio test not to score test. We present a 

unified approach of using the bootstrap method to obtain the limiting distribution of test statistics under complex 

sampling. The sampling design is allowed to be informative. The proposed method is presented in the context of the 

simple goodness-of-fit and testing independence in a two-way table for categorical survey data. 
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In Section 2, the basic setup is introduced in the context of simple goodness-of-fit test. In section 3, the proposed 

method is introduced and its asymptotic properties are discussed. In section 4, the proposed method is applied to test 

independence in a two-way table of cell counts of proportions. Results from a limited simulation study are presented 

in Section 5. Concluding remarks are made in Section 6. 

 

 

2.  Basic setup 

 

Suppose that a finite population U  of size N  is partitioned into K  categories with 
1= KU U U   being 

such a partition. Let = /k kp N N  be the population proportion of category k , where =k kN U . From the finite 

population U , a probability sample s  of size n  is selected, and 
iw  is the sampling weight associated with unit 

i s . Let =k ks s U  be the sample partition of 
1= Ks s s  . From the sample, we compute ˆ ˆ= /ˆ k kp N N  

as an estimator of 
kp , where ˆ =k jj s

k

N w
  is design-unbiased estimator of 

kN  and 
=1

ˆ ˆ= =
K

k ik i s
N N w

  . 

 

From the sample data ( , =1, , )ˆ kp k K , suppose that we are interested in testing 
0 ,0: = , =1, ,k kH p p k K , for 

specified 
1,0 ,0( , , )Kp p  satisfying ,0=1

= 1
K

kk
p . The Pearson Chi-squared goodness-of-fit test statistic for this 

hypothesis is computed by  

  
22

,0 ,0

=1

= / .ˆ

K

k k k

k

X n p p p  

Also, we can compute the LRT (likelihood-ratio test) statistic (assuming multinomial distribution) as  

 
2

=1 ,0

ˆ
= 2 log .ˆ

K

k

k

k k

p
G n p

p




 
  

Writing 
1 1ˆ = ( , , )ˆ ˆKp p 

p  and 
0 1,0 1,0= ( , , )Kp p 

p , we have, under 
0H ,  

  0ˆ (0, ),n N V p p  

for sufficiently large n , where ˆ= ( )V nV p . Under simple random sampling (SRS) with replacement, V  is equal 

to 
0 0 0 0= ( )P diag p p p . For other sampling design, V  is more complicated. Under some regularity conditions, 

according to Rao and Scott (1981),  

 

1

2 2 2

=1

, ,

K

i i

i

X G Z


  (1) 

under 
0H , where 

1 1K     are the eigenvalues of the design effect matrix 
1

0= P V
D , 

1 1, , (0,1)
iid

KZ Z N , and   denotes convergence in distribution. Under SRS, since 0=V P , the limiting 

distribution in (1) reduces to a 
2  distribution with 1K   degrees of freedom. 

 

In a two-stage cluster sampling design with = (> 1)i  , type 1 error rate is approximately equal to 

2 1 2

1 1{ > ( )}k kPr X   

 
 which increases with   and thus can be made arbitrarily large by increasing  . To 

overcome this problem, Rao and Scott (1981) proposed a first-order correction which treats 
2 2ˆ ˆ( ) = /X X    as 

2

1k 
 under 0H , where  

 
=1 0

1 ˆ
ˆ ˆ= (1 )ˆ

1

k

i

i i

i i

p
p d

k p
 


  

and ˆid  = estimated design effect of ˆ ip . The second-order Rao-Scott correction (Rao and Scott, 1981) requires the 

knowledge of the full estimated covariance matrix of the estimated proportions, but inversion of the covariance matrix 



is not involved unlike in the case of Wald statistics. STATA and other survey software use Rao-Scott corrections as 

default option. 

 

3.  Proposed bootstrap method 

 
We now propose a new method based on the bootstrap procedure in survey sampling. Bootstrap method in survey 

sampling has been mainly discussed in the context of replication variance estimation (Rao and Wu, 1988; Rao, Wu, 

and Yue 1992). In the bootstrap, we use data file consisting of response variables, final survey weights 
iw  and final 

bootstrap replication weights 
* ( ), =1, ,iw b b B . Typically, = 500B  columns of bootstrap weights are reported. 

 
In the proposed bootstrap testing procedure, we use the bootstrap sample to approximate the limiting distribution in 

(1), without having to compute the design effect matrix. To describe the proposed method, let 
*

p̂  be the estimator of 

p  based on the bootstrap weights 
*

iw  and V̂  be the design-consistent estimator of V . For stratified multistage 

sampling, we assume that the PSUs within strata are drawn with replacement or the PSU sampling fraction is 

negligible. The proposed bootstrap statistics for goodness-of-fit statistics 
2X  and 

2G  are  

 2* * 2

=1

= ( ˆ ˆ ) / ˆ
K

i i i

i

X n p p p  

  2* * *= 2 log / ,ˆ ˆ ˆi i i

i

G n p p p  

respectively. Note that we do not use 
0ip  in place of ˆ ip  in the bootstrap test statistics. 

 

The following theorem present the asymptotic properties of the proposed bootstrap test statistics.  

Theorem 1 Under 
0H ,  

 

* 1

2* 2* 2

=1

ˆ,

K
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i

X G Z


  (2) 

where 1 1
ˆ ˆ

K     are the eigenvalues of estimated design effect matrix 
1ˆ ˆP V

, 1 1, , (0,1)
iid

KZ Z N , and 

*

  

denotes convergence in bootstrap distribution. 

A sketched proof of Theorem 1 is presented in Appendix A.  

 

Note that the limiting distribution in (2) is asymptotically the same as the limiting distribution in (1). Thus, we can 

use the bootstrap samples to approximate the sampling distribution of the test statistics. That is, from the histogram of 

B  bootstrap statistics 
*2 *2(1), , ( )X X B , find the upper   value and reject 

0H  if the observed 
2X  exceeds 

that value. Similarly, likelihood ratio statistic 
2G  can be used by computing the corresponding bootstrap statistics 

*2 *2(1), , ( )G G B . 

 

 

4.  Test of independence 

 

We now discuss test of independence in two-way tables. Let = /ij ijp N N  be the population proportion for cell 

( , )i j  with margins ip   and jp , where { ; =1, , , =1, , }ijN i R j C  is the set of population counts with 

margins iN   and jN . Let ˆ
ijN  be a design unbiased estimator of ijN  and ˆ ˆ= /ˆ ij ijp N N . The 

2X  and 
2G  

test statistics for testing 0 : =ij i jH p p p   for all i  and j  are given by  
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Rao and Scott (1981) have shown that, under 0H , writing = ( 1)( 1)d R C  ,  

 
2 2 2

=1

,

d

I I l l

l

X G Z  (4) 

where 1 d    are the d  eigenvalues of a design effect matrix (see Appendix B) and 1 , , (0,1)
iid

dZ Z N . 

 

The Rao-Scott first order correction to 
2

IX  can be written as 
2 2ˆ ˆ( ) = /I IX X    treated as 

2  with 

( 1)( 1)R C   degrees of freedom under 0H , where ˆ ˆ( 1)( 1) = ll
R C      requires only cell deffs and row 

and column marginal deffs (Rao and Scott, 1984). Two way tables should report those deffs in addition to estimated 

cell counts or proportions and their marginals. Rao and Scott (1984) provided unified theory for log linear models to 

cover multi-way tables and other extensions. 

 

We now consider bootstrap tests of 0H  in this case. Let 
*
ˆ ijp  be the bootstrap cell proportions computed using the 

bootstrap weights. Define 
* *=ˆ ˆi ijj

p p   and 
* *=ˆ ˆj iji

p p  . The proposed bootstrap version of 

2 2= ( ) / ( )ˆ ˆ ˆ ˆ ˆI ij i j i ji j
X n p p p p p     is given by  
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2*
{( ) ( )}ˆ ˆ ˆ ˆ ˆ ˆ
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( )ˆ ˆ

ij i j ij i j

I

i j i j

p p p p p p
X n

p p

   

 

  
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Note that, under 0H , terms in the numerator of sample 
2X  are identical to 

2{( ˆ ˆ ˆ ) ( )}ij i j ij i jp p p p p p      . 

That is, the bootstrap test statistic is computed by simply replacing { , , }ˆ ˆ ˆij i jp p p   and { , , }ij i jp p p   by 

* * *{ , , }ˆ ˆ ˆij i jp p p   and { , , }ˆ ˆ ˆij i jp p p  , respectively. 

 

Let = / ( )ij ij i jp p p  , then under 0H  = 1ij  and we can express  
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I ij ij i j ij

i j i j ij

p
G n p p p p

p p
 

 

   
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Bootstrap version 
2*G  is now obtained by replacing { , , }ˆ ˆ ˆij i jp p p   by 

* * *{ , , }ˆ ˆ ˆij i jp p p   and ij  by ˆ ij . That is, 

the proposed bootstrap version of 
2

IG  is given by  
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2* * * * *
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ˆ= 2 log ( )ˆ ˆ ˆ ˆ

ˆˆ ˆ
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where ˆ = / ( )ˆ ˆ ˆij ij i jp p p  . Note that 
2*

IG  is always nonnegative. 

 
  



The following theorem presents some asymptotic properties of the proposed bootstrap test statistics. 

Theorem 2 Under 0H ,  

 

*
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ˆ,

d
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i
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where 1
ˆ ˆ

d    are the eigenvalues of estimated design effect matrix which converges in probability to the 

design effect matrix corresponding to the eigenvalues , =1, ,( 1)( 1)i i R C   . 

A sketched proof of Theorem 2 is presented in Appendix B. 

 

By Theorem 2, we can use the bootstrap distribution to approximate the sampling distribution of the test statistic 
2

IX  

or 
2

IG . That is, from the histogram of B  bootstrap statistics 
*2 *2(1), , ( )I IX X B , find the upper   value and 

reject 0H  if the observed 
2

IX  exceeds this value. Similarly, likelihood ratio statistic 
2

IG  can be used by computing 

the corresponding bootstrap statistics 
*2 *2(1), , ( )I IG G B . 

 

 

5.  Simulation Study 

 
We conducted a limited simulation study of test of independence to check the performance of the bootstrap method 

under cluster sampling. In the simulation study, we generated = 50n  clusters each of size = 20m . We considered 

= 3R  rows and = 3C  columns. Given ijp , the samples are drawn in two steps:   

1.  For each cluster i , given 11 33= ( , , )p p p , generate ip  from a Dirichlet distribution with 

parameter Cp , where C  is to be determined by a common design effect  .  

2.  Using ip  generated from Step 1, the cell counts for cluster i  are generated from a multinomial 

distribution with sample size m  and probability ip .  

Under this procedure, we have =1 ( 1) / ( 1)m C    . We set = 1,2  and 3 . 

 
For the parameter p , we considered four scenarios:   

1.  Case 1: 11 12 13 21 31 22 23 32 33=1/ 4, = = = =1/ 8, = = = =1/16p p p p p p p p p .  

2.  Case 2: 11 12 13=1/ 4, = = (1.2) / 8p p p , 21 31= = (0.8) / 8p p , 22 33= = 1/16p p , 

23 32= (1.2) /16, = (0.8) /16p p .  

3.  Case 3: 11 12 13=1/ 4, = = (1.4) / 8p p p , 21 31= = (0.6) / 8p p , 22 33= = 1/16p p , 

23 32= (1.4) /16, = (0.6) /16p p .  

4.  Case 4: 11 12 13=1/ 4, = = (1.5) / 8p p p , 21 31= = (0.5) / 8p p , 22 33= = 1/16p p , 

23 32= (1.5) /16, = (0.5) /16p p .  

  
In Case 1, the two way table satisfies independence. Cases 2-4 do not satisfy independence and the level of non-

independence can be expressed using a noncentrality parameter  , given by  

 

2

=1 =1

( )
= .

R C
ij i j

i j i j

p p p
mn

p p


 

 


  

 

The values of   are 0.0,2.6,11.7,19.9  for Case 1, Case 2, Case 3, Case 4, respectively. From each sample, we 

considered 4 test procedures:   

1.  Naive Pearson: Reject 0H  if 
2 2

4> (0.95)IX  , where 
2

4 (0.95)  is the upper 5%  point of 
2  



distribution with 4 degrees of freedom.  

2.  Naive LR: Reject 0H  if 
2 2

4> (0.95)IG  .  

3.  Bootstrap Pearson: Reject 0H  if 
2 *

1> (0.95)IX q , where 
*

1 (0.95)q  is the 0.95-th quantile of the 

bootstrap distribution of 
2*

IX .  

4.  Bootstrap LR: Reject 0H  if 
2 *

2> (0.95)IG q , where 
*

2 (0.95)q  is the 0.95-th quantile of the 

bootstrap distribution of 
2*

IG .  

In computing the bootstrap quantiles, we used = 5,000B  bootstrap samples. Simulation results are presented in 

Table 1. 

 
Table 1 reports the size ( = 0 ) and the power of the four test procedures, using =1,000R  Monte Carlo simulated 

samples. Under 0H , the size of the four tests are similar and close to the nominal size, = 0.05  level when the 

design effect is not present ( = 1) . On the other hand, for = 2  and 3 , the naive 
2X  and 

2G  lead to inflated 

sizes which increase with  , as expected. The proposed bootstrap tests show valid test size under 0H  even when 

the design effect is greater than 1. The test power of the proposed bootstrap tests increases with  . 

 

Table 1: Power of the test procedures for independence based on 1,000 Monte Carlo simulation samples  

Design Effect 
 Method  

  

Case 1 

( = 0 ) 

Case 2 

( = 2.6 ) 

Case 3 

( = 11.7 ) 

Case 4 

( = 19.9 ) 

1 

 Naive Pearson  0.050 0.220 0.799 0.972 

 Naive LR  0.051 0.227 0.804 0.971 

 Bootstrap Pearson  0.063 0.219 0.800 0.970 

 Bootstrap LR  0.060 0.216 0.801 0.967 

2 

 Naive Pearson  0.304 0.449 0.818 0.951 

 Naive LR  0.309 0.449 0.819 0.952 

 Bootstrap Pearson  0.047 0.113 0.516 0.749 

 Bootstrap LR  0.051 0.117 0.520 0.751 

3 

 Naive Pearson  0.543 0.643 0.864 0.948 

 Naive LR  0.546 0.646 0.864 0.948 

 Bootstrap Pearson  0.062 0.094 0.295 0.536 

 Bootstrap LR  0.070 0.105 0.304 0.540 

 

 

6.  Concluding Remarks 

 
We plan to extend our bootstrap method to tests for multi-way tables of counts or proportions, using a loglinear model 

approach. We also plan to develop bootstrap tests for logistic regression and other models, using pseudo likelihood 

ratio and quasi-score approaches (Rao, Scott, and Skinner, 1998). 
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Appendix A: Proof of Theorem 1 

 

The goodness-of-fit chi-squared statistic 
2X  can be expressed as  

 
2 1

0 0 0ˆ ˆ= ( ) ( ).X n  p p P p p  (6) 

Using the matrix representation (6) of 
2X  and noting that 0ˆ( ) (0, )n N p p V  under 

0H , the result (1) for 

2X  follows by appealing to standard results on the distribution of quadratic forms (Rao and Scott, 1981). Result (1) 

for 
2G  can be obtained by noting that 

2X  and 
2G  are asymptotically equivalent under 

0H . 

 

Turning to the bootstrap chi-squared statistics 
2*X , we can express it as  

 
2* * 1 *

0
ˆˆ ˆ ˆ ˆ= ( ) ( )X  p p P p p  (7) 

where 
0
ˆ ˆ ˆ ˆ= ( ) 'diag P p pp . For stratified multistage sampling with PSUs drawn with replacement within strata, we 

have  

 

*

* ˆˆ ˆ( ) (0, )n N V p p  (8) 

under the Rao-Wu (1988) bootstrap method. It now follows from (7) and (8) that (2) holds. Results (2) for 
2*G  

also holds, noting that 
*2X  and 

*2G  are asymptotically equivalent with respect to the bootstrap distribution. 

 

 

  



Appendix B: Proof of Theorem 2 

 
We present a brief justification of the proposed bootstrap method for testing independence in a two-way table of cell 

proportions or counts. Using the notation of Rao and Scott (1981), let ( )h p  be the = ( 1)( 1)d R C   dimensional 

vector with elements ( ) =ij ij i jh p p p p , =1, , 1; =1, , 1i R j C  , where 
11 12 1= ( , , , )RCp p p 

p . 

Then the chi-squared statistic 
2

IX , under 
0H , may be expressed in a matrix form as  

 
2 1 1ˆ ˆˆ ˆ= { ( ) ( )} ( ){ ( ) ( )},I R CX n  

 
  h p h p P P h p h p  

where ˆ ˆ ˆ ˆ= ( ) 'R R R Rdiag   P p p p  and ˆ ˆ ˆ ˆ= ( ) 'C C C Cdiag   P p p p  with 
1 1,ˆ = ( , , )ˆ ˆR Rp p   

p  and 

1 , 1ˆ = ( , , )ˆ ˆC Cp p   
p  and   denotes direct product. Now, noting that ˆ( ) ( , )n N p p 0 V , it follows that  

 ˆ{ ( ) ( )} ( , '),n N h p h p 0 HVH  

where = ( ) / ' H h p p  is the ( 1)d RC   matrix of partial derivatives of ( )h p . Using the above result, we get 

(4) where the ( =1, , )l l d  are the eigenvalues of the design effect matrix  1 1= ( ')h R C

 

 D P P HVH . 

 

Turning to the proposed bootstrap method, we can express the bootstrap version of 
2

IX  in a matrix form as  

 
2* * * 1 * 1 *ˆ ˆˆ ˆ ˆ ˆ= { ( ) ( )} ( ){ ( ) ( )}.I R CX n  

 
  h p h p P P h p h p  

Now, noting that  

  
*

* ˆ ˆ ˆˆ ˆ( ) ( ) ( , '),n N h p h p 0 HVH  

the representation (5) of 
2*

IX  holds, where the ˆ
l  are eigenvalues of the estimated design effect matrix 

1 1ˆ ˆ ˆ ˆ ˆ ˆ= ( )( ')h R C

 

 D P P HVH . Now, using ˆ
h p hD D , it follows that ˆ , = 1, ,l p l l d   and the limiting 

distribution of 
*2

IX  is the same as the limiting distribution in (4). 


