Statistiques par sujet – Méthodes statistiques

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

2 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

2 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

2 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Préciser les résultats par

Aide pour les filtres et la recherche
Filtres actuellement sélectionnés pouvant être supprimés

Mot(s)-clé(s)

Type d’information

2 facettes affichées. 0 facettes sélectionnées.

Année de publication

1 facettes affichées. 1 facettes sélectionnées.

Contenu

1 facettes affichées. 0 facettes sélectionnées.

Autres ressources disponibles pour appuyer vos recherches.

Aide pour trier les résultats
Explorer notre base centrale des principaux concepts normalisés, définitions, sources de données et méthodes.
En cours de chargement
Chargement en cours, veuillez patienter...
Tout (2)

Tout (2) (2 results)

  • Articles et rapports : 12-001-X201400214118
    Description :

    L’agrégation bootstrap est une puissante méthode de calcul utilisée pour améliorer la performance des estimateurs inefficaces. Le présent article est le premier à explorer l’utilisation de l’agrégation bootstrap dans l’estimation par sondage. Nous y examinons les effets de l’agrégation bootstrap sur les estimateurs d’enquête non différenciables, y compris les fonctions de répartition de l’échantillon et les quantiles. Les propriétés théoriques des estimateurs d’enquête agrégés par bootstrap sont examinées sous le régime fondé sur le plan de sondage et le régime fondé sur le modèle. En particulier, nous montrons la convergence par rapport au plan des estimateurs agrégés par bootstrap et obtenons la normalité asymptotique des estimateurs dans un contexte fondé sur le modèle. L’article explique comment la mise en oeuvre de l’agrégation bootstrap des estimateurs d’enquête peut tirer parti des répliques produites pour l’estimation par sondage de la variance, facilitant l’application de l’agrégation bootstrap dans les enquêtes existantes. Un autre défi important dans la mise en oeuvre de l’agrégation bootstrap en contexte d’enquête est l’estimation de la variance pour les estimateurs agrégés par bootstrap eux-mêmes, et nous examinons deux façons possibles d’estimer la variance. Les expériences par simulation révèlent une amélioration de l’estimateur par agrégation bootstrap proposé par rapport à l’estimateur original et comparent les deux approches d’estimation de la variance.

    Date de diffusion : 2014-12-19

  • Produits techniques : 11-522-X201300014266
    Description :

    L’utilisation de moniteurs et l’autodéclaration sont deux méthodes de mesure de l’énergie dépensée durant l’activité physique, la variance de l’erreur étant habituellement beaucoup plus faible dans le cas des moniteurs que dans celui de l’autodéclaration. La Physical Activity Measurement Survey a été conçue pour comparer les deux procédures en utilisant des observations répétées sur une même personne. Ces observations répétées permettent de calibrer la mesure par autodéclaration sur la mesure par moniteur, ce qui rend possible l’estimation des composantes des variances des erreurs de mesure. Les estimations des composantes de la variance de l’erreur de mesure de la dépense d’énergie selon le moniteur et selon l’autodéclaration sont présentées pour les femmes qui ont participé à la Physical Activity Measurement Survey.

    Date de diffusion : 2014-10-31

Données (0)

Données (0) (Aucun résultat)

Votre recherche pour «» n’a donné aucun résultat dans la présente section du site.

Vous pouvez essayer :

Analyses (1)

Analyses (1) (1 result)

  • Articles et rapports : 12-001-X201400214118
    Description :

    L’agrégation bootstrap est une puissante méthode de calcul utilisée pour améliorer la performance des estimateurs inefficaces. Le présent article est le premier à explorer l’utilisation de l’agrégation bootstrap dans l’estimation par sondage. Nous y examinons les effets de l’agrégation bootstrap sur les estimateurs d’enquête non différenciables, y compris les fonctions de répartition de l’échantillon et les quantiles. Les propriétés théoriques des estimateurs d’enquête agrégés par bootstrap sont examinées sous le régime fondé sur le plan de sondage et le régime fondé sur le modèle. En particulier, nous montrons la convergence par rapport au plan des estimateurs agrégés par bootstrap et obtenons la normalité asymptotique des estimateurs dans un contexte fondé sur le modèle. L’article explique comment la mise en oeuvre de l’agrégation bootstrap des estimateurs d’enquête peut tirer parti des répliques produites pour l’estimation par sondage de la variance, facilitant l’application de l’agrégation bootstrap dans les enquêtes existantes. Un autre défi important dans la mise en oeuvre de l’agrégation bootstrap en contexte d’enquête est l’estimation de la variance pour les estimateurs agrégés par bootstrap eux-mêmes, et nous examinons deux façons possibles d’estimer la variance. Les expériences par simulation révèlent une amélioration de l’estimateur par agrégation bootstrap proposé par rapport à l’estimateur original et comparent les deux approches d’estimation de la variance.

    Date de diffusion : 2014-12-19

Références (1)

Références (1) (1 result)

  • Produits techniques : 11-522-X201300014266
    Description :

    L’utilisation de moniteurs et l’autodéclaration sont deux méthodes de mesure de l’énergie dépensée durant l’activité physique, la variance de l’erreur étant habituellement beaucoup plus faible dans le cas des moniteurs que dans celui de l’autodéclaration. La Physical Activity Measurement Survey a été conçue pour comparer les deux procédures en utilisant des observations répétées sur une même personne. Ces observations répétées permettent de calibrer la mesure par autodéclaration sur la mesure par moniteur, ce qui rend possible l’estimation des composantes des variances des erreurs de mesure. Les estimations des composantes de la variance de l’erreur de mesure de la dépense d’énergie selon le moniteur et selon l’autodéclaration sont présentées pour les femmes qui ont participé à la Physical Activity Measurement Survey.

    Date de diffusion : 2014-10-31

Date de modification :