4 Study of the mean electricity consumption curve

Hervé Cardot, Alain Dessertaine, Camelia Goga, Étienne Josserand and Pauline Lardin

Previous | Next

We have a population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvaa aa@3ADA@  consisting of N=15,069 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2 da9iaaigdacaaI1aGaaiilaiaaicdacaaI2aGaaGyoaaaa@3C36@  electricity consumption curves measured every half hour during two consecutive weeks. We have D=336 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaaiodacaaIZaGaaGOnaaaa@39FF@  measurement points for each week, and we want to estimate the mean consumption curve for the second week. We denote by Y k =( Y k ( t 1 ),, Y k ( t D ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCywaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaamyw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiaaiYcacqWIMaYscaaISaGaamyw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca WGebaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiYcaaaa@4A50@  the electricity consumption of individual kU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aai abgIGiolaadwfaaaa@3D4E@  measured in the second week and X k =( X k ( t 1 ),, X k ( t D ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaamiw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiaaiYcacqWIMaYscaaISaGaamiw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca WGebaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@4997@ , the individual's consumption during the first week. The mean consumption of each individual k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaa aa@3AF0@  during the first week, x k = d=1 D X k ( t d )/D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiabg2da9maaqadabaGaamiwamaaBaaaleaa caWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGKbaabeaaaO GaayjkaiaawMcaaiaac+cacaWGebaaleaacaWGKbGaeyypa0JaaGym aaqaaiaadseaa0GaeyyeIuoaaaa@45B4@ , which is simple piece of information that is inexpensive to transmit, will be used as auxiliary information. This variable (a real one), which is known for all units k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaa aa@3AF0@  in the population, is strongly related to the current consumption curve. As Figure 4.1 shows, the current consumption in each t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaa aa@3AF9@  is almost proportional to the mean consumption for the previous week.

Figure 4.1 Representation of consumption at an instant t

Description for figure 4.1

Figure 4.1 Representation of consumption at an instant t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmGaa8hDaa aa@36D7@  as a function of the mean consumption for the previous week.

4.1 Description of strategies used

We consider samples of fixed size n=1,500 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaaigdacaGGSaGaaGynaiaaicdacaaIWaaaaa@3B8D@  obtained using different sampling designs. The strategies presented are repeated I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaa aa@3ACE@  times to evaluate and compare their performance.

1. SRSWOR sampling and Horvitz-Thompson estimator

This design is simple to implement; the Horvitz-Thompson estimator of the mean curve is given by (2.6) and the estimator of its covariance by (2.7).

2.STRAT stratified design and Horvitz-Thompson estimator

A stratified design is very effective if the strata are homogenous in relation to the variable of interest. In this study, we used the k­ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aae rbhv2BYDwAHbacfaGaa8xRaaaa@3EFF@  means algorithm to create the strata, and we considered H=10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 da9iaaigdacaaIWaaaaa@393E@  strata. A first stratification (STRAT 1) was carried out using the classification of the discretized trajectories X k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCiway aafaWaaSbaaSqaaiaadUgaaeqaaaaa@3C09@  for the previous week. A second stratification, which uses only the aggregate information x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabmabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaaaaa@3813@  was also considered. It is denoted by STRAT 2.

Tables 4.1 and 4.2 show the sizes of the strata N h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaBaaaleaacaWGObaabeaaaaa@3BEC@  yielded using the two stratifications and the optimal sizes n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3C0C@ , according to (2.5), of the samples to be selected in each stratum. In both cases, the strata are numbered in ascending order in relation to the mean consumption for each stratum. More specifically, stratum 1 corresponds to small consumers of electricity and stratum 10 refers to the 10 largest consumers. Note that the first stratification, which requires knowing the electricity consumption at each measurement instant t, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDai aacYcaaaa@3BA9@  requires more information than the second stratification. The mean curve is constructed using (2.3), and its covariance is estimated by (2.4).

 

Table 4.1
STRAT 1: stratification based on curves. The strata are constructed using the curves for week 1. The optimal allocation n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3B9D@ is calculated using the curves for week 1.

Table summary
This table displays stratification based on curves. The information is grouped by h (appearing as row headers), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (appearing as column headers).
h 1 2 3 4 5 6 7 8 9 10
N h 3,866 4,769 623 2,690 664 1,251 806 328 62 10
n h 212 345 87 242 117 179 172 101 35 10

 

Table 4.2
STRAT 2: stratification based on the mean consumption x k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakiaac6caaaa@3C66@ The optimal allocation n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3B9D@ is calculated using the mean consumption for week 1.

Table summary
This table displays stratification based on the mean consumption x k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakiaac6caaaa@3C66@ The information is grouped by h (appearing as row headers), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (appearing as column headers).
h 1 2 3 4 5 6 7 8 9 10
N h 3,257 4,236 3,139 1,937 1,189 731 415 125 30 10
n h 260 293 248 204 159 133 111 56 26 10

3. πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  sampling and Horvitz-Thompson estimator

We used the cube algorithm proposed by Deville and Tillé (2004) and Chauvet and Tillé (2006), where the inclusion probabilities are proportional to x k ,kU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiYcacaWGRbGaeyicI4Saamyvaaaa@3C1D@ . To have a sampling design close to maximum entropy, a random sort of the population is performed before selection of the sample s. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cai aai6caaaa@3BB0@  The covariance of the estimator of the mean is estimated using Formula (2.9). The cube algorithm is available in R in the sampling package, samplecube function, and a SAS macro is available on the INSEE website (Institut National de Statistique et des Études Économiques).

4. SRSWOR sampling and MA estimator

The estimator μ ^ MA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaaaa@3D8A@  assisted by the model ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG haaa@3BC3@  is constructed using the auxiliary information given by x k =( 1, x k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaaGym aiaaiYcacaWG4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaa aaaa@3FC3@ , where x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbaabeaaaaa@3C19@  is the mean consumption for the previous week. In these conditions, μ ^ MA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaaaa@3D8A@  is the sum over any population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvaa aa@3ADA@  of the values Y ^ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aajaWaaSbaaSqaaiaadUgaaeqaaaaa@3C0A@  estimated by the model (cf. Formula (2.13)). The covariance of the estimator of the mean is estimated using Formula (2.15).

4.2  Error of estimation of the mean curve

The error of estimation of the mean curve μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiVd0 gaaa@3BB6@  at instants t 1 ,..., t 336 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDam aaBaaaleaacaaIXaaabeaakiaaiYcacaGGUaGaaiOlaiaac6cacaaI SaGaamiDamaaBaaaleaacaaIZaGaaG4maiaaiAdaaeqaaOGaaGilaa aa@438B@  is evaluated according to the following criterion:

R 2 ( μ ^ )= 1 336 i=1 336 ( μ ^ ( t i )μ( t i ) ) 2 1 T 0 T ( μ ^ ( t )μ( t ) ) 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIYaaabeaakmaabmaabaGafqiVd0MbaKaaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaGaaG4maiaaiAdaaa WaaabCaeqaleaacaWGPbGaeyypa0JaaGymaaqaaiaaiodacaaIZaGa aGOnaaqdcqGHris5aOWaaeWaaeaacuaH8oqBgaqcamaabmaabaGaam iDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgkHiTiab eY7aTnaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaysW7 cqGHijYUcaaMe8+aaSaaaeaacaaIXaaabaGaamivaaaadaWdXaqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGcdaqadaqaaiqbeY7aTzaa jaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaeqiVd02aae WaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacaaIUaaaaa@6D39@

The results are shown in Table 4.3 for I=10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaa@3C1D@  simulations (replications). They clearly show that for this study, taking account of total consumption for the previous week substantially improves the precision of the estimate of the mean compared with simple random sampling without replacement, dividing the mean square error R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3BBF@  by 5. Among the different strategies, the best appear to be those that take account of auxiliary information via inclusion probabilities (STRAT, πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  and systematic PPS).

Table 4.3
Square error R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3B50@ of estimation of the mean μ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiVd0 Maaiilaaaa@3BF7@ with I=10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaa@3C1D@ replications

Table summary
This table displays square error R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3B50@ of estimation of the mean μ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiVd0 Maaiilaaaa@3BF7@ with I=10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaa@3C1D@ replications. The information is grouped by strategy (appearing as row headers), mean, 1st, median, 3rd (appearing as column headers).
Strategy Mean 1 st quartile Median 3 rdquartile
SRSWOR 40.53 10.82 22.16 51.09
 STRAT (1)  5.78 3.68 5.08 7.07
 STRAT (2)  6.49 4.03 5.48 7.88
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 7.06 3.99 5.52 8.16
Systematic   πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaey OeI0IaamiCaiaadohaaaa@3A8D@ 6.73 3.85 5.20 8.07
MA 8.29 5.24 7.14 10.16

4.3  Coverage rate and width of confidence bands

The construction of confidence bands of level 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymai abgkHiTiabeg7aHbaa@3D47@  requires calculating quantiles of order 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymai abgkHiTiabeg7aHbaa@3D47@  of the supremum of Gaussian processes.

So as not to favour one method of constructing confidence bands over the other, we applied the two algorithms to the same sample s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caa aa@3AF8@  and we considered the same number M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaa aa@3AD2@  of processes. This number M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaa aa@3AD2@  varies from one estimator to the other owing to the computation time needed for the bootstrap approaches (see Section 4.4).

Figure 4.2 Examples
of confidence bands.

Description for figure 4.2

Figure 4.2 Examples of confidence bands.

The empirical coverage rate is the proportion of times, among the I=2,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B64@  replications, where the true mean curve μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiVd0 gaaa@3BB6@  appears, for all instants t, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDai aaiYcaaaa@3BAF@  within the confidence band constructed using an estimate μ ^ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaacaaIUaaaaa@3C7E@  Figure 4.2 shows two examples of confidence bands (continuous grey curves) constructed from estimated curves (dotted grey curves). Figure 4.2(A) shows that the true mean curve for the population (continuous black curve) is within the confidence band at every instant. Conversely, Figure 4.2(B) shows that mean curve for the population is generally overestimated and there are a few instants (indicated by arrows) where the curve shown is outside the confidence band. Empirical coverage rates are shown in Table 4.4.

The two methods of constructing confidence bands yield coverage rates that are similar and fairly close to the desired nominal rates (95% and 99%). However, the results seem slightly less satisfactory for the πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  designs and for the MA approach, for which the variance of the estimator is complex and more difficult to estimate precisely.

Table 4.4
Empirical coverage rate (in %), for I=2,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B64@ replications

Table summary
This table displays empirical coverage rate (in %), for I=2,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B64@ replications. The information is grouped by method (appearing as row headers), Number M of processes, Bootstrap, Gaussian process (appearing as column headers).
Method Number M of processes Bootstrap Gaussian process
α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@ α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@
SRSWOR 5,000 94.95 98.85 94.80 98.70
STRAT (1) 5,000 93.92 98.34 94.09 98.43
STRAT (2) 5,000 94.3 98.45 94 98.55
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 1,000 94.73 98.77 93.87 98.61
MA 5,000 94.3 98.5 92.85 98.15

Another useful indicator is the mean width of the confidence band,

1 336 i=1 336 2 c α σ ^ ( t i ) 1 T 0 T 2 c α σ ^ ( t )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaG4maiaaiodacaaI2aaaamaaqahabaGaaGOmaiaadoga daWgaaWcbaGaeqySdegabeaakiqbeo8aZzaajaWaaeWaaeaacaWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaaiodacaaIZaGaaGOnaaqdcqGHris5aOGaaG jbVlabgIKi7kaaysW7daWcaaqaaiaaigdaaeaacaWGubaaamaapeda beWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiaaikdacaWGJbWaaS baaSqaaiabeg7aHbqabaGccuaHdpWCgaqcamaabmaabaGaamiDaaGa ayjkaiaawMcaaiaadsgacaWG0baaaa@5D08@

the values of which are shown in Table 4.5. The two methods provide confidence bands of largely similar width. Also note that the use of the auxiliary variable considerably reduces the mean band width, which is cut in half if one of the stratified designs is used rather than a SRSWOR design.

Figure 4.3 Simple random sampling without replacement. Width of confidence bands - individual, overall by process simulations, and with Bonferroni

Description for figure 4.3

Figure 4.3 Simple random sampling without replacement. Width of confidence bands - pointwise, overall by process simulations, and with Bonferroni ( α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqySdeMaaG ypaiaabcdacaqGUaGaaeimaiaabwdaaaa@3B13@ ).

Figure 4.4 Stratified sampling (STRAT 1). Width of confidence bands - individual, overall by process simulations, and with Bonferroni

Description for figure 4.4

Figure 4.4 Stratified sampling (STRAT 1). Width of confidence bands - pointwise, overall by process simulations, and with Bonferroni (with α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqySdeMaaG ypaiaabcdacaqGUaGaaeimaiaabwdaaaa@3B13@ ).

Figures 4.3 and 4.4 show the widths of the confidence bands for a level α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaai6cacaaIWaGaaGynaaaa@3B86@ , for each instant, depending on whether they are pointwise ( c α =1.96 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yam aaBaaaleaacqaHXoqyaeqaaOGaaGypaiaaigdaqaaaaaaaaaWdbiaa c6cacaaI5aGaaGOnaaaa@4094@ ), estimated by simulations of Gaussian processes or obtained using the approach based on the Bonferroni inequality applied to each measurement point. We then have, in the latter case, c α =3.793048 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yam aaBaaaleaacqaHXoqyaeqaaOGaaGypaabaaaaaaaaapeGaaG4maiaa c6cacaaI3aGaaGyoaiaaiodacaaIWaGaaGinaiaaiIdaaaa@438E@ , the quantile of order 10.05/( 336×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymai abgkHiTiaabcdacaqGUaGaaeimaiaabwdacaaIVaWaaeWaaeaacaaI ZaGaaG4maiaaiAdacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@45C6@  of a distribution N( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aabmaabaGaaGimaiaaiYcacaaIXaaacaGLOaGaayzkaaGaaGOlaaaa @3F3F@  The bands obtained by Bonferroni are conservative, and they cover what might be considered the worst case in terms of information, the case of independence of the pointwise intervals. Note that the simulation approach substantially reduces the mean width of the bands in comparison with Bonferroni when the design does not allow all temporal information on the data to be taken into account (Figure 4.3). Conversely, for the stratified design (Figure 4.4), which provides a precise estimate of the mean curve, the confidence band constructed by simulation is close to that of Bonferroni, which can intuitively be interpreted as meaning that almost all the information was captured by the sampling design.

Table 4.5
Mean width of confidence bands, for I=2,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B5C@ replications

Table summary
This table displays mean width of confidence bands, for I=2,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B5C@ replications. The information is grouped by method (appearing as row headers), number M of processes, bootstrap, gaussian process (appearing as column headers).
Method Number M of processes Bootstrap Gaussian process
α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@ α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@
SRSWOR 5,000 35.98 43.35 35.99 43.19
STRAT (1) 5,000 16.64 18.92 16.62 18.88
STRAT (2) 5,000 17.58 19.99 17.55 19.94
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 1,000 17.85 20.31 17.62 19.93
MA 5,000 19.88 22.65 19.75 22.44

4.4  Computation time

Computation times with the bootstrap method are much greater MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKk Fr0xfr=xfr=xb9adbaqaaeGacaGaaiaabeqaamaabeabaaGcbaacba qcLbwaqaaaaaaaaaWdbiaa=rbiaaa@39BE@ by a factor of approximately 1 to 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKk Fr0xfr=xfr=xb9adbaqaaeGacaGaaiaabeqaamaabeabaaGcbaacba qcLbwaqaaaaaaaaaWdbiaa=rbiaaa@39BE@ than those with the Gaussian processes simulation method (cf. Table 4.6). The reason for this major difference is that in the bootstrap methods, the entire estimation process (construction of the fictitious population, drawing of a new sample, calculation of the estimator) must be repeated for each bootstrapped sample. Also, the designs that introduce auxiliary information are slower than SRSWOR, even though if used individually their computation time is entirely reasonable.

Table 4.6
Run time of a simulation in seconds for M=5,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaacbeGaa8 xtaiabg2da9iaaiwdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3F0D@ replications. The SRSWOR, MA and STRAT strategies were programmed with R and πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8qq0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiWda NaamiCaiaadohaaaa@3D9D@ with SAS.

Table summary
This table displays run time of a simulation in seconds for M=5,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaacbeGaa8 xtaiabg2da9iaaiwdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3F0D@ replications. The SRSWOR, MA and STRAT strategies were programmed with R and πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8qq0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiWda NaamiCaiaadohaaaa@3D9D@ with SAS. The information is grouped by Strategy (appearing as row headers), bootstrap, Gaussian processes (appearing as column headers).
Strategy Bootstrap Gaussian processes
SRSWOR 1,170.6 1.0
 STRAT  1,839.5 1.4
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 5,020.0 7.3
MA 3,156 1.4

Previous | Next

Date modified: