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Abstract 
 

Probabilistic linkage is susceptible to linkage errors such as false positives and false negatives. In many cases, these errors 

may be reliably measured through clerical-reviews, i.e. the visual inspection of a sample of record pairs to determine if they 

are matched. A framework is described to effectively carry-out such clerical-reviews based on a probabilistic sample of pairs, 

repeated independent reviews of the same pairs and latent class analysis to account for clerical errors. 
 

Key Words: record linkage, probabilistic linkage, linkage error, clerical-review. 
 

 

1. Introduction 
 

In probabilistic linkage, the decision to link two records, i.e. to classify them as matched or equivalently as relating to 

the same person, is based on the odds-ratio of observed disagreements between the records (Fellegi and Sunter, 1969). 

Probabilistic linkage is susceptible to errors that include false positives and false negatives. These errors occur because 

there is no unique key and for other reasons including typos and differences in formats. Clerical-reviews offer a viable 

solution for measuring these errors when linking social data including names, addresses and birthdates, e.g. in census 

coverage studies (Byrne et al., 2002, Dasylva et al., 2014). 

 

A clerical-review is a visual inspection of a record-pair by a person who decides whether the records are matched. It 

is also called a manual resolution, if the goal is to manually link some record pairs. Clerical-reviews perform many 

valuable functions in the lifecycle of a linkage project, including measuring linkage errors; the focus of this paper.  

However, clerical-reviews can be subjective, error-prone and costly. They raise three important questions including 

how to best select a clerical-sample, how to review a selected pair and how to account for clerical errors, which the 

existing literature has not fully addressed. 

 

The following sections are organized as follows. Section 2 describes the problem of linkage errors. Section 3 describes 

how to sample pairs for clerical-review. Section 4 describes how to review sampled pairs. Section 5 describes how to 

estimate the error rates. Section 6 describes how to account for clerical errors. Section 7 describes the estimation of 

linkage errors for a linkage between the Canadian Mortality Database (CMDB) and the Canadian Community Health 

Survey (CCHS). Section 8 gives the conclusion. 

 

 

2. The problem of linkage errors 
 

Probabilistic linkage is susceptible to linkage errors such as false positives and false negatives, which have various 

sources. However accurately measuring these errors is a challenge. 
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2.1 Sources, types and impact of linkage errors 

 
Linkage errors include false positives and false negatives. A false positive or a bad link occurs when a record is linked 

to an unrelated record. A false positive is further classified as an impossible or incorrect link. It is an impossible link 

when there is no matched record in the other dataset. Otherwise it is an incorrect link.. A false negative occurs when 

a record is not linked to a related record. It is also called a missing link. Two measures of linkage error are the False 

Positive rate (FPR) and the False Negative Rate (FNR). Let FP, TP, FN and TN denote the number of false positives, 

true positives, false negatives and true negatives, respectively. Then the 𝐹𝑃𝑅 and 𝐹𝑁𝑅 are computed respectively as 

𝐹𝑃 (𝐹𝑃 + 𝑇𝑁)⁄  and 𝐹𝑁 (𝐹𝑁 + 𝑇𝑃)⁄ . Additional error measures include the sensitivity, specificity and precision that 

are defined respectively as 1 − 𝐹𝑁𝑅, 1 − 𝐹𝑃𝑅 and 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ . 

 

2.2 Existing solutions for measuring linkage errors 

 
Users of linked data require accurate measures of linkage errors to adjust for them. So far, proposed solutions have 

been based on statistical models or clerical-reviews. 

In theory, model-based solutions do not require clerical-reviews. Such a solution wasproposed by Fellegi and Sunter 

(1969) under assumptions of conditional independence. Although the solution is fully automated and cost effective, 

Belin and Rubin (1995) have noted the inaccuracy of the resulting estimates. Other solutions have incorporated 

training or truth data, possibly via clerical-reviews, as in Armstrong and Mayda (1993), Thibaudeau (1993) and Belin 

and Rubin (1995). Larsen and Rubin (2001) have also described an iterative procedure with multiple rounds of clerical-

reviews, which are used as training data, with an Expectation-Maximization (E-M) procedure. 

Clerical-reviews measure linkage errors by selecting a probability sample of record-pairs and computing design-based 

estimates of error measures. Such a solution has been described by Heasman (2014) and also applies to deterministic 

linkages. Guiver (2011) has described a quality control framework for manual resolution in the grey zone, i.e. bewteen 

the two thresholds (Fellegi and Sunter, 1969). Yet it may be easily adapted for measuring linkage errors. However, 

the existing literature is largely silent regarding the actual process for reviewing a sampled pair. Indeed none of Fellegi 

and Sunter (1969), Newcombe (1988), Newcombe et al. (1983), Guiver (2011) or Heasman (2014) have provided 

specific details. Another outstanding issue is that of potential clerical-errors that have been largely ignored starting 

with Fellegi and Sunter (1969). However it is a potentially serious problem that is currently undermining the credibility 

of clerical-reviews. 

 

 

3. How to select pairs for review? 
 

In a probabilistic linkage, a pair is assigned a linkage weight and classified as rejected, possible or definite, according 

to two weight thresholds. A rejected pair has a linkage weight below a first lower threshold, while a definite pair has 

a weight above a second upper threshold. A possible pair has a weight between the two thresholds and must be resolved 

manually according to Fellegi and Sunter (1969). In a fully automated solution, the two thresholds coincide. Ideally, 

the sampling design for the clerical sample should have a positive inclusion probability for each possible, rejected or 

definite pair. In practice it is necessary to exclude rejected pairs below a cut-off weight, because of the very large 

number of rejected pairs. The sampling frame is then comprised of the pairs above this cut-off weight. 

 

In what follows, consider a sampling frame including 𝑁 record-pairs that are labeled 𝑖 = 1,… , 𝑁. For pair 𝑖, let 𝛾𝑖 
denote the observed vector of disagreements (also called vector of comparison outcomes or simply outcomes vector), 

𝑚(𝛾𝑖) the conditional probability of the outcomes vector given that the pair is matched, 𝑢(𝛾𝑖) the conditional 

probability of the same vector given that the pair is unmatched, and 𝑤𝑖 = log(𝑚(𝛾𝑖) 𝑢(𝛾𝑖)⁄ ) the linkage weight. Note 

that with G-LINK, (Chevrette, 2010), the linkage weight is instead computed as 10log2(𝑚(𝛾𝑖) 𝑢(𝛾𝑖)⁄ ). Also define 

𝑀𝑖 the latent variable indicating the match status of pair 𝑖, where 𝑀𝑖 = 1 if the pair is matched and 𝑀𝑖 = 0 otherwise. 

Of course, this match status is unknown for an arbitrary pair, except when it is selected in the clerical sample and the 

clerical-review process is infallible. Finally let 𝐿𝑖 denote the linkage decision, where 𝐿𝑖 = 1 means that the pair is 

linked. 

 

For a given sample size n and a stratification by linkage weight, a Neyman allocation (Lohr, 1999, pp. 108) may 

minimize the variance of some total that is related to an error measure. The simplest and most natural such total is the 

total number of matched pairs in the sampling frame, i.e. ∑ 𝑀𝑖
𝑁
𝑖=1 . Alternatively, the sample size may be minimized 



for a target variance of the same total. For a fixed sample size and 𝐻 given strata denoted by 𝑈1, … , 𝑈𝐻, Neyman 

allocation requires an estimate of the variance of 𝑀𝑖 within each stratum. For stratum 𝑈ℎ with size 𝑁ℎ denote this 

variance by 𝑆ℎ
2. For the estimation, assume independent pairs within each stratum. Using the conditional variance 

formula, the stratum variance is the sum of two terms. The first term is the stratum mean of the conditional variance 

𝑣𝑎𝑟(𝑀𝑖|𝛾𝑖). The second term is the stratum variance of the conditional mean 𝐸[𝑀𝑖|𝛾𝑖]. Also note that conditional on 

𝛾𝑖,  𝑀𝑖 has a Bernoulli distribution with probability 𝑝𝑖 = 𝐸[𝑀𝑖|𝛾𝑖] = 𝑃(𝑀𝑖 = 1|𝛾𝑖) and variance 𝑣𝑎𝑟(𝑀𝑖|𝛾𝑖) =
𝑝𝑖(1 − 𝑝𝑖). Thus we have the following expression. 

 

𝑆ℎ
2 =

1

𝑁ℎ
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Neyman allocation leads to the sample size 𝑛ℎ = (𝑁ℎ𝑆ℎ ∑ 𝑁𝑡𝑆𝑡
𝐻
𝑡=1⁄ )𝑛 in stratum 𝑈ℎ. The probability 𝑝𝑖  is related to 

the linkage weight when the pairs are assumed independent and identically distributed (IID) according to the mixture 

𝜆𝑚(𝛾𝑖) + (1 − 𝜆)𝑢(𝛾𝑖), where 𝜆 is a positive mixing proportion, which is possibly unknown. This relationship takes 

the logistic form log (
𝑝𝑖

1−𝑝𝑖
) = log (

𝜆

1−𝜆
) + 𝑤𝑖 . An estimate of the mixing proportion is a by-product of any 

Expectation-Maximization (E-M) procedure that is used to estimate the linkage weights. However, it is typically 

unknown when the linkage weights are set through a manual iterative procedure (Howe and Lindsay, 1981). In this 

latter case, the mixing-proportion may be estimated from the pairs and their linkage weights 𝑤𝑖 , by the maximization 

of a partial log-likelihood, assuming that the specified weight is correct for each pair in the blocks. This partial log-

likelihood is simply derived as follows. Suppose a known linkage weight function 𝑤(𝛾) for each possible outcomes 

vector 𝛾, and an unmatched distribution 𝑢(; 𝜽) (also called u-distribution) parametrized by the vector 𝜽. For example, 

𝑢(; 𝜽) may be based on a log-linear model with 𝜽 comprising of selected interaction terms.The pairs have the mixture 

distribution 𝑝(𝛾;𝝍) = 𝑢(𝛾; 𝜽)[𝜆𝑒𝑤(𝛾) + 1 − 𝜆], where 𝝍 = (𝜆, 𝜽) and 𝜆 is independent of 𝜽. Thus the log-likelihood 

has the following expression. 

 

log 𝐿 = ∑log((𝜆𝑒𝑤𝑖 + 1 − 𝜆))

𝑖⏟              
𝐼

+∑log(𝑢(𝛾𝑖; 𝜽))

𝑖⏟          
𝐼𝐼

 

 

The log-likelihood separates into two parts that may be maximized independently. The maximization of the first part 

(part I) yields the maximum likelihood estimator of the mixing-proportion 𝜆. This estimation procedure is  

nonparametric because the u-distribution parameters play no role. However it relies on two important assumptions. 

The first assumption is that the potential pairs, i.e. the pairs satisfying the blocking criteria, behave as  IID pairs with 

a constant mixing-proportion. In practice this assumption may not hold because the mixing-proportion may vary across 

blocks. The second assumption is that the specified weights do not deviate from the true linkage weights. In practice, 

significant deviations are expected when the weights are modified manually. The consequence of such deviations may 

be an estimated mixing-proportion that falls outside the [0,1] interval. Such a result also provides a diagnostic on the 

specified linkage weights. In such cases, a simple solution is manually setting the mixing-proportion to a “reasonable”  

value between 0 and 1. 

To further optimize the sample allocation, strata boundaries may be optimized using different schemes, including 

Dalenius’ cum-√𝑓 rule (Dalenius and Hodges, 1959; Dalenius, 1957) based on the distinct 𝑝𝑖  values. 

 

 

4. How to review selected pairs? 
 

Codifying clerical-reviews is a difficult exercise because they are inherently subjective. However, they should be 

constrained by the following simple guidelines to live up to their potential. First, a reviewer should have the least 

amount and even no information about the linkage, such as pair linkage weights, outcomes vectors, weight thresholds, 

or aggregate statistics about different pair types (definite, rejected, or possible). Second, some or all pairs must be 

subjected to repeated reviews by at least three independent reviewers, with each reviewer required to make a yes/no 

decision regarding the match status, and conflicts possibly resolved by the majority decision. Although this setup 



requires additional clerical-resources, it does provide many important benefits. The first advantage are the improved 

quality of clerical decisions for the pairs that undergo repeated reviews. The second advantage is the ability to evaluate 

clerical errors based on observed conflicts. The third benefit is the built-in mechanism for detecting pairs that do not 

provide enough evidence for reliable decisions, without any need for a DON’T KNOW category. In fact, the use of 

such a category is strongly discouraged because individual reviewers may use it hastily. Third, each reviewer must 

document any reference to an external source when processing a pair. Such an external source may be a public online 

resource, e.g., an online obituary, phone directory or map. When cost is an issue, repeated reviews may be applied to 

a carefully selected subsample of the original sample. 

 

 

5. How to estimate rates of linkage errors? 
 

Let 𝑠 denote the probability sample and 𝜋𝑖 the inclusion probability for unit 𝑖. Then point estimates for the different 

error measures may be computed with the following simple ratio estimators: 

 

𝐹𝑁𝑅̂ =
∑ 𝜋𝑖

−1𝑀𝑖(1 − 𝐿𝑖)𝑖∈𝑠

∑ 𝜋𝑖
−1𝑀𝑖𝑖∈𝑠

𝐹𝑃𝑅̂ =
∑ 𝜋𝑖

−1(1 − 𝑀𝑖)𝐿𝑖𝑖∈𝑠

∑ 𝜋𝑖
−1(1 −𝑀𝑖)𝑖∈𝑠

 

 

Variance and confidence intervals may be computed through resampling, or linearization. The Rao-Wu bootstrap (Rao 

and Wu, 1988) is well suited to this application given the single-stage sampling design and the typically small sampling 

fraction in each stratum. 

 

 

6. How reliable are clerical-reviews? 
 

Clerical errors are likely to occur and cause conflicts when the same pair is reviewed by many independent reviewers. 

At the same time, conflicting decisions clearly indicate the occurrence of an error. A simple conflict resolution strategy 

is based on the majority rule with an odd number of reviewers. However more elaborate schemes may account for 

each reviewer’s performance. The reliability of clerical-reviews may be measured by assuming that a pair match status 

is never truly known but that reviewers’ errors are conditionally independent given the pair match status and other 

covariates. Some of these covariates may be reviewer-specific, such as education or experience. The idea of repeated 

reviews goes back to Newcombe et al. (1983). In traditional surveys, repeated interviews have provided the same 

function and have been used to evaluate measurement errors (Biemer, 2012). 

 

Consider three independent reviewers for each pair. For convenience, define 𝑠ℎ = 𝑠 ∩ 𝑈ℎ the subsample from stratum 

ℎ. Also for ℎ = 1,… , 𝐻, and 𝑗 = 1,2,3, let 𝐹𝑁𝑅ℎ𝑗 and 𝐹𝑃𝑅ℎ𝑗 respectively denote the FNR and FPR for reviewer 𝑗 in 

stratum ℎ. The assumption is made that reviewers make conditionally independent errors given a pair match status 

and its stratum. In the simplest case, each stratum is a weight interval. However, it may also incorporate additional 

pair-specific information. 

 

Let 𝐹𝑁𝑅ℎ and 𝐹𝑃𝑅ℎ respectively denote the FNR and FPR for the majority decision in stratum ℎ. For a sampled pair, 

let 𝐶𝑖 denote the majority decision about pair 𝑖 match status, where 𝐶𝑖 = 1 if the pair is declared matched and 𝐶𝑖 = 0 

otherwise. In a similar manner let let 𝐶𝑖𝑗 denote reviewer 𝑗’s decision about pair 𝑖 match status, where 𝐶𝑖𝑗 = 1 if the 

pair is declared matched and 𝐶𝑖𝑗 = 0 otherwise. When the FNR and the FPR are small for all the reviewers in each 

stratum, and it is safe to assume that the majority decision is infallible (i.e. 𝐶𝑖 = 𝑀𝑖), reviewer 𝑗’s FNR (defined as 

𝑃(𝐶𝑖𝑗 = 0|𝑀𝑖 = 1)) and FPR (defined as 𝑃(𝐶𝑖𝑗 = 1|𝑀𝑖 = 0)) may be simply estimated as follows. 

 

𝐹𝑁𝑅̂ℎ𝑗 =
∑ 𝜋𝑖

−1𝐶𝑖(1 − 𝐶𝑖𝑗)𝑖∈𝑠ℎ

∑ 𝜋𝑖
−1𝐶𝑖𝑖∈𝑠ℎ

𝐹𝑃𝑅̂ℎ𝑗 =
∑ 𝜋𝑖

−1𝐶𝑖𝑗(1 − 𝐶𝑖)𝑖∈𝑠ℎ

∑ 𝜋𝑖
−1(1 − 𝐶𝑖)𝑖∈𝑠ℎ

 



Reviewer 𝑗’s performance across all the strata is estimated as follows. 

 

𝐹𝑁𝑅̂.𝑗 =
∑ (∑ 𝜋𝑖

−1𝐶𝑖𝑖∈𝑠ℎ
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𝐻
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With homogeneous reviewers, there is no reviewer’s effect such that 𝐹𝑁𝑅ℎ𝑗 = 𝐹𝑁𝑅ℎ. and 𝐹𝑃𝑅ℎ𝑗 = 𝐹𝑃𝑅ℎ. for all 𝑗. 

Then the common reviewer error rates may be estimated by 𝐹𝑁𝑅̂ℎ. = (∑ 𝐹𝑁𝑅̂ℎ𝑗
3
𝑗=1 ) 3⁄  and 𝐹𝑃𝑅̂ℎ. =

(∑ 𝐹𝑃𝑅̂ℎ𝑗
3
𝑗=1 ) 3⁄ . The common reviewer’s FNR and FPR across all the strata are estimated by 𝐹𝑁𝑅̂.. =

(∑ 𝐹𝑁𝑅̂.𝑗
3
𝑗=1 ) 3⁄  and 𝐹𝑃𝑅̂.. = (∑ 𝐹𝑃𝑅̂.𝑗

3
𝑗=1 ) 3⁄ . 

 

The infallibility of the majority decision is challenged in strata where pairs provide little discriminating information, 

e.g., in the middle of the grey zone. Better estimates may be computed by analyzing the clerical-review results with a 

latent class model and a separate E-M procedure in each stratum, as suggested by Biemer (2011). In this case, a pair 

outcomes vector is comprised of the yes/no decisions by the individual reviewers. 

 

 

7. CCHS-CMDB linkage 
 

The above methodology has been applied to a linkage between the Canadian Community Health Survey (CCHS) and 

the Canadian Mortality Database (CMDB), see Sanmartin et al. (2015). The CCHS dataset is comprised of 2.3M 

records from collection periods beginning in 2000, 2003, 2005, and between 2007 and 2011. As for the CMDB dataset 

it is comprised of 3.6M records from 2000 to 2011. The two files have been linked using the probabilistic method with 

G-LINK, using the variables birthdate, sex, surname, given name and postal code. The application of blocking criteria 

has produced 418 millions pairs including 114K definite pairs and 22K possible pairs using a first set of thresholds. 

Some of the possible pairs were resolved manually. The final linkage decision has used a single threshold set at 92 for 

all pairs that were not resolved manually. For the clerical-review, the sampling frame was comprised of pairs with a 

linkage weight no smaller than 1. This frame was stratified into eight equally spaced weight intervals, and a sample 

size of 1,000 was uniformly allocated across the strata. The sample allocation is summarized in Table 7-1. 

 

Table 7-1 

Sample design for the clerical-reviews. 

Stratum Frequency Percent Weight interval Sampling weight Sample size 

1 880,515 73.58 1.51 – 23.51 7,044.12 125 

2 277,757 23.21 23.52 – 49.51 2,222.06 125 

3 5,447 0.46 49.52 – 73.51 43.57 125 

4 2,405 0.20 73.52 – 97.51 19.24 125 

5 3,274 0.27 97.52 – 123.51 26.19 125 

6 2,699 0.23 123.52 – 149.51 21.59 125 

7 21,198 1.77 149.52 – 163.51 169.58 125 

8 3,347 0.28 163.51 – 194.52 26.77 125 

 

Each sampled pair was reviewed by three independent reviewers with the majority decision rule. The estimated error 

rates are given in Table 7-2, including an FNR of 2.43%, an FPR of 0.04% and a precision of 98.64%. These results 

demonstrate the good quality of the linkage and are in line with previous studies, see Da Silveira and Artmann (2009). 

  



Table 7-2 

Rates of linkage errors. 

 Linked (L) Not Linked (NL)  

Matched 34,298 855.09 FNR=2.43% 

Unmatched 473.57 1,161,015 FPR=0.04% 

 Pr=98.64%   

Rates of clerical errors were also estimated under the assumption that the majority decision is infallible and that there 

is no reviewer’s effect. Overall, the estimated reviewer’s error rates are 𝐹𝑁𝑅̂.. = 2.97% and 𝐹𝑃𝑅̂.. = 0.15%. These 

results support the thesis that clerical-reviews offer a viable option for estimating linkage errors. The sampling design 

for the clerical sample could have used a more optimal stratification or sample allocation. Yet, the decision was made 

to proceed with it because the resulting sample had already been processed by a first reviewer. 

 

 

8. Conclusion 
 

Clerical-review is a viable option for measuring linkage errors when linking social data with name, birthdate and 

address information. However, fully automated model-based solutions are also required, when clerical-reviews are 

impossible, such as when linking anonymized data. 
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