Statistiques par sujet – Vérification et imputation

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 0 facettes sélectionnées.

Auteur(s)

2 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 0 facettes sélectionnées.

Auteur(s)

2 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 0 facettes sélectionnées.

Auteur(s)

2 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

1 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 0 facettes sélectionnées.

Auteur(s)

2 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Autres ressources disponibles pour appuyer vos recherches.

Aide pour trier les résultats
Explorer notre base centrale des principaux concepts normalisés, définitions, sources de données et méthodes.
En cours de chargement
Chargement en cours, veuillez patienter...
Tout (1)

Tout (1) (1 result)

  • Articles et rapports : 12-001-X201600214676
    Description :

    Les procédures de winsorisation permettent de remplacer les valeurs extrêmes par des valeurs moins extrêmes, déplaçant en fait les valeurs extrêmes originales vers le centre de la distribution. La winsorisation sert donc à détecter ainsi qu’à traiter les valeurs influentes. Mulry, Oliver et Kaputa (2014) comparent la performance de la méthode de winsorisation unilatérale élaborée par Clark (1995) et décrite par Chambers, Kokic, Smith et Cruddas (2000) avec celle d' estimation M (Beaumont et Alavi 2004) dans le cas de données sur une population d’entreprises fortement asymétrique. Un aspect particulièrement intéressant des méthodes qui servent à détecter et à traiter des valeurs influentes est la plage de valeurs définies comme étant influentes, que l’on appelle « zone de détection ». L’algorithme de winsorisation de Clark est facile à mettre en œuvre et peut s’avérer très efficace. Cependant, la zone de détection qui en résulte dépend considérablement du nombre de valeurs influentes dans l’échantillon, surtout quand on s’attend à ce que les totaux d’enquête varient fortement selon la période de collecte. Dans la présente note, nous examinons l’effet du nombre de valeurs influentes et de leur taille sur les zones de détection produites par la winsorisation de Clark en utilisant des données simulées de manière à représenter raisonnablement les propriétés de la population visée par la Monthly Retail Trade Survey (MRTS) du U.S. Census Bureau. Les estimations provenant de la MRTS et d’autres enquêtes économiques sont utilisées dans le calcul d’indicateurs économiques, comme le produit intérieur brut (PIB).

    Date de diffusion : 2016-12-20

Données (0)

Données (0) (Aucun résultat)

Votre recherche pour «» n’a donné aucun résultat dans la présente section du site.

Vous pouvez essayer :

Analyses (1)

Analyses (1) (1 result)

  • Articles et rapports : 12-001-X201600214676
    Description :

    Les procédures de winsorisation permettent de remplacer les valeurs extrêmes par des valeurs moins extrêmes, déplaçant en fait les valeurs extrêmes originales vers le centre de la distribution. La winsorisation sert donc à détecter ainsi qu’à traiter les valeurs influentes. Mulry, Oliver et Kaputa (2014) comparent la performance de la méthode de winsorisation unilatérale élaborée par Clark (1995) et décrite par Chambers, Kokic, Smith et Cruddas (2000) avec celle d' estimation M (Beaumont et Alavi 2004) dans le cas de données sur une population d’entreprises fortement asymétrique. Un aspect particulièrement intéressant des méthodes qui servent à détecter et à traiter des valeurs influentes est la plage de valeurs définies comme étant influentes, que l’on appelle « zone de détection ». L’algorithme de winsorisation de Clark est facile à mettre en œuvre et peut s’avérer très efficace. Cependant, la zone de détection qui en résulte dépend considérablement du nombre de valeurs influentes dans l’échantillon, surtout quand on s’attend à ce que les totaux d’enquête varient fortement selon la période de collecte. Dans la présente note, nous examinons l’effet du nombre de valeurs influentes et de leur taille sur les zones de détection produites par la winsorisation de Clark en utilisant des données simulées de manière à représenter raisonnablement les propriétés de la population visée par la Monthly Retail Trade Survey (MRTS) du U.S. Census Bureau. Les estimations provenant de la MRTS et d’autres enquêtes économiques sont utilisées dans le calcul d’indicateurs économiques, comme le produit intérieur brut (PIB).

    Date de diffusion : 2016-12-20

Références (0)

Références (0) (Aucun résultat)

Votre recherche pour «» n’a donné aucun résultat dans la présente section du site.

Vous pouvez essayer :

Date de modification :