5 Conclusions and future research

Iván A. Carrillo and Alan F. Karr

Previous

We have proposed a novel approach to combining different cohorts of a longitudinal survey. The major requirement of our method is that there is a cross-sectional survey weight for each wave, or that one can be built from available information. This weight should allow for statistical inference to the population of interest at the corresponding wave. In that case, our method should perform better than usual estimation procedures (where the auto-correlation is not incorporated) in many practical situations, in particular when there is a high auto-correlation among responses from the same subject.

In general, survey practitioners avoid as much as possible the use of multiple survey weights. However, in the case of rotating panels this is an appealing approach for at least two reasons. On the one hand, it allows for the use of all the available data in a clear and cohesive way in a single analysis procedure. On the other hand, we have shown how readily available cross-sectional survey weights can be directly used for longitudinal analysis, without the need to develop, store, and distribute an additional longitudinal weight or weights.

Our method is directly applicable to any kind of longitudinal survey as long as there are cross-sectional survey weights available (or these can be created) at each wave, and these weights represent the population of interest at the particular wave.

For the theory that we developed about the variance of the estimator proposed, we utilized the (cross-sectional) design weights w ij , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Dam aaBaaaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@3D07@  which are the inverse of the inclusion probabilities. Yet for the application in our model for salary in the SDR we used the final (cross-sectional) survey weights, which are not the original design weights, but adjusted (in the usual way) weights. This mismatch requires further exploration.

Similarly, in our derivations of the variance, we assumed that the cohorts were independent. However, the SDR does not totally satisfy this assumption for two reasons. Firstly, at any particular wave, the selection of the sample from the old cohorts is not performed independently across cohorts. In order to reduce the number of strata, since 1991 the NSF has collapsed strata over year of degree receipt for the old cohorts. Additionally, the post-stratification adjustments made to the design weights do not condition over cohort either, and as a result, weights are shared across cohorts. This sampling selection scheme and weighting adjustment procedure violate the independence across cohorts. Some additional calculations (included in the Appendix) have shown that the independence among cohort is not such a crucial requirement for our variance estimation method to produce good approximations, as explained in Section 3.3.1. In future research we plan to evaluate in more detail the impact of this issue.

Acknowledgements

This research was supported by NSF grant SRS-1019244 to the National Institute of Statistical Sciences (NISS). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank Paul Biemer of RTI International, Stephen Cohen and Nirmala Kannankutty of the National Center for Science and Engineering Statistics at NSF, and Criselda Toto, formerly of NISS, for numerous insightful discussions during the research. We are also grateful to the Associate Editor and two referees for their useful suggestions.

Appendix - Proofs

To develop an expression for C ξ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4qam aaBaaaleaacqaH+oaEaeqaaOGaaiilaaaa@3CB9@  we first simplify Ψ s ( β ) Ψ U ( β ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiQdK 1aaSbaaSqaaiaadohaaeqaaOWaaeWaaeaaiiqacqWFYoGyaiaawIca caGLPaaacuqHOoqwgaqbamaaBaaaleaacaWGvbaabeaakmaabmaaba Gae8NSdigacaGLOaGaayzkaaGaaiOlaaaa@45B7@  Let F i( k ) = B i I i ( U ) e i( k3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 NramaaBaaaleaacaWGPbWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaa beaakiabg2da9iaadkeadaWgaaWcbaGaamyAaaqabaGccaqGjbWaaS baaSqaaiaadMgaaeqaaOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaGa a8xzamaaBaaaleaacaWGPbWaaeWaaeaacaWGRbGaeSOjGSKaaG4maa GaayjkaiaawMcaaaqabaaaaa@4B52@  for k=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aai abg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaaaa@3F82@  then we have:

N 2 Ψ s ( B )Ψ U ( B )= is B i W i e i iU e i I i ( U )B i =[ is B i W i e i ][ is F i( 1 ) + is F i( 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiabfI6aznaaBaaaleaacaWGZbaabeaa kmaabmaabaacbmGaa8NqaaGaayjkaiaawMcaaiabfI6azHGaaiab+j diIoaaBaaaleaacaWGvbaabeaakmaabmaabaGaa8NqaaGaayjkaiaa wMcaaiabg2da9maaqafabeWcbaGaamyAaiabgIGiolaadohaaeqani abggHiLdGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaam4vamaaBaaa leaacaWGPbaabeaakiaa=vgadaWgaaWcbaGaamyAaaqabaGcdaaeqb qaaiaa=vgacqGFYaIOdaWgaaWcbaGaamyAaaqabaGccaqGjbWaaSba aSqaaiaadMgaaeqaaOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaGaa8 Nqaiab+jdiIoaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyicI4Sa amyvaaqab0GaeyyeIuoakiabg2da9maadmqabaWaaabuaeaacaWGcb WaaSbaaSqaaiaadMgaaeqaaOGaam4vamaaBaaaleaacaWGPbaabeaa kiaa=vgadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiolaado haaeqaniabggHiLdaakiaawUfacaGLDbaadaWadeqaamaaqafabaGa b8NrayaafaWaaSbaaSqaaiaadMgadaqadaqaaiaaigdaaiaawIcaca GLPaaaaeqaaaqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGa ey4kaSYaaabuaeaaceWFgbGbauaadaWgaaWcbaGaamyAamaabmaaba GaaGymaaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgMGiplaadoha aeqaniabggHiLdaakiaawUfacaGLDbaaaaa@887A@
= is B i W i e i is F i( 1 ) + is B i W i e i is F i( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 ZaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaa dkeadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaae qaaGqadOGaa8xzamaaBaaaleaacaWGPbaabeaakmaaqafabaGab8Nr ayaafaWaaSbaaSqaaiaadMgadaqadaqaaiaaigdaaiaawIcacaGLPa aaaeqaaaqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaey4k aSYaaabuaeaacaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaam4vamaaBa aaleaacaWGPbaabeaakiaa=vgadaWgaaWcbaGaamyAaaqabaaabaGa amyAaiabgIGiolaadohaaeqaniabggHiLdGcdaaeqbqaaiqa=zeaga qbamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa beaaaeaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoaaaa@65B2@
= is B i W i e i e k B i + is ks ki B i W i e i e k I k ( U ) B k +A, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 ZaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaa dkeadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaae qaaGqadOGaa8xzamaaBaaaleaacaWGPbaabeaakiqa=vgagaqbamaa BaaaleaacaWGRbaabeaakiqadkeagaqbamaaBaaaleaacaWGPbaabe aakiabgUcaRmaaqafabeWcbaGaamyAaiabgIGiolaadohaaeqaniab ggHiLdGcdaaeqbqaaiaadkeadaWgaaWcbaGaamyAaaqabaGccaWGxb WaaSbaaSqaaiaadMgaaeqaaOGaa8xzamaaBaaaleaacaWGPbaabeaa kiqa=vgagaqbamaaBaaaleaacaWGRbaabeaakiaabMeadaWgaaWcba Gaam4AaaqabaGcdaqadaqaaiaabwfaaiaawIcacaGLPaaaceWGcbGb auaadaWgaaWcbaGaam4AaaqabaaaeaGabeaacaWGRbGaeyicI4Saam 4CaaqaaiaadUgacqGHGjsUcaWGPbaaaeqaniabggHiLdGccqGHRaWk caqGbbGaaGilaaaa@6A56@

where A=( is B i W i e i )( is F i( 1 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqai abg2da9maabmaabaWaaabeaeaacaWGcbWaaSbaaSqaaiaadMgaaeqa aOGaam4vamaaBaaaleaacaWGPbaabeaaieWakiaa=vgadaWgaaWcba GaamyAaaqabaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaa kiaawIcacaGLPaaadaqadaqaamaaqababaGab8NrayaafaWaaSbaaS qaaiaadMgadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqaaiaa dMgacqGHjiYZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaGaai ilaaaa@5396@  and let B= is ks ki B i W i e i e k I k ( U ) B k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqai abg2da9maaqababeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHi LdGcdaaeqaqaaiaadkeadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaS baaSqaaiaadMgaaeqaaGqadOGaa8xzamaaBaaaleaacaWGPbaabeaa kiqa=vgagaqbamaaBaaaleaacaWGRbaabeaakiaabMeadaWgaaWcba Gaam4AaaqabaGcdaqadaqaaiaabwfaaiaawIcacaGLPaaaceWGcbGb auaadaWgaaWcbaGaam4AaaqabaGccaGGUaaalqaaceqaaiaadUgacq GHiiIZcaWGZbaabaGaam4AaiabgcMi5kaadMgaaaqab0GaeyyeIuoa aaa@587E@  The two sums in A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaa aa@3A0C@  are model-independent, e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xzamaaBaaaleaacaWGPbaabeaaaaa@3B54@  and e k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGab8 xzayaafaWaaSbaaSqaaiaadUgaaeqaaaaa@3B62@  (in B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqai aabMcaaaa@3AB9@  are two model-independent terms, and A and B both have model-expectation zero; therefore, E ξ [ Ψ s ( β ) Ψ U ( β ) ]= N 2 is B i W i E ξ [ e i e i ] B i = N 2 is B i W i Σ i B i = N 1 H ^ ΣV ( β ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaBaaaleaacqaH+oaEaeqaaOWaamWaaeaacqqHOoqwdaWgaaWcbaGa am4CaaqabaGcdaqadaqaaGGabiab=j7aIbGaayjkaiaawMcaaiqbfI 6azzaafaWaaSbaaSqaaiaadwfaaeqaaOWaaeWaaeaacqWFYoGyaiaa wIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaWGobWaaWbaaSqabe aacqGHsislcaaIYaaaaOWaaabeaeqaleaacaWGPbGaeyicI4Saam4C aaqab0GaeyyeIuoakiaadkeadaWgaaWcbaGaamyAaaqabaGccaWGxb WaaSbaaSqaaiaadMgaaeqaaOGaamyramaaBaaaleaacqaH+oaEaeqa aOWaamWaaeaaieWacaGFLbWaaSbaaSqaaiaadMgaaeqaaOGab4xzay aafaWaaSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaGabmOqayaa faWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamOtamaaCaaaleqaba GaeyOeI0IaaGOmaaaakmaaqababeWcbaGaamyAaiabgIGiolaadoha aeqaniabggHiLdGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaam4vam aaBaaaleaacaWGPbaabeaakiabfo6atnaaBaaaleaacaWGPbaabeaa kiqadkeagaqbamaaBaaaleaacaWGPbaabeaakiabg2da9iaad6eada ahaaWcbeqaaiabgkHiTiaaigdaaaGcceWGibGbaKaadaWgaaWcbaGa eu4OdmLaamOvaaqabaGcdaqadaqaaiab=j7aIbGaayjkaiaawMcaai aacUdaaaa@7E35@  equation (3.9) follows.

We now develop the expression for Var p [ Ψ s ( β N ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOvai aabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaamWaaeaacqqHOoqw daWgaaWcbaGaam4CaaqabaGcdaqadaqaaGGabiab=j7aInaaBaaale aacaWGobaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiaacYca aaa@46BD@  the design variance of the estimating function; we redefine B i = ( μ i / β )| β= β N V i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqam aaBaaaleaacaWGPbaabeaakiabg2da9maaeiaabaWaaeWaaeaadaWc gaqaaiabgkGi2IGabiqb=X7aTzaafaWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRae8NSdigaaaGaayjkaiaawMcaaaGaayjcSdWaaSba aSqaaiab=j7aIjab=1da9iab=j7aInaaBaaabaGaamOtaaqabaaabe aakiaadAfadaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaaaaa@4FC1@  and e i = y i μ i ( β N ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xzamaaBaaaleaacaWGPbaabeaakiabg2da9iaa=LhadaWgaaWcbaGa amyAaaqabaGccqGHsisliiqacqGF8oqBdaWgaaWcbaGaamyAaaqaba Gcdaqadaqaaiab+j7aInaaBaaaleaacaWGobaabeaaaOGaayjkaiaa wMcaaiaacUdaaaa@473A@  then

Var p [ Ψ p ( β N ) ] =Var p ( 1 N is B i W i e i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqfqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOvai aabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaamWaaeaacqqHOoqw daWgaaWcbaGaamiCaaqabaGcdaqadaqaaGGabiab=j7aInaaBaaale aacaWGobaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiaab2da caqGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaam aalaaabaGaaGymaaqaaiaad6eaaaWaaabuaeaacaWGcbWaaSbaaSqa aiaadMgaaeqaaOGaam4vamaaBaaaleaacaWGPbaabeaaieWakiaa+v gadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiolaadohaaeqa niabggHiLdaakiaawIcacaGLPaaaaaa@5905@
= 1 N 2 Var p ( i s 1( 1 ) B i W i e i + i s 2( 2 ) B i W i e i + i s 3( 3 ) B i W i e i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqfqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGc caqGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaqadeqaam aaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdadaqa daqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadk eadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaaeqa aGqadOGaa8xzamaaBaaaleaacaWGPbaabeaakiabgUcaRmaaqafabe WcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaikdadaqadaqaaiaa ikdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadkeadaWgaa WcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaaeqaaOGaa8xz amaaBaaaleaacaWGPbaabeaakiabgUcaRmaaqafabeWcbaGaamyAai abgIGiolaadohadaWgaaqaaiaaiodadaqadaqaaiaaiodaaiaawIca caGLPaaaaeqaaaqab0GaeyyeIuoakiaadkeadaWgaaWcbaGaamyAaa qabaGccaWGxbWaaSbaaSqaaiaadMgaaeqaaOGaa8xzamaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaaaa@6FD8@
= 1 N 2 Var p ( i s 1( 1 ) B i W i e i )+ 1 N 2 Var p ( i s 2( 2 ) B i W i e i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqfqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGc caqGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaqadeqaam aaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdadaqa daqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadk eadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaaeqa aGqadOGaa8xzamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikda aaaaaOGaaeOvaiaabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaae WabeaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaI YaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLd GccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaam4vamaaBaaaleaacaWG Pbaabeaakiaa=vgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aaaaa@683D@
+ 1 N 2 Var p ( i s 3( 3 ) B i W i e i )= D ( 1 ) + D ( 2 ) + D ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqfqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaey4kaS YaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGc caqGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaqadeqaam aaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaiodadaqa daqaaiaaiodaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadk eadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaadMgaaeqa aGqadOGaa8xzamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaai abg2da9iaadseadaWgaaWcbaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaakiabgUcaRiaadseadaWgaaWcbaWaaeWaaeaacaaIYaaaca GLOaGaayzkaaaabeaakiabgUcaRiaadseadaWgaaWcbaWaaeWaaeaa caaIZaaacaGLOaGaayzkaaaabeaakiaaiYcaaaa@5DE0@

where, for line (A.1), we assume that the (three) cohorts are design-independent. Now, N 2 D ( 1 ) = Var p [ i U 1( 1 ) B i W i Diag{ I i( 1 ) } e i ]= Var p [ i U 1( 1 ) B i W i Diag{ e i } I i( 1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaabeaakiabg2da9iaabAfacaqGHbGaaeOCam aaBaaaleaacaWGWbaabeaakmaadmqabaWaaabeaeqaleaacaWGPbGa eyicI4SaamyvamaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkai aawMcaaaqabaaabeqdcqGHris5aOGaamOqamaaBaaaleaacaWGPbaa beaakiaadEfadaWgaaWcbaGaamyAaaqabaGccaqGebGaaeyAaiaabg gacaqGNbWaaiWabeaaieWacaWFjbWaaSbaaSqaaiaadMgadaqadaqa aiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGL7bGaayzFaaGaa8xzam aaBaaaleaacaWGPbaabeaaaOGaay5waiaaw2faaiabg2da9iaabAfa caqGHbGaaeOCamaaBaaaleaacaWGWbaabeaakmaadmqabaWaaabeae qaleaacaWGPbGaeyicI4SaamyvamaaBaaabaGaaGymamaabmaabaGa aGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGaamOqamaaBa aaleaacaWGPbaabeaakiaadEfadaWgaaWcbaGaamyAaaqabaGccaqG ebGaaeyAaiaabggacaqGNbWaaiWabeaacaWFLbWaaSbaaSqaaiaadM gaaeqaaaGccaGL7bGaayzFaaGaa8xsamaaBaaaleaacaWGPbWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5waiaaw2faaiaacY caaaa@7D21@  where Diag{ e } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeirai aabMgacaqGHbGaae4zamaacmaabaacbmGaa8xzaaGaay5Eaiaaw2ha aaaa@3FEC@  is, for a column vector e, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xzaiaacYcaaaa@3AEA@  a diagonal matrix with diagonal entries being the elements of e, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xzaiaacYcaaaa@3AEA@  and I i( 1 ) =( I i ( s 1( 1 ) ), I i ( s 2( 1 ) ) I i ( s 1( 1 ) ), I i ( s 3( 1 ) ) I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa beaakiabg2da9maabeaabaGaamysamaaBaaaleaacaWGPbaabeaakm aabmqabaGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaOGaayjkaiaawMcaaiaacYcaaiaawIcaaiaadM eadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadohadaWgaaWcbaGa aGOmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawIcaca GLPaaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWa aSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaa GccaGLOaGaayzkaaGaaGilamaabiaabaGaamysamaaBaaaleaacaWG PbaabeaakmaabmqabaGaam4CamaaBaaaleaacaaIZaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMcaaiaadMeadaWg aaWcbaGaamyAaaqabaGcdaqadeqaaiaadohadaWgaaWcbaGaaGOmam aabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawIcacaGLPaaa caWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSbaaS qaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGL OaGaayzkaaaacaGLPaaadaahaaWcbeqaaOGamai4gkdiIcaacaGGUa aaaa@734B@

 Similarly we can get N 2 D ( 2 ) = Var p [ i U 2( 2 ) B i W i Diag{ e i } I i( 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI YaaacaGLOaGaayzkaaaabeaakiabg2da9iaabAfacaqGHbGaaeOCam aaBaaaleaacaWGWbaabeaakmaadmqabaWaaabeaeqaleaacaWGPbGa eyicI4SaamyvamaaBaaabaGaaGOmamaabmaabaGaaGOmaaGaayjkai aawMcaaaqabaaabeqdcqGHris5aOGaamOqamaaBaaaleaacaWGPbaa beaakiaadEfadaWgaaWcbaGaamyAaaqabaGccaqGebGaaeyAaiaabg gacaqGNbWaaiWaaeaaieWacaWFLbWaaSbaaSqaaiaadMgaaeqaaaGc caGL7bGaayzFaaGaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIYa aacaGLOaGaayzkaaaabeaaaOGaay5waiaaw2faaaaa@5D6A@  and N 2 D ( 3 ) = Var p [ i U 3( 3 ) B i W i Diag{ e i } I i( 3 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI ZaaacaGLOaGaayzkaaaabeaakiabg2da9iaabAfacaqGHbGaaeOCam aaBaaaleaacaWGWbaabeaakmaadmqabaWaaabeaeqaleaacaWGPbGa eyicI4SaamyvamaaBaaabaGaaG4mamaabmaabaGaaG4maaGaayjkai aawMcaaaqabaaabeqdcqGHris5aOGaamOqamaaBaaaleaacaWGPbaa beaakiaadEfadaWgaaWcbaGaamyAaaqabaGccaqGebGaaeyAaiaabg gacaqGNbWaaiWabeaaieWacaWFLbWaaSbaaSqaaiaadMgaaeqaaaGc caGL7bGaayzFaaGaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIZa aacaGLOaGaayzkaaaabeaaaOGaay5waiaaw2faaiaacYcaaaa@5E20@  where I i( 2 ) = ( 0, I i ( s 2( 2 ) ), I i ( s 3( 2 ) ) I i ( s 2( 2 ) ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaa beaakiabg2da9maabmqabaGaaGimaiaaiYcacaWGjbWaaSbaaSqaai aadMgaaeqaaOWaaeWabeaacaWGZbWaaSbaaSqaaiaaikdadaqadaqa aiaaikdaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaaiilai aadMeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadohadaWgaaWc baGaaG4mamaabmaabaGaaGOmaaGaayjkaiaawMcaaaqabaaakiaawI cacaGLPaaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWG ZbWaaSbaaSqaaiaaikdadaqadaqaaiaaikdaaiaawIcacaGLPaaaae qaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaakiad acUHYaIOaaGaaiilaaaa@5D08@  and I i( 3 ) = ( 0,0, I i ( s 3( 3 ) ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaa beaakiabg2da9maabmqabaGaaGimaiaacYcacaaIWaGaaiilaiaadM eadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadohadaWgaaWcbaGa aG4mamaabmaabaGaaG4maaGaayjkaiaawMcaaaqabaaakiaawIcaca GLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaOGamai4gkdiIcaacaGG Uaaaaa@4E6A@

 Now, let us concentrate on D ( 1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiram aaBaaaleaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaOGaai4o aaaa@3D4A@  letting C i = B i W i Diag{ e i }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4qam aaBaaaleaacaWGPbaabeaakiabg2da9iaadkeadaWgaaWcbaGaamyA aaqabaGccaWGxbWaaSbaaSqaaiaadMgaaeqaaOGaaeiraiaabMgaca qGHbGaae4zamaacmaabaacbmGaa8xzamaaBaaaleaacaWGPbaabeaa aOGaay5Eaiaaw2haaiaacYcaaaa@489D@  we have:

N 2 D ( 1 ) =Var p ( i U 1( 1 ) C i I i( 1 ) )=Var{ E[ i U 1( 1 ) C i I i( 1 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamOtamaaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaabeaakiaab2dacaqGwbGaaeyyai aabkhadaWgaaWcbaGaamiCaaqabaGcdaqadeqaamaaqafabeWcbaGa amyAaiabgIGiolaadwfadaWgaaqaaiaaigdadaqadaqaaiaaigdaai aawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadoeadaWgaaWcbaGa amyAaaqabaacbmGccaWFjbWaaSbaaSqaaiaadMgadaqadaqaaiaaig daaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaeOv aiaabggacaqGYbWaaiWabeaacaWGfbWaamWabeaadaaeqbqabSqaai aadMgacqGHiiIZcaWGvbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaa caGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWGdbWaaSbaaSqaai aadMgaaeqaaOGaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaa caGLOaGaayzkaaaabeaakmaaeeaabaGaam4CamaaBaaaleaacaaIXa WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSdaacaGL BbGaayzxaaaacaGL7bGaayzFaaaaaa@7237@
+E{ Var[ i U 1( 1 ) C i I i( 1 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaey4kaSIaamyramaacmqabaGaaeOvaiaabggacaqGYbWaamWabeaa daaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWaaSbaaeaacaaIXaWaae WaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWG dbWaaSbaaSqaaiaadMgaaeqaaGqadOGaa8xsamaaBaaaleaacaWGPb WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaakmaaeeaabaGaam4C amaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabe aaaOGaay5bSdaacaGLBbGaayzxaaaacaGL7bGaayzFaaaaaa@582B@
=Var{ E[ E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaaeypaiaabAfacaqGHbGaaeOCamaacmqabaGaamyramaadmqabaWa aqGabeaacaWGfbWaaeWabeaadaaeqbqabSqaaiaadMgacqGHiiIZca WGvbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa beaaaeqaniabggHiLdGccaWGdbWaaSbaaSqaaiaadMgaaeqaaGqadO Gaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaakmaaeeaabaGaam4CamaaBaaaleaacaaIYaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSdGaaiilaiaadohadaWg aaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaaki aawIcacaGLPaaaaiaawIa7aiaadohadaWgaaWcbaGaaGymamaabmaa baGaaGymaaGaayjkaiaawMcaaaqabaaakiaawUfacaGLDbaaaiaawU hacaGL9baaaaa@64FF@
+E{ Var[ E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] ( A.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaaCjaVlabgUcaRiaadweadaGabaqaaiaabAfacaqGHbGaaeOCamaa dmqabaWaaqGabeaacaWGfbWaaeWabeaadaaeqbqabSqaaiaadMgacq GHiiIZcaWGvbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGa ayzkaaaabeaaaeqaniabggHiLdGccaWGdbWaaSbaaSqaaiaadMgaae qaaGqadOGaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaakmaaeeaabaGaam4CamaaBaaaleaacaaIYaWaae WaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSdGaaiilaiaa dohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaa qabaaakiaawIcacaGLPaaaaiaawIa7aiaadohadaWgaaWcbaGaaGym amaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawUfacaGLDb aaaiaawUhaaiaaxMaadaqadaqaaabaaaaaaaaapeGaamyqaiaac6ca caaIYaaapaGaayjkaiaawMcaaaaa@6A1F@
+E[ Var( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba WaaiGaaeaacqGHRaWkcaWGfbWaamWabeaadaabceqaaiaabAfacaqG HbGaaeOCamaabmqabaWaaabuaeqaleaacaWGPbGaeyicI4Saamyvam aaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaa beqdcqGHris5aOGaam4qamaaBaaaleaacaWGPbaabeaaieWakiaa=L eadaWgaaWcbaGaamyAamaabmaabaGaaGymaaGaayjkaiaawMcaaaqa baGcdaabbaqaaiaadohadaWgaaWcbaGaaGOmamaabmaabaGaaGymaa GaayjkaiaawMcaaaqabaaakiaawEa7aiaacYcacaWGZbWaaSbaaSqa aiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGLOa GaayzkaaaacaGLiWoacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaa igdaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaaacaGL9baaaa a@6342@
= N 2 D ( 1 )1 + N 2 D ( 1 )2 + N 2 D ( 1 )3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqqFfpeea0x e9LqFf0xe9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9 q8qi0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeyypa0JaamOtamaaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWc baWaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaaGymaaqabaGccqGHRa WkcaWGobWaaWbaaSqabeaacaaIYaaaaOGaamiramaaBaaaleaadaqa daqaaiaaigdaaiaawIcacaGLPaaacaaIYaaabeaakiabgUcaRiaad6 eadaahaaWcbeqaaiaaikdaaaGccaWGebWaaSbaaSqaamaabmaabaGa aGymaaGaayjkaiaawMcaaiaaiodaaeqaaOGaaiOlaaaa@4FEE@

Let us do each of the terms in (A.2) in turn, beginning with N 2 D 1( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaGaaGymamaabmaa baGaaGymaaGaayjkaiaawMcaaaqabaGccaGGSaaaaa@3FBC@  we have:

E( i U 1( 1 ) B i W i Diag{ e i } I i( 1 ) | s 2( 1 ) , s 1( 1 ) )= i U 1( 1 ) B i W i Diag{ e i } I i( 1 ) ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aabmqabaWaaabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaabaGa aGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHri s5aOGaamOqamaaBaaaleaacaWGPbaabeaakiaadEfadaWgaaWcbaGa amyAaaqabaGccaqGebGaaeyAaiaabggacaqGNbWaaiWabeaaieWaca WFLbWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaGaa8xsamaa BaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaakm aaeeaabaGaam4CamaaBaaaleaacaaIYaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaOGaay5bSdGaaiilaiaadohadaWgaaWcbaGaaG ymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawIcacaGL PaaacqGH9aqpdaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWaaSbaae aacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaeqaniab ggHiLdGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaam4vamaaBaaale aacaWGPbaabeaakiaabseacaqGPbGaaeyyaiaabEgadaGadeqaaiaa =vgadaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baacaWFjbWaa0 baaSqaaiaadMgadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeaadaqa daqaaiaaigdaaiaawIcacaGLPaaaaaGccaGGSaaaaa@7B2A@

where I i( 1 ) ( 1 ) = ( I i ( s 1( 1 ) ), I i ( s 2( 1 ) ) I i ( s 1( 1 ) ), π i3| s 2( 1 ) I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaDaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa baWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeyypa0ZaaeWabe aacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSba aSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGcca GLOaGaayzkaaGaaiilaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqa deqaaiaadohadaWgaaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkai aawMcaaaqabaaakiaawIcacaGLPaaacaWGjbWaaSbaaSqaaiaadMga aeqaaOWaaeWabeaacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaig daaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaaGilaiabec8a WnaaBaaaleaacaWGPbGaaG4mamaaeeqabaGaam4CamaaBaaabaGaaG OmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaacaGLhWoaaeqa aOGaamysamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam4CamaaBa aaleaacaaIYaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGa ayjkaiaawMcaaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaai aadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMca aaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaO Gamai4gkdiIcaacaGGSaaaaa@772B@  then

E[ E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ]= i U 1( 1 ) C i I i( 1 ) ( 2 ) = i U 1( 1 ) B i I i ( 1 ) ( U )Diag{ I i( 1 ) ( 2 ) } e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aadmqabaWaaqGabeaacaWGfbWaaeWabeaadaaeqbqabSqaaiaadMga cqGHiiIZcaWGvbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOa GaayzkaaaabeaaaeqaniabggHiLdGccaWGdbWaaSbaaSqaaiaadMga aeqaaGqadOGaa8xsamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaaaca GLOaGaayzkaaaabeaakmaaeeaabaGaam4CamaaBaaaleaacaaIYaWa aeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSdGaaiilai aadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMca aaqabaaakiaawIcacaGLPaaaaiaawIa7aiaadohadaWgaaWcbaGaaG ymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawUfacaGL DbaacqGH9aqpcaWLa8+aaabuaeqaleaacaWGPbGaeyicI4Saamyvam aaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaa beqdcqGHris5aOGaam4qamaaBaaaleaacaWGPbaabeaakiaa=Leada qhaaWcbaGaamyAamaabmaabaGaaGymaaGaayjkaiaawMcaaaqaamaa bmaabaGaaGOmaaGaayjkaiaawMcaaaaakiabg2da9maaqafabeWcba GaamyAaiabgIGiolaadwfadaWgaaqaaiaaigdadaqadaqaaiaaigda aiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadkeadaWgaaWcba GaamyAaaqabaGccaqGjbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaa igdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaabwfaaiaawIcacaGLPa aacaqGebGaaeyAaiaabggacaqGNbWaaiWaaeaacaWFjbWaa0baaSqa aiaadMgadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeaadaqadaqaai aaikdaaiaawIcacaGLPaaaaaaakiaawUhacaGL9baacaWFLbWaaSba aSqaaiaadMgaaeqaaaaa@9157@

= i U 1( 1 ) F i [ I i ( s 1( 1 ) ) π i1 , I i ( s 1( 1 ) ) π i1 , I i ( s 1( 1 ) ) π i1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVpaaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaaiaa igdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIu oakiaadAeadaWgaaWcbaGaamyAaaqabaGcdaWadaqaamaalaaabaGa amysamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam4CamaaBaaale aacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaayjk aiaawMcaaaqaaiabec8aWnaaBaaaleaacaWGPbGaaGymaaqabaaaaO GaaiilamaalaaabaGaamysamaaBaaaleaacaWGPbaabeaakmaabmqa baGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaay zkaaaabeaaaOGaayjkaiaawMcaaaqaaiabec8aWnaaBaaaleaacaWG PbGaaGymaaqabaaaaOGaaiilamaalaaabaGaamysamaaBaaaleaaca WGPbaabeaakmaabmqabaGaam4CamaaBaaaleaacaaIXaWaaeWaaeaa caaIXaaacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMcaaaqaaiabec 8aWnaaBaaaleaacaWGPbGaaGymaaqabaaaaaGccaGLBbGaayzxaaWa aWbaaSqabeaakiadacUHYaIOaaaaaa@6ECF@

= i U 1( 1 ) F i 1 3 I i ( s 1( 1 ) ) π i1 = i U 1( 1 ) w i1( 1 ) F i( 1 ) I i ( s 1( 1 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVpaaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaaiaa igdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIu oakiaadAeadaWgaaWcbaGaamyAaaqabaGccaWHXaWaaSbaaSqaaiaa iodaaeqaaOWaaSaaaeaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaae WabeaacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIca caGLPaaaaeqaaaGccaGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaai aadMgacaaIXaaabeaaaaGccqGH9aqpdaaeqbqabSqaaiaadMgacqGH iiIZcaWGvbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaay zkaaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaI XaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaieWakiaa=zeada WgaaWcbaGaamyAamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaGc caWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSbaaS qaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGL OaGaayzkaaGaaGilaaaa@6EBA@

where I i( 1 ) ( 2 ) = ( I i ( s 1( 1 ) ), π i2| s 1( 1 ) I i ( s 1( 1 ) ), π i3| s 2( 1 ) π i2| s 1( 1 ) I i ( s 1( 1 ) ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaDaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa baWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaOGaeyypa0ZaaeWabe aacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSba aSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGcca GLOaGaayzkaaGaaGilaiabec8aWnaaBaaaleaacaWGPbGaaGOmamaa eeqabaGaam4CamaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkai aawMcaaaqabaaacaGLhWoaaeqaaOGaamysamaaBaaaleaacaWGPbaa beaakmaabmqabaGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXa aacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMcaaiaaiYcacqaHapaC daWgaaWcbaGaamyAaiaaiodadaabbeqaaiaadohadaWgaaqaaiaaik dadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGaay5bSdaabeaa kiabec8aWnaaBaaaleaacaWGPbGaaGOmamaaeeqabaGaam4CamaaBa aabaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaacaGL hWoaaeqaaOGaamysamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam 4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa beaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGccW aGGBOmGikaaiaacYcaaaa@7A72@  
I i ( 1 ) ( U )=diag[ I i ( U 1 )/ π i1 , I i ( U 2 )/ ( π i1 π i2| s 1( 1 ) ) , I i ( U 3 )/ ( π i1 π i2| s 1( 1 ) π i3| s 2( 1 ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeysam aaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa aOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaGaeyypa0JaaeizaiaabM gacaqGHbGaae4zamaadmqabaWaaSGbaeaacaWGjbWaaSbaaSqaaiaa dMgaaeqaaOWaaeWaaeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadMgacaaIXaaabeaa aaGccaGGSaWaaSGbaeaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaae WabeaacaWGvbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaa baWaaeWabeaacqaHapaCdaWgaaWcbaGaamyAaiaaigdaaeqaaOGaeq iWda3aaSbaaSqaaiaadMgacaaIYaWaaqqabeaacaWGZbWaaSbaaeaa caaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaiaawEa7aa qabaaakiaawIcacaGLPaaaaaGaaiilamaalyaabaGaamysamaaBaaa leaacaWGPbaabeaakmaabmqabaGaamyvamaaBaaaleaacaaIZaaabe aaaOGaayjkaiaawMcaaaqaamaabmqabaGaeqiWda3aaSbaaSqaaiaa dMgacaaIXaaabeaakiabec8aWnaaBaaaleaacaWGPbGaaGOmamaaee qabaGaam4CamaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkaiaa wMcaaaqabaaacaGLhWoaaeqaaOGaeqiWda3aaSbaaSqaaiaadMgaca aIZaWaaqqabeaacaWGZbWaaSbaaeaacaaIYaWaaeWaaeaacaaIXaaa caGLOaGaayzkaaaabeaaaiaawEa7aaqabaaakiaawIcacaGLPaaaaa aacaGLBbGaayzxaaGaaiilaaaa@8269@
  F i = B i I i ( U )Diag{ e i }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOram aaBaaaleaacaWGPbaabeaakiabg2da9iaadkeadaWgaaWcbaGaamyA aaqabaGccaqGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaqGvb aacaGLOaGaayzkaaGaaeiraiaabMgacaqGHbGaae4zamaacmaabaac bmGaa8xzamaaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haaiaacY caaaa@4AF1@  and 1 3 = ( 1,1,1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCymam aaBaaaleaacaaIZaaabeaakiabg2da9maabmaabaGaaGymaiaaiYca caaIXaGaaGilaiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaOGama i4gkdiIcaacaGG7aaaaa@44FF@  this implies that N 2 D ( 1 )1 =Var[ i U 1( 1 ) w i1 B i I i ( U ) e i I i ( s 1( 1 ) ) ]=Var[ i s 1( 1 ) w i1 F i( 1 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaGaaGymaaqabaGccqGH9aqpcaqGwbGaaeyyai aabkhadaWadeqaamaaqababeWcbaGaamyAaiabgIGiolaadwfadaWg aaqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0 GaeyyeIuoakiaadEhadaWgaaWcbaGaamyAaiaaigdaaeqaaOGaamOq amaaBaaaleaacaWGPbaabeaakiaabMeadaWgaaWcbaGaamyAaaqaba GcdaqadaqaaiaabwfaaiaawIcacaGLPaaaieWacaWFLbWaaSbaaSqa aiaadMgaaeqaaOGaamysamaaBaaaleaacaWGPbaabeaakmaabmqaba Gaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiabg2da9iaabA facaqGHbGaaeOCamaadmqabaWaaabeaeqaleaacaWGPbGaeyicI4Sa am4CamaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaa qabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWGPbGaaGymaaqa baGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaaiaaigdaaiaawIcaca GLPaaaaeqaaaGccaGLBbGaayzxaaGaaiOlaaaa@75C6@

For N 2 D ( 1 )2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaGaaGOmaaqabaGccaGGSaaaaa@3FBD@  we have:

E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) ) = i U 1( 1 ) B i W i Diag{ e i } I i( 1 ) ( 1 ) = i U 1( 1 ) B i I i ( 1 ) ( U )Diag{ I i( 1 ) ( 3 ) } e i = i U 1( 1 ) B i I i ( U )Diag{ e i } [ I i ( s 1( 1 ) ) π i1 , I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) π i1 π i2| s 1( 1 ) , I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) π i1 π i2| s 1( 1 ) ] = i s 1( 1 ) w i2 B i I i ( U )Diag{ e i } [ π i2| s 1( 1 ) , I i ( s 2( 1 ) ), I i ( s 2( 1 ) ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaaca WGfbWaaeWabeaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWaaSba aeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaeqani abggHiLdGccaWGdbWaaSbaaSqaaiaadMgaaeqaaGqadOGaa8xsamaa BaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaakm aaeeaabaGaam4CamaaBaaaleaacaaIYaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaOGaay5bSdGaaiilaiaadohadaWgaaWcbaGaaG ymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawIcacaGL PaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abg2da9maaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaaiaa igdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIu oakiaadkeadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaaiaa dMgaaeqaaOGaaeiraiaabMgacaqGHbGaae4zamaacmqabaGaa8xzam aaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haaiaa=LeadaqhaaWc baGaamyAamaabmaabaGaaGymaaGaayjkaiaawMcaaaqaamaabmaaba GaaGymaaGaayjkaiaawMcaaaaakiabg2da9maaqafabeWcbaGaamyA aiabgIGiolaadwfadaWgaaqaaiaaigdadaqadaqaaiaaigdaaiaawI cacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadkeadaWgaaWcbaGaamyA aaqabaGccaqGjbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdaai aawIcacaGLPaaaaaGcdaqadaqaaiaabwfaaiaawIcacaGLPaaacaqG ebGaaeyAaiaabggacaqGNbWaaiWaaeaacaWFjbWaa0baaSqaaiaadM gadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeaadaqadaqaaiaaioda aiaawIcacaGLPaaaaaaakiaawUhacaGL9baacaWFLbWaaSbaaSqaai aadMgaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpdaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWaaS baaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaeqa niabggHiLdGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaaeysamaaBa aaleaacaWGPbaabeaakmaabmaabaGaaeyvaaGaayjkaiaawMcaaiaa bseacaqGPbGaaeyyaiaabEgadaGadeqaaiaa=vgadaWgaaWcbaGaam yAaaqabaaakiaawUhacaGL9baadaWabeqaamaalaaabaGaamysamaa BaaaleaacaWGPbaabeaakmaabmqabaGaam4CamaaBaaaleaacaaIXa WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMca aaqaaiabec8aWnaaBaaaleaacaWGPbGaaGymaaqabaaaaOGaaGilam aalaaabaGaamysamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam4C amaaBaaaleaacaaIYaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabe aaaOGaayjkaiaawMcaaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqa deqaaiaadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkai aawMcaaaqabaaakiaawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaGa amyAaiaaigdaaeqaaOGaeqiWda3aaSbaaSqaaiaadMgacaaIYaWaaq qabeaacaWGZbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGa ayzkaaaabeaaaiaawEa7aaqabaaaaOGaaGilaaGaay5waaWaamGaae aadaWcaaqaaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaa dohadaWgaaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkaiaawMcaaa qabaaakiaawIcacaGLPaaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWa aeWabeaacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawI cacaGLPaaaaeqaaaGccaGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqa aiaadMgacaaIXaaabeaakiabec8aWnaaBaaaleaacaWGPbGaaGOmam aaeeqabaGaam4CamaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjk aiaawMcaaaqabaaacaGLhWoaaeqaaaaaaOGaayzxaaWaaWbaaSqabe aakiadacUHYaIOaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGH9aqpdaaeqbqabSqaaiaadMgacqGHiiIZcaWGZb WaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaa aeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaIYaaabeaaki aadkeadaWgaaWcbaGaamyAaaqabaGccaqGjbWaaSbaaSqaaiaadMga aeqaaOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaGaaeiraiaabMgaca qGHbGaae4zamaacmqabaGaa8xzamaaBaaaleaacaWGPbaabeaaaOGa ay5Eaiaaw2haamaadmqabaGaeqiWda3aaSbaaSqaaiaadMgacaaIYa WaaqqabeaacaWGZbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaiaawEa7aaqabaGccaaISaGaamysamaaBaaale aacaWGPbaabeaakmaabmqabaGaam4CamaaBaaaleaacaaIYaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMcaaiaaiY cacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSba aSqaaiaaikdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGcca GLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaakiadacUHYaIO aaGaaGilaaaaaa@97CE@

where I i( 1 ) ( 3 ) = ( I i ( s 1( 1 ) ), I i ( s 2( 1 ) ) I i ( s 1( 1 ) ), π i3| s 2( 1 ) I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaDaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa baWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaOGaeyypa0ZaaeWabe aacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaSba aSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGcca GLOaGaayzkaaGaaGilaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqa deqaaiaadohadaWgaaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkai aawMcaaaqabaaakiaawIcacaGLPaaacaWGjbWaaSbaaSqaaiaadMga aeqaaOWaaeWabeaacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaig daaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaaGilaiabec8a WnaaBaaaleaacaWGPbGaaG4mamaaeeqabaGaam4CamaaBaaabaGaaG OmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaacaGLhWoaaeqa aOGaamysamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam4CamaaBa aaleaacaaIYaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGa ayjkaiaawMcaaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaai aadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMca aaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaO Gamai4gkdiIcaacaGG7aaaaa@7742@  then,

Var[ E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] =Var[ i s 1( 1 ) w i2 B i I i ( U )Diag{ e i } I i( 1 ) ( 4 ) | s 1( 1 ) ] =Var[ i s 1( 1 ) w i2 B i I i ( U )Diag{ e i } [ 0, I i ( s 2( 1 ) ), I i ( s 2( 1 ) ) ] | s 1( 1 ) ] =Var[ i s 1( 1 ) w i2 B i I i ( U )Diag{ e i } I i ( s 2( 1 ) ) 1 02 | s 1( 1 ) ] =Var[ i s 2( 1 ) w i2 B i I i ( U ) e i( 23 ) | s 1( 1 ) ],    (A.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rq1qFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaaca qGwbGaaeyyaiaabkhadaWadeqaamaaeiqabaGaamyramaabmqabaWa aabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaabaGaaGymamaabm aabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4q amaaBaaaleaacaWGPbaabeaaieWakiaa=LeadaWgaaWcbaGaamyAam aabmaabaGaaGymaaGaayjkaiaawMcaaaqabaGcdaabbeqaaiaadoha daWgaaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqaba aakiaawEa7aiaaiYcacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaa igdaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaaacaGLiWoaca WGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaa aeqaaaGccaGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaabAfaca qGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWGPbGaeyicI4Saam4C amaaBaaabaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqaba aabeqdcqGHris5aOGaam4DamaaBaaaleaacaWGPbGaaGOmaaqabaGc caWGcbWaaSbaaSqaaiaadMgaaeqaaOGaaeysamaaBaaaleaacaWGPb aabeaakmaabmaabaGaaeyvaaGaayjkaiaawMcaaiaabseacaqGPbGa aeyyaiaabEgadaGadaqaaiaa=vgadaWgaaWcbaGaamyAaaqabaaaki aawUhacaGL9baacaWFjbWaa0baaSqaaiaadMgadaqadaqaaiaaigda aiaawIcacaGLPaaaaeaadaqadaqaaiaaisdaaiaawIcacaGLPaaaaa GcdaabbaqaaiaadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGa ayjkaiaawMcaaaqabaaakiaawEa7aaGaay5waiaaw2faaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7cqGH9aqpcaqGwbGaaeyyaiaabkhadaWadeqaamaaqafabeWc baGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdadaqadaqaaiaaig daaiaawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaamyAaiaaikdaaeqaaOGaamOqamaaBaaaleaacaWGPbaabeaaki aabMeadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaabwfaaiaawIca caGLPaaacaqGebGaaeyAaiaabggacaqGNbWaaiWaaeaacaWFLbWaaS baaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaWaamWaaeaacaaIWaGa aGilaiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadohada WgaaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaa kiaawIcacaGLPaaacaaISaGaamysamaaBaaaleaacaWGPbaabeaakm aabmaabaGaam4CamaaBaaaleaacaaIYaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaaCa aaleqabaGccWaGGBOmGikaamaaeeaabaGaam4CamaaBaaaleaacaaI XaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSdaaca GLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaabAfacaqGHbGaaeOC amaadmqabaWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaaba GaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGH ris5aOGaam4DamaaBaaaleaacaWGPbGaaGOmaaqabaGccaWGcbWaaS baaSqaaiaadMgaaeqaaOGaaeysamaaBaaaleaacaWGPbaabeaakmaa bmaabaGaaeyvaaGaayjkaiaawMcaaiaabseacaqGPbGaaeyyaiaabE gadaGadaqaaiaa=vgadaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL 9baacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWGZbWaaS baaSqaaiaaikdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGc caGLOaGaayzkaaGaaCymamaaBaaaleaacaaIWaGaaGOmaaqabaGcda abbaqaaiaadohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjk aiaawMcaaaqabaaakiaawEa7aaGaay5waiaaw2faaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGH9aqpcaqGwbGaaeyyaiaabkhadaWadeqaamaaqafabeWcbaGa amyAaiabgIGiolaadohadaWgaaqaaiaaikdadaqadaqaaiaaigdaai aawIcacaGLPaaaaeqaaaqab0GaeyyeIuoakiaadEhadaWgaaWcbaGa amyAaiaaikdaaeqaaOGaamOqamaaBaaaleaacaWGPbaabeaakiaabM eadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaabwfaaiaawIcacaGL PaaacaWFLbWaaSbaaSqaaiaadMgadaqadaqaaiaaikdacqWIMaYsca aIZaaacaGLOaGaayzkaaaabeaakmaaeeaabaGaam4CamaaBaaaleaa caaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaay5bSd aacaGLBbGaayzxaaGaaGilaaaaaa@EB52@

where I i( 1 ) ( 4 ) = [ π i2| s 1( 1 ) , I i ( s 2( 1 ) ), I i ( s 2( 1 ) ) ] , 1 02 = ( 0,1,1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xsamaaDaaaleaacaWGPbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa baWaaeWaaeaacaaI0aaacaGLOaGaayzkaaaaaOGaeyypa0ZaamWabe aacqaHapaCdaWgaaWcbaGaamyAaiaaikdadaabbeqaaiaadohadaWg aaqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGaay 5bSdaabeaakiaaiYcacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWa beaacaWGZbWaaSbaaSqaaiaaikdadaqadaqaaiaaigdaaiaawIcaca GLPaaaaeqaaaGccaGLOaGaayzkaaGaaGilaiaadMeadaWgaaWcbaGa amyAaaqabaGcdaqadeqaaiaadohadaWgaaWcbaGaaGOmamaabmaaba GaaGymaaGaayjkaiaawMcaaaqabaaakiaawIcacaGLPaaaaiaawUfa caGLDbaadaahaaWcbeqaaOGamai4gkdiIcaacaGGSaGaaCymamaaBa aaleaacaaIWaGaaGOmaaqabaGccqGH9aqpdaqadaqaaiaaicdacaaI SaGaaGymaiaaiYcacaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaaki adacUHYaIOaaGaaiilaaaa@6D00@  and line (A.3) is because, conditional on s 1( 1 ) , π i2| s 1( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cam aaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaa kiaacYcacqaHapaCdaWgaaWcbaGaamyAaiaaikdadaabbeqaaiaado hadaWgaaqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqa aaGaay5bSdaabeaaaaa@4765@  is constant and therefore the variance of that component is zero. This means that:

N 2 D ( 1 )2 =E{ Var[ E( i U 1( 1 ) C i I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaGaaGOmaaqabaGccqGH9aqpcaWLa8Uaamyram aacmqabaGaaeOvaiaabggacaqGYbWaamWabeaadaabceqaaiaadwea daqadeqaamaaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaai aaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0Gaeyye IuoakiaadoeadaWgaaWcbaGaamyAaaqabaacbmGccaWFjbWaaSbaaS qaaiaadMgadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaOWaaqqa aeaacaWGZbWaaSbaaSqaaiaaikdadaqadaqaaiaaigdaaiaawIcaca GLPaaaaeqaaaGccaGLhWoacaaISaGaam4CamaaBaaaleaacaaIXaWa aeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaaaOGaayjkaiaawMcaaa GaayjcSdGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaabeaaaOGaay5waiaaw2faaaGaay5Eaiaaw2haaaaa@6ABD@
=E{ Var[ i s 2( 1 ) w i2 F i( 2 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaadweadaGadeqaaiaabAfacaqGHbGaaeOCamaadmqabaWa aabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabm aabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4D amaaBaaaleaacaWGPbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaai aadMgadaqadaqaaiaaikdaaiaawIcacaGLPaaaaeqaaOWaaqqaaeaa caWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPa aaaeqaaaGccaGLhWoaaiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@5909@
=Var[ i s 2( 1 ) w i2 F i( 2 ) ]Var{ E[ i s 2( 1 ) w i2 F i( 2 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaikdaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaeyOeI0Ia aeOvaiaabggacaqGYbWaaiWabeaacaWGfbWaamWabeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaS qaaiaadMgacaaIYaaabeaakiaa=zeadaWgaaWcbaGaamyAamaabmaa baGaaGOmaaGaayjkaiaawMcaaaqabaGcdaabbaqaaiaadohadaWgaa WcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaa wEa7aaGaay5waiaaw2faaaGaay5Eaiaaw2haaaaa@6E60@
=Var[ i s 2( 1 ) w i2 F i( 2 ) ]Var{ E[ i s 2( 1 ) w i2| s 1( 1 ) w i1 F i( 2 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaikdaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaeyOeI0Ia aeOvaiaabggacaqGYbWaaiWabeaacaWGfbWaamWabeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaS qaaiaadMgacaaIYaWaaqqabeaacaWGZbWaaSbaaeaacaaIXaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaabeaaaiaawEa7aaqabaGccaWG3b WaaSbaaSqaaiaadMgacaaIXaaabeaakiaa=zeadaWgaaWcbaGaamyA amaabmaabaGaaGOmaaGaayjkaiaawMcaaaqabaGcdaabbaqaaiaado hadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqa baaakiaawEa7aaGaay5waiaaw2faaaGaay5Eaiaaw2haaaaa@76E8@
=Var[ i s 2( 1 ) w i2 F i( 2 ) ]Var{ i s 1( 1 ) w i1 F i }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaikdaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaeyOeI0Ia aeOvaiaabggacaqGYbWaaiWabeaadaaeqbqabSqaaiaadMgacqGHii IZcaWGZbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaa=zeadaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baa caaIUaaaaa@6453@

We can, similarly, show that:

N 2 D ( 1 )3 =E{ E[ Var( i U 1( 1 ) B i W i Diag{ e i } I i( 1 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaGaaG4maaqabaGccqGH9aqpcaWLa8Uaamyram aacmqabaGaamyramaadmqabaWaaqGabeaacaqGwbGaaeyyaiaabkha daqadeqaamaaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaai aaigdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqab0Gaeyye IuoakiaadkeadaWgaaWcbaGaamyAaaqabaGccaWGxbWaaSbaaSqaai aadMgaaeqaaOGaaeiraiaabMgacaqGHbGaae4zamaacmaabaacbmGa a8xzamaaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haaiaa=Leada WgaaWcbaGaamyAamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaGc daabbaqaaiaadohadaWgaaWcbaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaakiaawEa7aiaaiYcacaWGZbWaaSbaaSqaaiaa igdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaay zkaaaacaGLiWoacaWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigda aiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaaacaGL7bGaayzFaa aaaa@7479@
=E{ E[ Var( i s 3( 1 ) w i3 I i ( s 2( 1 ) ) I i ( s 1( 1 ) ) F i( 3 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaadweadaGadeqaaiaadweadaWadeqaamaaeiqabaGaaeOv aiaabggacaqGYbWaaeWabeaadaaeqbqabSqaaiaadMgacqGHiiIZca WGZbWaaSbaaeaacaaIZaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa beaaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaIZaaabe aakiaadMeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadohadaWg aaWcbaGaaGOmamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaaki aawIcacaGLPaaacaWGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaa caWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPa aaaeqaaaGccaGLOaGaayzkaaacbmGaa8NramaaBaaaleaacaWGPbWa aeWaaeaacaaIZaaacaGLOaGaayzkaaaabeaakmaaeeaabaGaam4Cam aaBaaaleaacaaIYaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabeaa aOGaay5bSdGaaiilaiaadohadaWgaaWcbaGaaGymamaabmaabaGaaG ymaaGaayjkaiaawMcaaaqabaaakiaawIcacaGLPaaaaiaawIa7aiaa dohadaWgaaWcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaa qabaaakiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@7555@
=E{ Var[ i s 3( 1 ) w i3 I i ( s 2( 1 ) ) F i( 3 ) | s 1( 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaadweadaGabeqaaiaabAfacaqGHbGaaeOCamaadmqabaWa aabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG4mamaabm aabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4D amaaBaaaleaacaWGPbGaaG4maaqabaGccaWGjbWaaSbaaSqaaiaadM gaaeqaaOWaaeWabeaacaWGZbWaaSbaaSqaaiaaikdadaqadaqaaiaa igdaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaacbmGaa8Nram aaBaaaleaacaWGPbWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaabeaa kmaaeeaabaGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXaaaca GLOaGaayzkaaaabeaaaOGaay5bSdaacaGLBbGaayzxaaaacaGL7baa aaa@5F9F@
Var[ E( i s 3( 1 ) w i3 I i ( s 2( 1 ) ) F i( 3 ) | s 2( 1 ) , s 1( 1 ) )| s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaiGabeaacqGHsi slcaqGwbGaaeyyaiaabkhadaWadeqaamaaeiqabaGaamyramaabmqa baWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG4mam aabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGa am4DamaaBaaaleaacaWGPbGaaG4maaqabaGccaWGjbWaaSbaaSqaai aadMgaaeqaaOWaaeWabeaacaWGZbWaaSbaaSqaaiaaikdadaqadaqa aiaaigdaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaacbmGaa8 NramaaBaaaleaacaWGPbWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaa beaakmaaeeaabaGaam4CamaaBaaaleaacaaIYaWaaeWaaeaacaaIXa aacaGLOaGaayzkaaaabeaaaOGaay5bSdGaaGilaiaadohadaWgaaWc baGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaawI cacaGLPaaaaiaawIa7aiaadohadaWgaaWcbaGaaGymamaabmaabaGa aGymaaGaayjkaiaawMcaaaqabaaakiaawUfacaGLDbaaaiaaw2haaa aa@8158@
=E{ Var[ i s 3( 1 ) w i3 F i( 3 ) | s 1( 1 ) ]Var[ i s 2( 1 ) w i2 F i( 3 ) | s 1( 1 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaadweadaGadeqaaiaabAfacaqGHbGaaeOCamaadmqabaWa aabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG4mamaabm aabaGaaGymaaGaayjkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4D amaaBaaaleaacaWGPbGaaG4maaqabaacbmGccaWFgbWaaSbaaSqaai aadMgadaqadaqaaiaaiodaaiaawIcacaGLPaaaaeqaaOWaaqqaaeaa caWGZbWaaSbaaSqaaiaaigdadaqadaqaaiaaigdaaiaawIcacaGLPa aaaeqaaaGccaGLhWoaaiaawUfacaGLDbaacqGHsislcaqGwbGaaeyy aiaabkhadaWadeqaamaaqafabeWcbaGaamyAaiabgIGiolaadohada WgaaqaaiaaikdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaaqa b0GaeyyeIuoakiaadEhadaWgaaWcbaGaamyAaiaaikdaaeqaaOGaa8 NramaaBaaaleaacaWGPbWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaa beaakmaaeeaabaGaam4CamaaBaaaleaacaaIXaWaaeWaaeaacaaIXa aacaGLOaGaayzkaaaabeaaaOGaay5bSdaacaGLBbGaayzxaaaacaGL 7bGaayzFaaaaaa@7425@
=Var[ i s 3( 1 ) w i3 F i( 3 ) ]Var[ E( i s 3( 1 ) w i3 F i( 3 ) | s 1( 1 ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaG4mamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaG4maaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaiodaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaeyOeI0Ia aeOvaiaabggacaqGYbWaamWabeaacaWGfbWaaeWabeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIZaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaS qaaiaadMgacaaIZaaabeaakiaa=zeadaWgaaWcbaGaamyAamaabmaa baGaaG4maaGaayjkaiaawMcaaaqabaGcdaabbaqaaiaadohadaWgaa WcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaa wEa7aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6DBE@
Var[ i s 2( 1 ) w i2 F i( 3 ) ]+Var[ E( i s 2( 1 ) w i2 F i( 3 ) | s 1( 1 ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCjaVl abgkHiTiaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaiodaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaey4kaSIa aeOvaiaabggacaqGYbWaamWabeaacaWGfbWaaeWabeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaS qaaiaadMgacaaIYaaabeaakiaa=zeadaWgaaWcbaGaamyAamaabmaa baGaaG4maaGaayjkaiaawMcaaaqabaGcdaabbaqaaiaadohadaWgaa WcbaGaaGymamaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaaakiaa wEa7aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6D96@
=Var[ i s 3( 1 ) w i3 F i( 3 ) ]Var[ i s 1( 1 ) w i1 F i( 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0 JaaCjaVlaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaG4mamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaG4maaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaiodaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaeyOeI0Ia aeOvaiaabggacaqGYbWaamWabeaadaaeqbqabSqaaiaadMgacqGHii IZcaWGZbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaa=zeadaWgaaWcbaGaamyAamaabmaabaGaaG4maaGaayjk aiaawMcaaaqabaaakiaawUfacaGLDbaaaaa@65A5@
Var[ i s 2( 1 ) w i2 F i( 3 ) ]+Var[ i s 1( 1 ) w i1 F i( 3 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCjaVl abgkHiTiaabAfacaqGHbGaaeOCamaadmqabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmamaabmaabaGaaGymaaGaay jkaiaawMcaaaqabaaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaacbmGccaWFgbWaaSbaaSqaaiaadMgadaqadaqaai aaiodaaiaawIcacaGLPaaaaeqaaaGccaGLBbGaayzxaaGaey4kaSIa aeOvaiaabggacaqGYbWaamWabeaadaaeqbqabSqaaiaadMgacqGHii IZcaWGZbWaaSbaaeaacaaIXaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaabeaaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaa=zeadaWgaaWcbaGaamyAamaabmaabaGaaG4maaGaayjk aiaawMcaaaqabaaakiaawUfacaGLDbaacaaIUaaaaa@6637@

With similar calculations, we obtain the corresponding expressions for N 2 D ( 2 ) , N 2 D ( 2 )2 , N 2 D ( 2 )3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI YaaacaGLOaGaayzkaaaabeaakiaacYcacaWGobWaaWbaaSqabeaaca aIYaaaaOGaamiramaaBaaaleaadaqadaqaaiaaikdaaiaawIcacaGL PaaacaaIYaaabeaakiaacYcacaWGobWaaWbaaSqabeaacaaIYaaaaO GaamiramaaBaaaleaadaqadaqaaiaaikdaaiaawIcacaGLPaaacaaI ZaaabeaakiaacYcaaaa@4BEF@  and N 2 D ( 3 ) = N 2 D ( 3 )3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaaGOmaaaakiaadseadaWgaaWcbaWaaeWaaeaacaaI ZaaacaGLOaGaayzkaaaabeaakiabg2da9iaad6eadaahaaWcbeqaai aaikdaaaGccaWGebWaaSbaaSqaamaabmaabaGaaG4maaGaayjkaiaa wMcaaiaaiodaaeqaaOGaaiOlaaaa@45D3@

Finally, we sketch the development of an expression for Var p [ Ψ s ( β N ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOvai aabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaamWaaeaacqqHOoqw daWgaaWcbaGaam4CaaqabaGcdaqadaqaaGGabiab=j7aInaaBaaale aacaWGobaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@460D@  without assuming independence among cohorts. First, notice that Ψ s ( β N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiQdK 1aaSbaaSqaaiaadohaaeqaaOWaaeWaaeaaiiqacqWFYoGydaWgaaWc baGaamOtaaqabaaakiaawIcacaGLPaaaaaa@403E@  can be written as:

i s 1 B i I i ( U ) [ w i1 O w i2 O w i3 ][ e i1 e i2 e i3 ]+ i s 2 B i I i ( U ) [ 0 O w i2 O w i3 ][ 0 e i2 e i3 ] i s 1 B i I i ( U ) [ 0 O w i2 O w i3 ][ 0 e i2 e i3 ] + i s 3 B i I i ( U ) [ 0 O 0 O w i3 ][ 0 0 e i3 ] i s 2 B i I i ( U ) [ 0 O 0 O w i3 ][ 0 0 e i3 ] = i s 1 w i1 B i I i ( U ) e i i s 1 w i1 B i I i ( U ) [ 0 e i2 e i3 ]+ i s 2 w i2 B i I i ( U ) [ 0 e i2 e i3 ] i s 2 w i2 B i I i ( U ) [ 0 0 e i3 ] + i s 3 w i3 B i I i ( U ) [ 0 0 e i3 ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaada aeqbqaaiaadkeadaWgaaWcbaGaamyAaaqabaGccaqGjbWaaSbaaSqa aiaadMgaaeqaaOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaaaleaaca WGPbGaeyicI4Saam4CamaaBaaabaGaaGymaaqabaaabeqdcqGHris5 aOWaamWaaeaaluaabeqadmaaaeaacaWG3bWaaSbaaeaacaWGPbGaaG ymaaqabaaabaaabaGaae4taaqaaaqaaiaadEhadaWgaaadbaGaamyA aiaaikdaaeqaaaWcbaaabaGaae4taaqaaaqaaiaadEhadaWgaaadba GaamyAaiaaiodaaeqaaaaaaOGaay5waiaaw2faamaadmaabaWcfaqa beWabaaabaGaamyzamaaBaaabaGaamyAaiaaigdaaeqaaaqaaiaadw gadaWgaaadbaGaamyAaiaaikdaaeqaaaWcbaGaamyzamaaBaaameaa caWGPbGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaey4kaSYaaabuae aacaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaaeysamaaBaaaleaacaWG PbaabeaakmaabmaabaGaaeyvaaGaayjkaiaawMcaaaWcbaGaamyAai abgIGiolaadohadaWgaaqaaiaaikdaaeqaaaqab0GaeyyeIuoakmaa dmaabaWcfaqabeWadaaabaGaaGimaaqaaaqaaiaab+eaaeaaaeaaca WG3bWaaSbaaeaacaWGPbGaaGOmaaqabaaabaaabaGaae4taaqaaaqa aiaadEhadaWgaaadbaGaamyAaiaaiodaaeqaaaaaaOGaay5waiaaw2 faamaadmaabaWcfaqabeWabaaabaGaaGimaaqaaiaadwgadaWgaaqa aiaadMgacaaIYaaabeaaaeaacaWGLbWaaSbaaWqaaiaadMgacaaIZa aabeaaaaaakiaawUfacaGLDbaaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyOeI0YaaabuaeaacaWGcbWaaSbaaS qaaiaadMgaaeqaaOGaaeysamaaBaaaleaacaWGPbaabeaakmaabmaa baGaaeyvaaGaayjkaiaawMcaaaWcbaGaamyAaiabgIGiolaadohada Wgaaqaaiaaigdaaeqaaaqab0GaeyyeIuoakmaadmaabaWcfaqabeWa daaabaGaaGimaaqaaaqaaiaab+eaaeaaaeaacaWG3bWaaSbaaeaaca WGPbGaaGOmaaqabaaabaaabaGaae4taaqaaaqaaiaadEhadaWgaaad baGaamyAaiaaiodaaeqaaaaaaOGaay5waiaaw2faamaadmaabaWcfa qabeWabaaabaGaaGimaaqaaiaadwgadaWgaaqaaiaadMgacaaIYaaa beaaaeaacaWGLbWaaSbaaWqaaiaadMgacaaIZaaabeaaaaaakiaawU facaGLDbaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaey4kaSYaaabuaeaacaWGcbWaaSbaaSqaaiaadMgaaeqaaO GaaeysamaaBaaaleaacaWGPbaabeaakmaabmaabaGaaeyvaaGaayjk aiaawMcaaaWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaiodaae qaaaqab0GaeyyeIuoakmaadmaabaWcfaqabeWadaaabaGaaGimaaqa aaqaaiaab+eaaeaaaeaacaaIWaaabaaabaGaae4taaqaaaqaaiaadE hadaWgaaqaaiaadMgacaaIZaaabeaaaaaakiaawUfacaGLDbaadaWa daqaaSqbaeqabmqaaaqaaiaaicdaaeaacaaIWaaabaGaamyzamaaBa aabaGaamyAaiaaiodaaeqaaaaaaOGaay5waiaaw2faaiabgkHiTmaa qafabaGaamOqamaaBaaaleaacaWGPbaabeaakiaabMeadaWgaaWcba GaamyAaaqabaGcdaqadaqaaiaabwfaaiaawIcacaGLPaaaaSqaaiaa dMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaaabeaaaeqaniabggHiLd GcdaWadaqaaSqbaeqabmWaaaqaaiaaicdaaeaaaeaacaqGpbaabaaa baGaaGimaaqaaaqaaiaab+eaaeaaaeaacaWG3bWaaSbaaeaacaWGPb GaaG4maaqabaaaaaGccaGLBbGaayzxaaWaamWaaeaaluaabeqadeaa aeaacaaIWaaabaGaaGimaaqaaiaadwgadaWgaaqaaiaadMgacaaIZa aabeaaaaaakiaawUfacaGLDbaaaeaacaaMc8UaaGPaVlabg2da9maa qafabaGaam4DamaaBaaaleaacaWGPbGaaGymaaqabaGccaWGcbWaaS baaSqaaiaadMgaaeqaaOGaaeysamaaBaaaleaacaWGPbaabeaakmaa bmaabaGaaeyvaaGaayjkaiaawMcaaGqadiaa=vgadaWgaaWcbaGaam yAaaqabaaabaGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdaaeqa aaqab0GaeyyeIuoakiabgkHiTmaaqafabaGaam4DamaaBaaaleaaca WGPbGaaGymaaqabaGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaaeys amaaBaaaleaacaWGPbaabeaakmaabmaabaGaaeyvaaGaayjkaiaawM caaaWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdaaeqaaaqa b0GaeyyeIuoakmaadmaabaWcfaqabeWabaaabaGaaGimaaqaaiaadw gadaWgaaqaaiaadMgacaaIYaaabeaaaeaacaWGLbWaaSbaaWqaaiaa dMgacaaIZaaabeaaaaaakiaawUfacaGLDbaacqGHRaWkdaaeqbqaai aadEhadaWgaaWcbaGaamyAaiaaikdaaeqaaOGaamOqamaaBaaaleaa caWGPbaabeaakiaabMeadaWgaaWcbaGaamyAaaqabaGcdaqadaqaai aabwfaaiaawIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWGZbWaaSba aeaacaaIYaaabeaaaeqaniabggHiLdGcdaWadaqaaSqbaeqabmqaaa qaaiaaicdaaeaacaWGLbWaaSbaaeaacaWGPbGaaGOmaaqabaaabaGa amyzamaaBaaameaacaWGPbGaaG4maaqabaaaaaGccaGLBbGaayzxaa GaeyOeI0YaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIYaaabeaa kiaadkeadaWgaaWcbaGaamyAaaqabaGccaqGjbWaaSbaaSqaaiaadM gaaeqaaOWaaeWaaeaacaqGvbaacaGLOaGaayzkaaaaleaacaWGPbGa eyicI4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aOWaam WaaeaaluaabeqadeaaaeaacaaIWaaabaGaaGimaaqaaiaadwgadaWg aaqaaiaadMgacaaIZaaabeaaaaaakiaawUfacaGLDbaaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSYaaabu aeaacaWG3bWaaSbaaSqaaiaadMgacaaIZaaabeaakiaadkeadaWgaa WcbaGaamyAaaqabaGccaqGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWa aeaacaqGvbaacaGLOaGaayzkaaaaleaacaWGPbGaeyicI4Saam4Cam aaBaaabaGaaG4maaqabaaabeqdcqGHris5aOWaamWaaeaaluaabeqa deaaaeaacaaIWaaabaGaaGimaaqaaiaadwgadaWgaaqaaiaadMgaca aIZaaabeaaaaaakiaawUfacaGLDbaacaGG7aaaaaa@69D2@

letting z i = B i I i ( U ) e i , z i( 23 ) = B i I i ( U ) [ 0, e i2 , e i3 ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 NEamaaBaaaleaacaWGPbaabeaakiabg2da9iaadkeadaWgaaWcbaGa amyAaaqabaGccaqGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaca qGvbaacaGLOaGaayzkaaGaa8xzamaaBaaaleaacaWGPbaabeaakiaa cYcacaWF6bWaaSbaaSqaaiaadMgadaqadaqaaiaaikdacqWIMaYsca aIZaaacaGLOaGaayzkaaaabeaakiabg2da9iaadkeadaWgaaWcbaGa amyAaaqabaGccaqGjbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaca qGvbaacaGLOaGaayzkaaWaamWaaeaacaaIWaGaaGilaiaadwgadaWg aaWcbaGaamyAaiaaikdaaeqaaOGaaGilaiaadwgadaWgaaWcbaGaam yAaiaaiodaaeqaaaGccaGLBbGaayzxaaWaaWbaaSqabeaakiadacUH YaIOaaGaaiilaaaa@6070@  and z i( 33 ) = B i I i ( U ) [ 0,0, e i3 ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIZaGaeSOjGSKaaG4maaGa ayjkaiaawMcaaaqabaGccqGH9aqpcaWGcbWaaSbaaSqaaiaadMgaae qaaOGaaeysamaaBaaaleaacaWGPbaabeaakmaabmaabaGaaeyvaaGa ayjkaiaawMcaamaadmaabaGaaGimaiaaiYcacaaIWaGaaGilaiaadw gadaWgaaWcbaGaamyAaiaaiodaaeqaaaGccaGLBbGaayzxaaWaaWba aSqabeaakiadacUHYaIOaaGaaiilaaaa@5246@   Var p [ Ψ s ( β N ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOvai aabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaamWaaeaacqqHOoqw daWgaaWcbaGaam4CaaqabaGcdaqadaqaaGGabiab=j7aInaaBaaale aacaWGobaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@460D@  can be expanded as:

Var p [ i s 1 w i1 z i ]+ Var p [ i s 1 w i1 z i( 23 ) ] + Var p [ i s 2 w i2 z i( 23 ) ]+ Var p [ i s 2 w i2 z i( 33 ) ] + Var p [ i s 3 w i3 z i( 33 ) ]2 Cov p [ i s 1 w i1 z i , i s 1 w i1 z i( 23 ) ] +2 Cov p [ i s 1 w i1 z i , i s 2 w i2 z i( 23 ) ] 2 Cov p [ i s 1 w i1 z i , i s 2 w i2 z i( 33 ) ]+2 Cov p [ i s 1 w i1 z i , i s 3 w i3 z i( 33 ) ] 2 Cov p [ i s 1 w i1 z i( 23 ) , i s 2 w i2 z i( 23 ) ]+2 Cov p [ i s 1 w i1 z i( 23 ) , i s 2 w i2 z i( 33 ) ] 2 Cov p [ i s 1 w i1 z i( 23 ) , i s 3 w i3 z i( 33 ) ]2 Cov p [ i s 2 w i2 z i( 23 ) , i s 2 w i2 z i( 33 ) ] +2 Cov p [ i s 2 w i2 z i( 23 ) , i s 3 w i3 z i( 33 ) ]2 Cov p [ i s 2 w i2 z i( 33 ) , i s 3 w i3 z i( 33 ) ] = Var p [ i s 1 w i1 z i ]+ Var p [ i s 2 w i2 z i( 23 ) ] Var p [ i s 1 w i1 z i( 23 ) ] + Var p [ i s 3 w i3 z i( 33 ) ] Var p [ i s 2 w i2 z i( 33 ) ] +2 Cov p [ i s 1 w i1 z i( 11 ) , i s 2 w i2 z i( 23 ) ]2 Cov p [ i s 1 w i1 z i( 11 ) , i s 1 w i1 z i( 23 ) ] +2 Cov p [ i s 1 w i1 z i( 12 ) , i s 3 w i3 z i( 33 ) ]2 Cov p [ i s 1 w i1 z i( 12 ) , i s 2 w i2 z i( 33 ) ] +2 Cov p [ i s 1 w i1 z i( 22 ) , i s 2 w i2 z i( 33 ) ]2 Cov p [ i s 1 w i1 z i( 22 ) , i s 3 w i3 z i( 33 ) ]    (A.4) +2 Cov p [ i s 2 w i2 z i( 22 ) , i s 3 w i3 z i( 33 ) ]2 Cov p [ i s 2 w i2 z i( 22 ) , i s 2 w i2 z i( 33 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaaca qGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaWadeqaamaa qafabaGaam4DamaaBaaaleaacaWGPbGaaGymaaqabaacbmGccaWF6b WaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGZbWaaSba aeaacaaIXaaabeaaaeqaniabggHiLdaakiaawUfacaGLDbaacqGHRa WkcaqGwbGaaeyyaiaabkhadaWgaaWcbaGaamiCaaqabaGcdaWadeqa amaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGymaaqabaGccaWF6b WaaSbaaSqaaiaadMgadaqadaqaaiaaikdacqWIVlctcaaIZaaacaGL OaGaayzkaaaabeaaaeaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG ymaaqabaaabeqdcqGHris5aaGccaGLBbGaayzxaaaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaqGwbGaaeyyaiaabkhada WgaaWcbaGaamiCaaqabaGcdaWadeqaamaaqafabaGaam4DamaaBaaa leaacaWGPbGaaGOmaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqada qaaiaaikdacqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaaaeaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aa GccaGLBbGaayzxaaGaey4kaSIaaeOvaiaabggacaqGYbWaaSbaaSqa aiaadchaaeqaaOWaamWabeaadaaeqbqaaiaadEhadaWgaaWcbaGaam yAaiaaikdaaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaI ZaGaeS47IWKaaG4maaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgI GiolaadohadaWgaaqaaiaaikdaaeqaaaqab0GaeyyeIuoaaOGaay5w aiaaw2faaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaS IaaeOvaiaabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaamWabeaa daaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiodaaeqaaOGaa8NEam aaBaaaleaacaWGPbWaaeWaaeaacaaIZaGaeS47IWKaaG4maaGaayjk aiaawMcaaaqabaaabaGaamyAaiabgIGiolaadohadaWgaaqaaiaaio daaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2faaiabgkHiTiaaikda caqGdbGaae4BaiaabAhadaWgaaWcbaGaamiCaaqabaGcdaWadeqaam aaqafabaGaam4DamaaBaaaleaacaWGPbGaaGymaaqabaGccaWF6bWa aSbaaSqaaiaadMgaaeqaaOGaaGilaaWcbaGaamyAaiabgIGiolaado hadaWgaaqaaiaaigdaaeqaaaqab0GaeyyeIuoakmaaqafabaGaam4D amaaBaaaleaacaWGPbGaaGymaaqabaGccaWF6bWaaSbaaSqaaiaadM gadaqadaqaaiaaikdacqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaa aeaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaGymaaqabaaabeqdcq GHris5aaGccaGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHRaWkcaaIYaGaae4qaiaab+gacaqG2bWaaSbaaSqaai aadchaaeqaaOWaamWabeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyA aiaaigdaaeqaaOGaa8NEamaaBaaaleaacaWGPbaabeaakiaaiYcaaS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIXaaabeaaaeqaniab ggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaikdaaeqaaO Gaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIYaGaeS47IWKaaG4m aaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgIGiolaadohadaWgaa qaaiaaikdaaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2faaaqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGOmaiaaboeaca qGVbGaaeODamaaBaaaleaacaWGWbaabeaakmaadmqabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadMgacaaIXaaabeaakiaa=PhadaWgaaWcba GaamyAaaqabaGccaaISaaaleaacaWGPbGaeyicI4Saam4CamaaBaaa baGaaGymaaqabaaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaS qaaiaadMgacaaIYaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaa baGaaG4maiabl+UimjaaiodaaiaawIcacaGLPaaaaeqaaaqaaiaadM gacqGHiiIZcaWGZbWaaSbaaeaacaaIYaaabeaaaeqaniabggHiLdaa kiaawUfacaGLDbaacqGHRaWkcaaIYaGaae4qaiaab+gacaqG2bWaaS baaSqaaiaadchaaeqaaOWaamWabeaadaaeqbqaaiaadEhadaWgaaWc baGaamyAaiaaigdaaeqaaOGaa8NEamaaBaaaleaacaWGPbaabeaaki aaiYcaaSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIXaaabeaa aeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaio daaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIZaGaeS47 IWKaaG4maaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgIGiolaado hadaWgaaqaaiaaiodaaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2fa aaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGOmai aaboeacaqGVbGaaeODamaaBaaaleaacaWGWbaabeaakmaadmqabaWa aabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIXaaabeaakiaa=Phada WgaaWcbaGaamyAamaabmaabaGaaGOmaiabl+UimjaaiodaaiaawIca caGLPaaaaeqaaOGaaGilaaWcbaGaamyAaiabgIGiolaadohadaWgaa qaaiaaigdaaeqaaaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaa leaacaWGPbGaaGOmaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqada qaaiaaikdacqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaaaeaacaWG PbGaeyicI4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aa GccaGLBbGaayzxaaGaey4kaSIaaGOmaiaaboeacaqGVbGaaeODamaa BaaaleaacaWGWbaabeaakmaadmqabaWaaabuaeaacaWG3bWaaSbaaS qaaiaadMgacaaIXaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaa baGaaGOmaiabl+UimjaaiodaaiaawIcacaGLPaaaaeqaaOGaaGilaa WcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaigdaaeqaaaqab0Ga eyyeIuoakmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGOmaaqaba GccaWF6bWaaSbaaSqaaiaadMgadaqadaqaaiaaiodacqWIVlctcaaI ZaaacaGLOaGaayzkaaaabeaaaeaacaWGPbGaeyicI4Saam4CamaaBa aabaGaaGOmaaqabaaabeqdcqGHris5aaGccaGLBbGaayzxaaaabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaIYaGaae4qai aab+gacaqG2bWaaSbaaSqaaiaadchaaeqaaOWaamWabeaadaaeqbqa aiaadEhadaWgaaWcbaGaamyAaiaaigdaaeqaaOGaa8NEamaaBaaale aacaWGPbWaaeWaaeaacaaIYaGaeS47IWKaaG4maaGaayjkaiaawMca aaqabaGccaaISaaaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG ymaaqabaaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaa dMgacaaIZaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaabaGaaG 4maiabl+UimjaaiodaaiaawIcacaGLPaaaaeqaaaqaaiaadMgacqGH iiIZcaWGZbWaaSbaaeaacaaIZaaabeaaaeqaniabggHiLdaakiaawU facaGLDbaacqGHsislcaaIYaGaae4qaiaab+gacaqG2bWaaSbaaSqa aiaadchaaeqaaOWaamWabeaadaaeqbqaaiaadEhadaWgaaWcbaGaam yAaiaaikdaaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaI YaGaeS47IWKaaG4maaGaayjkaiaawMcaaaqabaGccaaISaaaleaaca WGPbGaeyicI4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5 aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIYaaabeaakiaa=P hadaWgaaWcbaGaamyAamaabmaabaGaaG4maiabl+Uimjaaiodaaiaa wIcacaGLPaaaaeqaaaqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaaca aIYaaabeaaaeqaniabggHiLdaakiaawUfacaGLDbaaaeaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaikdacaqGdbGaae4Bai aabAhadaWgaaWcbaGaamiCaaqabaGcdaWadeqaamaaqafabaGaam4D amaaBaaaleaacaWGPbGaaGOmaaqabaGccaWF6bWaaSbaaSqaaiaadM gadaqadaqaaiaaikdacqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaa kiaaiYcaaSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaaabe aaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaa iodaaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIZaGaeS 47IWKaaG4maaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgIGiolaa dohadaWgaaqaaiaaiodaaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2 faaiabgkHiTiaaikdacaqGdbGaae4BaiaabAhadaWgaaWcbaGaamiC aaqabaGcdaWadeqaamaaqafabaGaam4DamaaBaaaleaacaWGPbGaaG OmaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqadaqaaiaaiodacqWI VlctcaaIZaaacaGLOaGaayzkaaaabeaakiaaiYcaaSqaaiaadMgacq GHiiIZcaWGZbWaaSbaaeaacaaIYaaabeaaaeqaniabggHiLdGcdaae qbqaaiaadEhadaWgaaWcbaGaamyAaiaaiodaaeqaaOGaa8NEamaaBa aaleaacaWGPbWaaeWaaeaacaaIZaGaeS47IWKaaG4maaGaayjkaiaa wMcaaaqabaaabaGaamyAaiabgIGiolaadohadaWgaaqaaiaaiodaae qaaaqab0GaeyyeIuoaaOGaay5waiaaw2faaaqaaiaaykW7caaMc8Ua eyypa0JaaeOvaiaabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaam WabeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaigdaaeqaaOGa a8NEamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam4Cam aaBaaabaGaaGymaaqabaaabeqdcqGHris5aaGccaGLBbGaayzxaaGa ey4kaSIaaeOvaiaabggacaqGYbWaaSbaaSqaaiaadchaaeqaaOWaam WabeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaikdaaeqaaOGa a8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIYaGaeS47IWKaaG4maa GaayjkaiaawMcaaaqabaaabaGaamyAaiabgIGiolaadohadaWgaaqa aiaaikdaaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2faaiabgkHiTi aabAfacaqGHbGaaeOCamaaBaaaleaacaWGWbaabeaakmaadmqabaWa aabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIXaaabeaakiaa=Phada WgaaWcbaGaamyAamaabmaabaGaaGOmaiabl+UimjaaiodaaiaawIca caGLPaaaaeqaaaqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIXa aabeaaaeqaniabggHiLdaakiaawUfacaGLDbaaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlabgUcaRiaabAfacaqGHbGaaeOCamaaBa aaleaacaWGWbaabeaakmaadmqabaWaaabuaeaacaWG3bWaaSbaaSqa aiaadMgacaaIZaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaaba GaaG4maiabl+UimjaaiodaaiaawIcacaGLPaaaaeqaaaqaaiaadMga cqGHiiIZcaWGZbWaaSbaaeaacaaIZaaabeaaaeqaniabggHiLdaaki aawUfacaGLDbaacqGHsislcaqGwbGaaeyyaiaabkhadaWgaaWcbaGa amiCaaqabaGcdaWadeqaamaaqafabaGaam4DamaaBaaaleaacaWGPb GaaGOmaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqadaqaaiaaioda cqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaaaeaacaWGPbGaeyicI4 Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aaGccaGLBbGa ayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkca aIYaGaae4qaiaab+gacaqG2bWaaSbaaSqaaiaadchaaeqaaOWaamWa beaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaigdaaeqaaOGaa8 NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIXaGaeS47IWKaaGymaaGa ayjkaiaawMcaaaqabaGccaaISaaaleaacaWGPbGaeyicI4Saam4Cam aaBaaabaGaaGymaaqabaaabeqdcqGHris5aOWaaabuaeaacaWG3bWa aSbaaSqaaiaadMgacaaIYaaabeaakiaa=PhadaWgaaWcbaGaamyAam aabmaabaGaaGOmaiabl+UimjaaiodaaiaawIcacaGLPaaaaeqaaaqa aiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaaabeaaaeqaniabgg HiLdaakiaawUfacaGLDbaacqGHsislcaaIYaGaae4qaiaab+gacaqG 2bWaaSbaaSqaaiaadchaaeqaaOWaamWabeaadaaeqbqaaiaadEhada WgaaWcbaGaamyAaiaaigdaaeqaaOGaa8NEamaaBaaaleaacaWGPbWa aeWaaeaacaaIXaGaeS47IWKaaGymaaGaayjkaiaawMcaaaqabaGcca aISaaaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaGymaaqabaaa beqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaabaGaaGOmaiabl+Ui mjaaiodaaiaawIcacaGLPaaaaeqaaaqaaiaadMgacqGHiiIZcaWGZb WaaSbaaeaacaaIXaaabeaaaeqaniabggHiLdaakiaawUfacaGLDbaa aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaikdaca qGdbGaae4BaiaabAhadaWgaaWcbaGaamiCaaqabaGcdaWadeqaamaa qafabaGaam4DamaaBaaaleaacaWGPbGaaGymaaqabaGccaWF6bWaaS baaSqaaiaadMgadaqadaqaaiaaigdacqWIVlctcaaIYaaacaGLOaGa ayzkaaaabeaakiaaiYcaaSqaaiaadMgacqGHiiIZcaWGZbWaaSbaae aacaaIXaaabeaaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWc baGaamyAaiaaiodaaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaae aacaaIZaGaeS47IWKaaG4maaGaayjkaiaawMcaaaqabaaabaGaamyA aiabgIGiolaadohadaWgaaqaaiaaiodaaeqaaaqab0GaeyyeIuoaaO Gaay5waiaaw2faaiabgkHiTiaaikdacaqGdbGaae4BaiaabAhadaWg aaWcbaGaamiCaaqabaGcdaWadeqaamaaqafabaGaam4DamaaBaaale aacaWGPbGaaGymaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqadaqa aiaaigdacqWIVlctcaaIYaaacaGLOaGaayzkaaaabeaakiaaiYcaaS qaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIXaaabeaaaeqaniab ggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaikdaaeqaaO Gaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIZaGaeS47IWKaaG4m aaGaayjkaiaawMcaaaqabaaabaGaamyAaiabgIGiolaadohadaWgaa qaaiaaikdaaeqaaaqab0GaeyyeIuoaaOGaay5waiaaw2faaaqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGOmaiaaboeaca qGVbGaaeODamaaBaaaleaacaWGWbaabeaakmaadmqabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadMgacaaIXaaabeaakiaa=PhadaWgaaWcba GaamyAamaabmaabaGaaGOmaiabl+UimjaaikdaaiaawIcacaGLPaaa aeqaaOGaaGilaaWcbaGaamyAaiabgIGiolaadohadaWgaaqaaiaaig daaeqaaaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaaleaacaWG PbGaaGOmaaqabaGccaWF6bWaaSbaaSqaaiaadMgadaqadaqaaiaaio dacqWIVlctcaaIZaaacaGLOaGaayzkaaaabeaaaeaacaWGPbGaeyic I4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aaGccaGLBb GaayzxaaGaeyOeI0IaaGOmaiaaboeacaqGVbGaaeODamaaBaaaleaa caWGWbaabeaakmaadmqabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadM gacaaIXaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaabaGaaGOm aiabl+UimjaaikdaaiaawIcacaGLPaaaaeqaaOGaaGilaaWcbaGaam yAaiabgIGiolaadohadaWgaaqaaiaaigdaaeqaaaqab0GaeyyeIuoa kmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaG4maaqabaGccaWF6b WaaSbaaSqaaiaadMgadaqadaqaaiaaiodacqWIVlctcaaIZaaacaGL OaGaayzkaaaabeaaaeaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaG 4maaqabaaabeqdcqGHris5aaGccaGLBbGaayzxaaaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaIYaGaae4qaiaab+gaca qG2bWaaSbaaSqaaiaadchaaeqaaOWaamWabeaadaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaikdaaeqaaOGaa8NEamaaBaaaleaacaWGPb WaaeWaaeaacaaIYaGaeS47IWKaaGOmaaGaayjkaiaawMcaaaqabaGc caaISaaaleaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaGOmaaqaba aabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaI Zaaabeaakiaa=PhadaWgaaWcbaGaamyAamaabmaabaGaaG4maiabl+ UimjaaiodaaiaawIcacaGLPaaaaeqaaaqaaiaadMgacqGHiiIZcaWG ZbWaaSbaaeaacaaIZaaabeaaaeqaniabggHiLdaakiaawUfacaGLDb aacqGHsislcaaIYaGaae4qaiaab+gacaqG2bWaaSbaaSqaaiaadcha aeqaaOWaamWabeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaik daaeqaaOGaa8NEamaaBaaaleaacaWGPbWaaeWaaeaacaaIYaGaeS47 IWKaaGOmaaGaayjkaiaawMcaaaqabaGccaaISaaaleaacaWGPbGaey icI4Saam4CamaaBaaabaGaaGOmaaqabaaabeqdcqGHris5aOWaaabu aeaacaWG3bWaaSbaaSqaaiaadMgacaaIYaaabeaakiaa=PhadaWgaa WcbaGaamyAamaabmaabaGaaG4maiabl+UimjaaiodaaiaawIcacaGL PaaaaeqaaaqaaiaadMgacqGHiiIZcaWGZbWaaSbaaeaacaaIYaaabe aaaeqaniabggHiLdaakiaawUfacaGLDbaacaaIUaaaaaa@400F@

In this last expression, the first thing we notice is that all the diagonal elements in all the covariance terms are exactly equal to zero; this means that whether or not the cohorts are independent of one another, expression (3.13) is exact for the variance terms.
To analyze the importance of the covariance terms, we concentrate on the term in line (A.4); the conclusion for the other terms is the same; note that this term can be written as:

2 Cov p [ i s 1 w i1 μ i β V i 1 ( e i1 e i2 0 ), i s 3 w i3 μ i β V i 1 ( 0 0 e i3 ) i s 2 w i2 μ i β V i 1 ( 0 0 e i3 ) ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFjea0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGOmai aaboeacaqGVbGaaeODamaaBaaaleaacaWGWbaabeaakmaadmaabaWa aabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIXaaabeaaaeaacaWGPb GaeyicI4Saam4CamaaBaaabaGaaGymaaqabaaabeqdcqGHris5aOWa aSaaaeaacqGHciITiiqacuWF8oqBgaqbamaaBaaaleaacaWGPbaabe aaaOqaaiabgkGi2kab=j7aIbaacaWGwbWaa0baaSqaaiaadMgaaeaa cqGHsislcaaIXaaaaOWaaeWaaeaaluaabeqadeaaaeaacaWGLbWaaS baaeaacaWGPbGaaGymaaqabaaabaGaamyzamaaBaaameaacaWGPbGa aGOmaaqabaaaleaacaaIWaaaaaGccaGLOaGaayzkaaGaaGilamaaqa fabaGaam4DamaaBaaaleaacaWGPbGaaG4maaqabaaabaGaamyAaiab gIGiolaadohadaWgaaqaaiaaiodaaeqaaaqab0GaeyyeIuoakmaala aabaGaeyOaIyRaf8hVd0MbauaadaWgaaWcbaGaamyAaaqabaaakeaa cqGHciITcqWFYoGyaaGaamOvamaaDaaaleaacaWGPbaabaGaeyOeI0 IaaGymaaaakmaabmaabaWcfaqabeWabaaabaGaaGimaaqaaiaaicda aeaacaWGLbWaaSbaaeaacaWGPbGaaG4maaqabaaaaaGccaGLOaGaay zkaaGaeyOeI0YaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaIYaaa beaaaeaacaWGPbGaeyicI4Saam4CamaaBaaabaGaaGOmaaqabaaabe qdcqGHris5aOWaaSaaaeaacqGHciITcuWF8oqBgaqbamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kab=j7aIbaacaWGwbWaa0baaSqaai aadMgaaeaacqGHsislcaaIXaaaaOWaaeWaaeaaluaabeqadeaaaeaa caaIWaaabaGaaGimaaqaaiaadwgadaWgaaqaaiaadMgacaaIZaaabe aaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacaGG7aaaaa@9288@

Property 3.1 states that if the cohorts are design-independent, all the covariance terms are exactly equal to zero. In addition to that, from this last expression we conclude, trivially, that if the waves are design-independent, all the covariance terms are equal to zero too. This formula for the term in line (A.4) also implies that if the individual weights do not vary greatly between consecutive waves, and there is a high overlap between consecutive waves, the covariance terms are not too large. Finally, if the overlap is small, it is reasonable to assume design-independence between the waves, and then the covariance terms can be safely approximated by zero.

References

Ardilly, P., and Lavallée, P. (2007). Weighting in rotating samples: The SILC survey in France. Survey Methodology, 33, 2, 131-137.

Berger, Y.G. (2004a). Variance estimation for change: An evaluation based upon the 2000 finnish labour force survey. Proceedings. European Conference on Quality and Methodology in Official Statistics.

Berger, Y.G. (2004b). Variance estimation for measures of change in probability sampling. The Canadian Journal of Statistics, 32, 4, 451-467.

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review, 51, 279-292.

Carrillo, I.A., Chen, J. and Wu, C. (2010). The pseudo-GEE approach to the analysis of longitudinal surveys. The Canadian Journal of Statistics, 38, 4, 540-554.

Carrillo, I.A., Chen, J. and Wu, C. (2011). A pseudo-GEE approach to analyzing longitudinal surveys under imputation for missing responses. Journal of Official Statistics, 27, 2, 255-277.

Carrillo, I.A., and Karr, A.F. (2011). Combining cohorts in longitudinal surveys. Technical Report 180, National Institute of Statistical Sciences, Research Triangle Park, NC. URL http://www.niss.org/sites/default/files/tr180.pdf.

Carrillo, I.A., and Karr, A.F. (2012). Estimating change with multi-cohort longitudinal surveys.In preparation.

Cox, B.G., Grigorian, K., Wang, R. and Harter, R. (2010). 2008 Survey of Doctorate Recipients Weighting Implementation Report, document prepared by the National Opinion Research Center (NORC) for the National Science Foundation (NSF).

Diggle, P., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002). Analysis of Longitudinal Data, 2nd Edition. Oxford University Press, New York.

Hedeker, D., and Gibbons, R.D. (2006). Longitudinal Data Analysis. Wiley Series in Probability and Statistics. New Jersey: John Wiley & Sons, Inc., Hoboken.

Hirano, K., Imbens, G.W., Ridder, G. and Rubin, D.B. (2001). Combining panel data sets with attrition and refreshment samples. Econometrica, 69, 6, 1645-1659.

Hu, F., and Kalbfleisch, J.D. (2000). The estimating function bootstrap (Pkg: P449-495). The Canadian Journal of Statistics, 28, 3, 449-481.

Larsen, M.D., Qing, S., Zhou, B. and Foulkes, M.A. (2011). Calibration estimation and longitudinal survey weights: Application to the NSF Survey of Doctorate Recipients. In Proceedings of the Survey Research Method Section, American Statistical Association, 1360-1374.

Liang, K.-Y., and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.

Lohr, S. (2007). Recent developments in multiple frame surveys. In Joint Statistical Meeting of the American Statistical Association, 3257-3264.

McLaren, C.H., and Steel, D.G. (2000). The impact of different rotation patterns on the sampling variance of seasonally adjusted and trend estimates. Survey Methodology, 26, 2, 163-172.

National Science Foundation, National Center for Science and Engineering Statistics (2012). Survey of doctorate recipients. http://www.nsf.gov/statistics/srvydoctoratework/, accessed Feb. 09 2012.

Nevo, A. (2003). Using weights to adjust for sample selection when auxiliary information is available. Journal of Business & Economic Statistics, 21, 1, 43-52.

Qualité, L., and Tillé, Y. (2008). Variance estimation of changes in repeated surveys and its application to the Swiss survey of value added. Survey Methodology, 34, 2, 173-181.

Rao, J.N.K., and Wu, C. (2010). Pseudo-empirical likelihood inference for multiple frame surveys. Journal of the American Statistical Association, 105, 492, 1494-1503.

Roberts, G., Binder, D., Kova�ević, M., Pantel, M. and Phillips, O. (2003). Using an estimating function bootstrap approach for obtaining variance estimates when modelling complex health survey data. Proceedings of the Survey Methods Section, Statistical Society of Canada, Halifax.

Robins, J.M., Rotnitzky, A. and Zhao, L.P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106-121.

Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581-592.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer-Verlag.

Smith, P., Lynn, P. and Elliot, D. (2009). Sample design for longitudinal surveys. In Methodology of Longitudinal Surveys, (Ed., P. Lynn). Wiley, Chichester, Chapter 2, 21-33.

Song, P.X.-K. (2007). Correlated Data Analysis: Modeling, Analytics, and Applications. Springer Series in Statistics. New York: Springer.

Steel, D., and McLaren, C. (2007). Design and analysis of repeated surveys. Keynote lecture. International Conference on Quality Management of Official Statistics, Korea.

Vieira, M.D.T. (2009). Analysis of Longitudinal Survey Data: Allowing for the Complex Survey Design in Covariance Structure Models. VDM Verlag.

Vieira, M.D.T., and Skinner, C.J. (2008). Estimating models for panel survey data under complex sampling. Journal of Official Statistics, 24, 3, 343-364.

Previous

Date modified: