Annexe

Jun Shao, Eric Slud, Yang Cheng, Sheng Wang et Carma Hogue

Précédent

Preuve du théorème 1. Sous échantillonnage PPT, π i = n j p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWn aaBaaaleaacaWGPbaabeaakiabg2da9iaad6gadaWgaaWcbaGaamOA aaqabaGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@41F9@ pour l'unité i U j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiilaaaa@3E1D@ et à chaque tirage avec remise, l'indice échantillonné i t U j ,t=1,, n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgada WgaaWcbaGaamiDaaqabaGccqGHiiIZcaWGvbWaaSbaaSqaaiaadQga aeqaaOGaaGilaiaadshacqGH9aqpcaaIXaGaaiilaiablAciljaaiY cacaWGUbWaaSbaaSqaaiaadQgaaeqaaaaa@46A2@ possède P( i t =i )= p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiaadMgadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaWGPbaa caGLOaGaayzkaaGaeyypa0JaamiCamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@436F@ pour chaque i U j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiOlaaaa@3E1F@ En calculant les moyennes et les variances (sous échantillonnage répété) de N ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqad6eaga qcamaaBaaaleaacaWGQbaabeaakiaacYcaaaa@3BB4@ X ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qcamaaBaaaleaacaWGQbaabeaakiaacYcaaaa@3BBE@ Y ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaWGQbaabeaakiaacYcaaaa@3BBF@ N j 1 i S j x i y i / π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada qhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGcdaaeqaqabSqaaiaa dMgacqGHiiIZcaWGtbWaaSbaaeaacaWGQbaabeaaaeqaniabggHiLd GcdaWcgaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaWG5bWaaSba aSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMgaaeqaaa aaaaa@4A15@ et N j 1 i S j x i 2 / π i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada qhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGcdaaeqaqabSqaaiaa dMgacqGHiiIZcaWGtbWaaSbaaeaacaWGQbaabeaaaeqaniabggHiLd GcdaWcgaqaaiaadIhadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaa cqaHapaCdaWgaaWcbaGaamyAaaqabaaaaOGaaiilaaaa@496A@ nous constatons que les variances sont d'ordre n j 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada qhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaaaaa@3CB3@ au moyen des limites données dans (C2) et (C3) et des bornes données dans (C4). Les assertions de la partie (a) s'ensuivent directement.

Pour l'assertion (b), nous avons, en vertu de la définition de β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaaaaa@3AAD@ , que

β ^ = j=1 2 i S j ( x i μ ^ x,j + μ ^ x,j ( X ^ 1 + X ^ 2 )/ ( N ^ 1 + N ^ 2 ) ) y i / π i j=1 2 i S j ( x i μ ^ x,j + μ ^ x,j ( X ^ 1 + X ^ 2 )/ ( N ^ 1 + N ^ 2 ) ) 2 / π i = N 1 ( j=1 2 β ^ j σ ^ xj 2 N ^ j +( N ^ 1 N ^ 2 / ( N ^ 1 + N ^ 2 ) )( μ ^ x1 μ ^ x2 )( μ ^ y1 μ ^ y2 ) ) N 1 ( j=1 2 σ ^ xj 2 N ^ j +( N ^ 1 N ^ 2 / ( N ^ 1 + N ^ 2 ) ) ( μ ^ x1 μ ^ x2 ) 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa uaaiqbek7aIzaajaaabaGaeyypa0dabaWaaSaaaeaadaaeWaqaamaa qababaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0 IafqiVd0MbaKaadaWgaaWcbaGaamiEaiaaiYcacaWGQbaabeaakiab gUcaRiqbeY7aTzaajaWaaSbaaSqaaiaadIhacaaISaGaamOAaaqaba GccqGHsisldaWcgaqaamaabmaabaGabmiwayaajaWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIabmiwayaajaWaaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaaabaWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGa aGymaaqabaGccqGHRaWkceWGobGbaKaadaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaSGbaeaacaWG5bWa aSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMgaae qaaaaaaeaacaWGPbGaeyicI4Saam4uamaaBaaabaGaamOAaaqabaaa beqdcqGHris5aaWcbaGaamOAaiabg2da9iaaigdaaeaacaaIYaaani abggHiLdaakeaadaaeWaqaamaaqababaWaaSGbaeaadaqadaqaaiaa dIhadaWgaaWcbaGaamyAaaqabaGccqGHsislcuaH8oqBgaqcamaaBa aaleaacaWG4bGaaGilaiaadQgaaeqaaOGaey4kaSIafqiVd0MbaKaa daWgaaWcbaGaamiEaiaaiYcacaWGQbaabeaakiabgkHiTmaalyaaba WaaeWaaeaaceWGybGbaKaadaWgaaWcbaGaaGymaaqabaGccqGHRaWk ceWGybGbaKaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaae aadaqadaqaaiqad6eagaqcamaaBaaaleaacaaIXaaabeaakiabgUca Riqad6eagaqcamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacqaHapaC daWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaS baaeaacaWGQbaabeaaaeqaniabggHiLdaaleaacaWGQbGaeyypa0Ja aGymaaqaaiaaikdaa0GaeyyeIuoaaaaakeaaaeaacqGH9aqpaeaada Wcaaqaaiaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqa amaaqadabaGafqOSdiMbaKaadaWgaaWcbaGaamOAaaqabaGccuaHdp WCgaqcamaaDaaaleaacaWG4bGaamOAaaqaaiaaikdaaaGcceWGobGb aKaadaWgaaWcbaGaamOAaaqabaGccqGHRaWkdaqadaqaamaalyaaba GabmOtayaajaWaaSbaaSqaaiaaigdaaeqaaOGabmOtayaajaWaaSba aSqaaiaaikdaaeqaaaGcbaWaaeWaaeaaceWGobGbaKaadaWgaaWcba GaaGymaaqabaGccqGHRaWkceWGobGbaKaadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaeWaaeaacuaH8o qBgaqcamaaBaaaleaacaWG4bGaaGymaaqabaGccqGHsislcuaH8oqB gaqcamaaBaaaleaacaWG4bGaaGOmaaqabaaakiaawIcacaGLPaaada qadaqaaiqbeY7aTzaajaWaaSbaaSqaaiaadMhacaaIXaaabeaakiab gkHiTiqbeY7aTzaajaWaaSbaaSqaaiaadMhacaaIYaaabeaaaOGaay jkaiaawMcaaaWcbaGaamOAaiabg2da9iaaigdaaeaacaaIYaaaniab ggHiLdaakiaawIcacaGLPaaaaeaacaWGobWaaWbaaSqabeaacqGHsi slcaaIXaaaaOWaaeWaaeaadaaeWbqabSqaaiaadQgacqGH9aqpcaaI XaaabaGaaGOmaaqdcqGHris5aOGaaGPaVlqbeo8aZzaajaWaa0baaS qaaiaadIhacaWGQbaabaGaaGOmaaaakiqad6eagaqcamaaBaaaleaa caWGQbaabeaakiabgUcaRmaabmaabaWaaSGbaeaaceWGobGbaKaada WgaaWcbaGaaGymaaqabaGcceWGobGbaKaadaWgaaWcbaGaaGOmaaqa baaakeaadaqadaqaaiqad6eagaqcamaaBaaaleaacaaIXaaabeaaki abgUcaRiqad6eagaqcamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaaaaiaawIcacaGLPaaadaqadaqaaiqbeY7aTzaajaWaaSbaaS qaaiaadIhacaaIXaaabeaakiabgkHiTiqbeY7aTzaajaWaaSbaaSqa aiaadIhacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaaaacaaISaaaaaaa@EF8E@

d'où l'égalité (2.1) dans (b) découle immédiatement par substitution des limites de la partie (a) ainsi que des limites N j / N ω j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamOtamaaBaaaleaacaWGQbaabeaaaOqaaiaad6eaaaGaeyOKH4Qa eqyYdC3aaSbaaSqaaiaadQgaaeqaaOGaaiOlaaaa@416E@

Soit Σ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfo6atn aaBaaaleaacaWGobaabeaaaaa@3B7F@ la matrice diagonale par blocs avec deux blocs diagonaux D N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOtamaaBaaabaGaaGymaaqabaaabeaaaaa@3BA0@ et D N 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOtamaaBaaabaGaaGOmaaqabaaabeaakiaacYcaaaa@3C5B@ et pour j=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdaaaa@3D18@ soit

Ω 1j = 1 N j n j i S j ( 1 p ij N j ), Ω 2j = 1 N j n j i S j ( x i p ij X j ),      (A.1) Ω 3j = 1 N j n j i S j ( y i p ij Y j ), Ω 4j = 1 N j n j i S j x i μ x,j p ij ( y i α j β j x i ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaacmabaa eabaGaeuyQdC1aaSbaaSqaaiaaigdacaWGQbaabeaaaOqaaiabg2da 9aqaamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaamOAaaqaba GcdaGcaaqaaiaad6gadaWgaaWcbaGaamOAaaqabaaabeaaaaGcdaae qbqabSqaaiaadMgacqGHiiIZcaWGtbWaaSbaaeaacaWGQbaabeaaae qaniabggHiLdGcdaqadaqaamaalaaabaGaaGymaaqaaiaadchadaWg aaWcbaGaamyAaiaadQgaaeqaaaaakiabgkHiTiaad6eadaWgaaWcba GaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaaGPaVlaaywW7caaM c8UaeuyQdC1aaSbaaSqaaiaaikdacaWGQbaabeaakiabg2da9maala aabaGaaGymaaqaaiaad6eadaWgaaWcbaGaamOAaaqabaGcdaGcaaqa aiaad6gadaWgaaWcbaGaamOAaaqabaaabeaaaaGcdaaeqbqabSqaai aadMgacqGHiiIZcaWGtbWaaSbaaeaacaWGQbaabeaaaeqaniabggHi LdGcdaqadaqaamaalaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaO qaaiaadchadaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabgkHiTiaa dIfadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaaaba aabaaabaaabaaabaGaaiikaiaabgeacaqGUaGaaeymaiaacMcaaeaa cqqHPoWvdaWgaaWcbaGaaG4maiaadQgaaeqaaaGcbaGaeyypa0daba WaaSaaaeaacaaIXaaabaGaamOtamaaBaaaleaacaWGQbaabeaakmaa kaaabaGaamOBamaaBaaaleaacaWGQbaabeaaaeqaaaaakmaaqafabe WcbaGaamyAaiabgIGiolaadofadaWgaaqaaiaadQgaaeqaaaqab0Ga eyyeIuoakmaabmaabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaadMgaae qaaaGcbaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyOe I0IaamywamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiY cacaaMc8UaaGzbVlaaykW7cqqHPoWvdaWgaaWcbaGaaGinaiaadQga aeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOtamaaBaaaleaaca WGQbaabeaakmaakaaabaGaamOBamaaBaaaleaacaWGQbaabeaaaeqa aaaakmaaqafabeWcbaGaamyAaiabgIGiolaadofadaWgaaqaaiaadQ gaaeqaaaqab0GaeyyeIuoakmaalaaabaGaamiEamaaBaaaleaacaWG PbaabeaakiabgkHiTiabeY7aTnaaBaaaleaacaWG4bGaaGilaiaadQ gaaeqaaaGcbaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaaaOWa aeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaeqySde 2aaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaeqOSdi2aaSbaaSqaaiaa dQgaaeqaaOGaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaiaac6caaeaaaaaaaa@B918@

Puisque S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada WgaaWcbaGaaGymaaqabaaaaa@3ABB@ et S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada WgaaWcbaGaaGOmaaqabaaaaa@3ABC@ sont indépendants, { Ω k1 } k=1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaacmaaba GaeuyQdC1aaSbaaSqaaiaadUgacaaIXaaabeaaaOGaay5Eaiaaw2ha amaaDaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaaisdaaaaaaa@4238@ est indépendant de { Ω k2 } k=1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaacmaaba GaeuyQdC1aaSbaaSqaaiaadUgacaaIYaaabeaaaOGaay5Eaiaaw2ha amaaDaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaaisdaaaGccqGHfl Y1aaa@448D@ Notons que, ici et tout au long de la présente preuve, les sommes sur i S j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGtbWaaSbaaSqaaiaadQgaaeqaaaaa@3D61@ utilisées pour définir X ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qcamaaBaaaleaacaWGQbaabeaakiaacYcaaaa@3BBE@ Y ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaWGQbaabeaakiaacYcaaaa@3BBF@ Ω k j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfM6axn aaBaaaleaacaWGRbGaamOAaaqabaGccaGGSaaaaa@3D4F@ et les estimateurs de variance doivent être interprétés comme étant des sommes avec multiplicité compte tenu du plan d'échantillonnage PPT avec remise. La condition (C4) permet d'appliquer le théorème central limite de Liapounov pour montrer que

Σ N 1/2 [ Ω 11 , Ω 21 , Ω 31 , Ω 12 , Ω 22 , Ω 32 ] T d N( 0, I 6 ), Ω 4j d N( 0, σ xe,j 2 ),      (A.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfo6atn aaDaaaleaacaWGobaabaWaaSGbaeaacqGHsislcaaIXaaabaGaaGOm aaaaaaGcdaWadaqaaiabfM6axnaaBaaaleaacaaIXaGaaGymaaqaba GccaaISaGaeuyQdC1aaSbaaSqaaiaaikdacaaIXaaabeaakiaaiYca cqqHPoWvdaWgaaWcbaGaaG4maiaaigdaaeqaaOGaaGilaiabfM6axn aaBaaaleaacaaIXaGaaGOmaaqabaGccaaISaGaeuyQdC1aaSbaaSqa aiaaikdacaaIYaaabeaakiaaiYcacqqHPoWvdaWgaaWcbaGaaG4mai aaikdaaeqaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGa eyOKH46aaSbaaSqaamaaBaaabaGaamizaaqabaaabeaakiaaykW7ca WGobWaaeWaaeaacaaIWaGaaGilaiaadMeadaWgaaWcbaGaaGOnaaqa baaakiaawIcacaGLPaaacaaISaGaaGPaVlaaykW7cqqHPoWvdaWgaa WcbaGaaGinaiaadQgaaeqaaOGaeyOKH46aaSbaaSqaamaaBaaabaGa amizaaqabaaabeaakiaaykW7caWGobWaaeWaaeaacaaIWaGaaGilai abeo8aZnaaDaaaleaacaWG4bGaamyzaiaaiYcacaWGQbaabaGaaGOm aaaaaOGaayjkaiaawMcaaiaaiYcacaWLjaGaaCzcaiaaxMaacaGGOa Gaaeyqaiaab6cacaqGYaGaaiykaaaa@7E63@

I 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMeada WgaaWcbaGaaGOnaaqabaaaaa@3AB6@ est la matrice identité de dimensions 6 × 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiAdacq GHxdaTcaaI2aaaaa@3C93@ , et σ x e , j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWG4bGaamyzaiaaiYcacaWGQbaabaGaaGOmaaaaaaa@3F34@ est donné dans l'énoncé de (d). Les limites qui définissent les variances asymptotiques dans (A.2) existent conformément à (C3).

Preuve de (c). Il est facile de vérifier d'après la définition que

( β ^ j β j α ^ j α j )= 1 N ^ j σ ^ xj 2 i S j ( x i μ ^ xj σ ^ xj 2 ( x i μ ^ xj ) μ ^ xj ) y i α j β j x i π i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeaabkqaaaqaaiqbek7aIzaajaWaaSbaaSqaaiaadQgaaeqaaOGa eyOeI0IaeqOSdi2aaSbaaSqaaiaadQgaaeqaaaGcbaGafqySdeMbaK aadaWgaaWcbaGaamOAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGa amOAaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXa aabaGabmOtayaajaWaaSbaaSqaaiaadQgaaeqaaOGafq4WdmNbaKaa daqhaaWcbaGaamiEaiaadQgaaeaacaaIYaaaaaaakmaaqafabeWcba GaamyAaiabgIGiolaadofadaWgaaqaaiaadQgaaeqaaaqab0Gaeyye IuoakmaabmaabaqbaeqabkqaaaqaaiaadIhadaWgaaWcbaGaamyAaa qabaGccqGHsislcuaH8oqBgaqcamaaBaaaleaacaWG4bGaamOAaaqa baaakeaacuaHdpWCgaqcamaaDaaaleaacaWG4bGaamOAaaqaaiaaik daaaGccqGHsislcaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiab gkHiTiqbeY7aTzaajaWaaSbaaSqaaiaadIhacaWGQbaabeaakiaacM cacaaMc8UafqiVd0MbaKaadaWgaaWcbaGaamiEaiaadQgaaeqaaaaa aOGaayjkaiaawMcaamaalaaabaGaamyEamaaBaaaleaacaWGPbaabe aakiabgkHiTiabeg7aHnaaBaaaleaacaWGQbaabeaakiabgkHiTiab ek7aInaaBaaaleaacaWGQbaabeaakiaadIhadaWgaaWcbaGaamyAaa qabaaakeaacqaHapaCdaWgaaWcbaGaamyAaaqabaaaaOGaaGOlaaaa @82EF@

Puisqu'il a été établi dans (a) que σ ^ x j 2 P σ x j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aajaWaa0baaSqaaiaadIhacaWGQbaabaGaaGOmaaaakiabgkziUoaa BaaaleaadaWgaaqaaiaadcfaaeqaaaqabaGccaaMc8Uaeq4Wdm3aa0 baaSqaaiaadIhacaWGQbaabaGaaGOmaaaaaaa@46EA@ et N ^ j / N j P 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GabmOtayaajaWaaSbaaSqaaiaadQgaaeqaaaGcbaGaamOtamaaBaaa leaacaWGQbaabeaaaaGccqGHsgIRdaWgaaWcbaWaaSbaaeaacaWGqb aabeaaaeqaaOGaaGPaVlaaigdacaGGSaaaaa@4321@ il s'ensuit que la distribution limite de n j ( β ^ j β j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBamaaBaaaleaacaWGQbaabeaaaeqaaOWaaeWaaeaacuaHYoGy gaqcamaaBaaaleaacaWGQbaabeaakiabgkHiTiabek7aInaaBaaale aacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@4336@ est la même que celle de

n j ( N j σ x j 2 ) 1 i S j ( x i μ x j ) ( y i α j β j x i ) / π i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaaBaaaleaacaWGQbaabeaakmaabmaabaGaamOt amaaBaaaleaacaWGQbaabeaakiabeo8aZnaaDaaaleaacaWG4bGaam OAaaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHi TiaaigdaaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcaWGtbWaaSbaae aacaWGQbaabeaaaeqaniabggHiLdGcdaWcgaqaamaabmaabaGaamiE amaaBaaaleaacaWGPbaabeaakiabgkHiTiabeY7aTnaaBaaaleaaca WG4bGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadMhadaWg aaWcbaGaamyAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGaamOAaa qabaGccqGHsislcqaHYoGydaWgaaWcbaGaamOAaaqabaGccaWG4bWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaeqiWda3aaS baaSqaaiaadMgaaeqaaaaakiaaiYcaaaa@650F@

qui est clairement la même que celle de σ xj 2 Ω 4j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWG4bGaamOAaaqaaiabgkHiTiaaikdaaaGccqqHPoWv daWgaaWcbaGaaGinaiaadQgaaeqaaaaa@41F2@ dans (A.1). La première assertion de (c) découle immédiatement de (A.2). La convergence de σ ^ x e , j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aajaWaa0baaSqaaiaadIhacaWGLbGaaGilaiaadQgaaeaacaaIYaaa aaaa@3F44@ s'ensuit en notant en vertu de (a) que

σ ^ xe,j 2 N j 2 i S j ( x i μ xj ) 2 π i p ij ( y i α j β j x i ) 2 P 0.      (A.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aajaWaa0baaSqaaiaadIhacaWGLbGaaGilaiaadQgaaeaacaaIYaaa aOGaeyOeI0IaamOtamaaDaaaleaacaWGQbaabaGaeyOeI0IaaGOmaa aakmaaqafabeWcbaGaamyAaiabgIGiolaadofadaWgaaqaaiaadQga aeqaaaqab0GaeyyeIuoakmaalaaabaWaaeWaaeaacaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaadIhacaWG QbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaai abec8aWnaaBaaaleaacaWGPbaabeaakiaadchadaWgaaWcbaGaamyA aiaadQgaaeqaaaaakmaabmaabaGaamyEamaaBaaaleaacaWGPbaabe aakiabgkHiTiabeg7aHnaaBaaaleaacaWGQbaabeaakiabgkHiTiab ek7aInaaBaaaleaacaWGQbaabeaakiaadIhadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsgIR daWgaaWcbaWaaSbaaeaacaWGqbaabeaaaeqaaOGaaGPaVlaaicdaca aIUaGaaCzcaiaaxMaacaWLjaGaaiikaiaabgeacaqGUaGaae4maiaa cMcaaaa@7363@

Le deuxième terme du premier membre de (A.3) contient une variance d'échantillonnage PPT avec remise calculée de manière qu'elle soit bornée par 1 / n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaaGymaaqaaiaad6gadaWgaaWcbaGaamOAaaqabaaaaaaa@3BDB@ conformément à (C4), dont l'espérance en vertu de (C3) converge vers σ xe,j 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWG4bGaamyzaiaaiYcacaWGQbaabaGaaGOmaaaakiaa ysW7caGGUaaaaa@417D@

Preuve de (d). De (1.2) et (a), il découle que ( Y ^ reg ,2 Y ) / N P 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba WaaeWaaeaaceWGzbGbaKaadaWgaaWcbaGaaeOCaiaabwgacaqGNbGa aGilaiaaikdaaeqaaOGaeyOeI0IaamywaaGaayjkaiaawMcaaaqaai aad6eaaaGaeyOKH46aaSbaaSqaamaaBaaabaGaamiuaaqabaaabeaa kiaaykW7caaIWaGaaiilaaaa@48A4@ qui peut aussi être considéré comme la représentation

n ( Y ^ reg,2 Y )/N = n N j=1 2 [ N j Y ^ j N ^ j Y j + β ^ j ( X j N j X ^ j N ^ j ) ] = n N 1 2 n 1 N N ^ 1 [ ( Y ¯ 1 + β ^ 1 X ¯ 1 ) Ω 11 β ^ 1 Ω 21 + Ω 31 ] + n N 2 2 n 1 N N ^ 2 [ ( Y ¯ 2 + β ^ 2 X ¯ 2 ) Ω 12 β ^ 2 Ω 22 + Ω 32 ] = d n1 T Ω ¯ 1 + d n2 T Ω ¯ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaacqWaaa aqbaWaaOaaaeaacaWGUbaaleqaaOWaaSGbaeaadaqadaqaaiqadMfa gaqcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqaba GccqGHsislcaWGzbaacaGLOaGaayzkaaaabaGaamOtaaaaaeaacqGH 9aqpaeaadaWcaaqaamaakaaabaGaamOBaaWcbeaaaOqaaiaad6eaaa WaaabCaeqaleaacaWGQbGaeyypa0JaaGymaaqaaiaaikdaa0Gaeyye IuoakmaadmaabaWaaSaaaeaacaWGobWaaSbaaSqaaiaadQgaaeqaaO GabmywayaajaWaaSbaaSqaaiaadQgaaeqaaaGcbaGabmOtayaajaWa aSbaaSqaaiaadQgaaeqaaaaakiabgkHiTiaadMfadaWgaaWcbaGaam OAaaqabaGccqGHRaWkcuaHYoGygaqcamaaBaaaleaacaWGQbaabeaa kmaabmaabaGaamiwamaaBaaaleaacaWGQbaabeaakiabgkHiTmaala aabaGaamOtamaaBaaaleaacaWGQbaabeaakiqadIfagaqcamaaBaaa leaacaWGQbaabeaaaOqaaiqad6eagaqcamaaBaaaleaacaWGQbaabe aaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacqGH9aqp aeaadaWcaaqaamaakaaabaGaamOBaaWcbeaakiaad6eadaqhaaWcba GaaGymaaqaaiaaikdaaaaakeaadaGcaaqaaiaad6gadaWgaaWcbaGa aGymaaqabaaabeaakiaad6eaceWGobGbaKaadaWgaaWcbaGaaGymaa qabaaaaOWaamWaaeaadaqadaqaaiabgkHiTiqadMfagaqeamaaBaaa leaacaaIXaaabeaakiabgUcaRiqbek7aIzaajaWaaSbaaSqaaiaaig daaeqaaOGabmiwayaaraWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaGaeuyQdC1aaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTi qbek7aIzaajaWaaSbaaSqaaiaaigdaaeqaaOGaeuyQdC1aaSbaaSqa aiaaikdacaaIXaaabeaakiabgUcaRiabfM6axnaaBaaaleaacaaIZa GaaGymaaqabaaakiaawUfacaGLDbaaaeaaaeaacqGHRaWkaeaadaWc aaqaamaakaaabaGaamOBaaWcbeaakiaad6eadaqhaaWcbaGaaGOmaa qaaiaaikdaaaaakeaadaGcaaqaaiaad6gadaWgaaWcbaGaaGymaaqa baaabeaakiaad6eaceWGobGbaKaadaWgaaWcbaGaaGOmaaqabaaaaO WaamWaaeaadaqadaqaaiabgkHiTiqadMfagaqeamaaBaaaleaacaaI YaaabeaakiabgUcaRiqbek7aIzaajaWaaSbaaSqaaiaaikdaaeqaaO GabmiwayaaraWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGa euyQdC1aaSbaaSqaaiaaigdacaaIYaaabeaakiabgkHiTiqbek7aIz aajaWaaSbaaSqaaiaaikdaaeqaaOGaeuyQdC1aaSbaaSqaaiaaikda caaIYaaabeaakiabgUcaRiabfM6axnaaBaaaleaacaaIZaGaaGOmaa qabaaakiaawUfacaGLDbaaaeaaaeaacqGH9aqpaeaacaWGKbWaa0ba aSqaaiaad6gacaaIXaaabaGaamivaaaakiqbfM6axzaaraWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamizamaaDaaaleaacaWGUbGaaGOm aaqaaiaadsfaaaGccuqHPoWvgaqeamaaBaaaleaacaaIYaaabeaaki aaiYcaaaaaaa@B85D@

où la deuxième égalité découle des définitions notationnelles de Ω k j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfM6axn aaBaaaleaacaWGRbGaamOAaaqabaaaaa@3C95@ de même que π i = n j p ij , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWn aaBaaaleaacaWGPbaabeaakiabg2da9iaad6gadaWgaaWcbaGaamOA aaqabaGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcaaa a@42B3@ Y ^ j = i S j y i / π i , X ^ j = i S j x i / π i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaWGQbaabeaakiabg2da9maaqababeWcbaGaamyA aiabgIGiolaadofadaWgaaqaaiaadQgaaeqaaaqab0GaeyyeIuoakm aalyaabaGaamyEamaaBaaaleaacaWGPbaabeaaaOqaaiabec8aWnaa BaaaleaacaWGPbaabeaaaaGccaaISaGabmiwayaajaWaaSbaaSqaai aadQgaaeqaaOGaeyypa0ZaaabeaeqaleaacaWGPbGaeyicI4Saam4u amaaBaaabaGaamOAaaqabaaabeqdcqGHris5aOWaaSGbaeaacaWG4b WaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMga aeqaaaaakiaacYcaaaa@5754@ et la troisième de

d nj = n N j 2 n j N N ^ j [ Y ¯ j + β ^ j X ¯ j , β ^ j ,1 ] T , Ω ¯ 1 = [ Ω 11 , Ω 21 , Ω 31 ] T , Ω ¯ 2 = [ Ω 21 , Ω 22 , Ω 32 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgada WgaaWcbaGaamOBaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaadaGcaaqa aiaad6gaaSqabaGccaWGobWaa0baaSqaaiaadQgaaeaacaaIYaaaaa GcbaWaaOaaaeaacaWGUbWaaSbaaSqaaiaadQgaaeqaaaqabaGccaWG obGabmOtayaajaWaaSbaaSqaaiaadQgaaeqaaaaakmaadmaabaGaey OeI0IabmywayaaraWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIafqOS diMbaKaadaWgaaWcbaGaamOAaaqabaGcceWGybGbaebadaWgaaWcba GaamOAaaqabaGccaaISaGaeyOeI0IafqOSdiMbaKaadaWgaaWcbaGa amOAaaqabaGccaaISaGaaGymaaGaay5waiaaw2faamaaCaaaleqaba GaamivaaaakiaaiYcacaaMf8UafuyQdCLbaebadaWgaaWcbaGaaGym aaqabaGccqGH9aqpdaWadaqaaiabfM6axnaaBaaaleaacaaIXaGaaG ymaaqabaGccaaISaGaeuyQdC1aaSbaaSqaaiaaikdacaaIXaaabeaa kiaaiYcacqqHPoWvdaWgaaWcbaGaaG4maiaaigdaaeqaaaGccaGLBb GaayzxaaWaaWbaaSqabeaacaWGubaaaOGaaGilaiaaywW7cuqHPoWv gaqeamaaBaaaleaacaaIYaaabeaakiabg2da9maadmaabaGaeuyQdC 1aaSbaaSqaaiaaikdacaaIXaaabeaakiaaiYcacqqHPoWvdaWgaaWc baGaaGOmaiaaikdaaeqaaOGaaGilaiabfM6axnaaBaaaleaacaaIZa GaaGOmaaqabaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGc caaIUaaaaa@8065@

En vertu de (A.2), Ω ¯ 1 = O p (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbfM6axz aaraWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4tamaaBaaaleaa caWGWbaabeaakiaacIcacaaIXaGaaiykaaaa@40AC@ et Ω ¯ 2 = O p ( 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbfM6axz aaraWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaam4tamaaBaaaleaa caWGWbaabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaiaac6caaa a@418F@ En vertu de la condition (C2), d nj T = a 2j T + o p ( 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgada qhaaWcbaGaamOBaiaadQgaaeaacaWGubaaaOGaeyypa0Jaamyyamaa DaaaleaacaaIYaGaamOAaaqaaiaadsfaaaGccqGHRaWkcaWGVbWaaS baaSqaaiaadchaaeqaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaGa aiOlaaaa@4775@ Par conséquent, en vertu de (A.2), de la condition (C3) et de la méthode delta,

n ( Y ^ reg,2 Y )/N = a 21 T Ω ¯ 1 + a 22 T Ω ¯ 2 + o p ( 1 ) d N( 0, σ 2 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaikdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaeyypa0JaamyyamaaDaaa leaacaaIYaGaaGymaaqaaiaadsfaaaGccuqHPoWvgaqeamaaBaaale aacaaIXaaabeaakiabgUcaRiaadggadaqhaaWcbaGaaGOmaiaaikda aeaacaWGubaaaOGafuyQdCLbaebadaWgaaWcbaGaaGOmaaqabaGccq GHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaaIXaaa caGLOaGaayzkaaGaeyOKH46aaSbaaSqaaiaadsgaaeqaaOGaamOtam aabmaabaGaaGimaiaaiYcacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaaakiaawIcacaGLPaaacaaISaaaaa@61E5@

où la variance asymptotique σ 2 2 = j=1 2 a 2j T D j a 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabg2da9maaqadabeWcbaGa amOAaiabg2da9iaaigdaaeaacaaIYaaaniabggHiLdGccaaMc8Uaam yyamaaDaaaleaacaaIYaGaamOAaaqaaiaadsfaaaGccaWGebWaaSba aSqaaiaadQgaaeqaaOGaamyyamaaBaaaleaacaaIYaGaamOAaaqaba aaaa@4CC4@ est systématiquement estimée par

n N 2 j=1 2 i S j 1 π i 2 ( y i β ^ j x i ( Y ^ j β ^ j X ^ j )/ N ^ j ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaaba GaamOBaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaabCaeqa leaacaWGQbGaeyypa0JaaGymaaqaaiaaikdaa0GaeyyeIuoakmaaqa fabeWcbaGaamyAaiabgIGiolaadofadaWgaaqaaiaadQgaaeqaaaqa b0GaeyyeIuoakmaalaaabaGaaGymaaqaaiabec8aWnaaDaaaleaaca WGPbaabaGaaGOmaaaaaaGcdaqadaqaaiaadMhadaWgaaWcbaGaamyA aaqabaGccqGHsislcuaHYoGygaqcamaaBaaaleaacaWGQbaabeaaki aadIhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcgaqaamaabmaa baGabmywayaajaWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IafqOSdi MbaKaadaWgaaWcbaGaamOAaaqabaGcceWGybGbaKaadaWgaaWcbaGa amOAaaqabaaakiaawIcacaGLPaaaaeaaceWGobGbaKaadaWgaaWcba GaamOAaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aOGaaGilaaaa@6423@

qui est en accord avec la formule (9) de Cheng et coll. (2010). La preuve que n ( Y ^ reg ,1 Y ) / N d N ( 0, σ 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaigdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaeyOKH46aaSbaaSqaaiaa dsgaaeqaaOGaamOtamaabmaabaGaaGimaiaaiYcacqaHdpWCdaqhaa WcbaGaaGymaaqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@4DF6@ est similaire.

Preuve du théorème 2. En vertu de la conclusion (c) du théorème 1,

n ( β ^ 2 β ^ 1 β 2 + β 1 ) d N( 0, j=1 2 σ xe,j 2 / ( φ j 2 σ xj 4 ) ).      (A.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaabmaabaGafqOSdiMbaKaadaWgaaWcbaGaaGOm aaqabaGccqGHsislcuaHYoGygaqcamaaBaaaleaacaaIXaaabeaaki abgkHiTiabek7aInaaBaaaleaacaaIYaaabeaakiabgUcaRiabek7a InaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgkziUoaaBa aaleaacaWGKbaabeaakiaaykW7caWGobWaaeWaaeaacaaIWaGaaGil amaaqahabeWcbaGaamOAaiabg2da9iaaigdaaeaacaaIYaaaniabgg HiLdGcdaWcgaqaaiabeo8aZnaaDaaaleaacaWG4bGaamyzaiaaiYca caWGQbaabaGaaGOmaaaaaOqaamaabmaabaGaeqOXdO2aa0baaSqaai aadQgaaeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaaiaadIhacaWGQbaa baGaaGinaaaaaOGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacaaIUa GaaCzcaiaaxMaacaWLjaGaaiikaiaabgeacaqGUaGaaeinaiaacMca aaa@6D26@

La conclusion (2.4) dans la partie (a) de ce théorème s'ensuit directement.

Dans la preuve du théorème 1, nous avons montré que

n ( Y ^ reg,2 Y )/N = a 21 T Ω ¯ 1 + a 22 T Ω ¯ 2 + o p ( 1 ),      (A.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaikdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaeyypa0JaamyyamaaDaaa leaacaaIYaGaaGymaaqaaiaadsfaaaGccuqHPoWvgaqeamaaBaaale aacaaIXaaabeaakiabgUcaRiaadggadaqhaaWcbaGaaGOmaiaaikda aeaacaWGubaaaOGafuyQdCLbaebadaWgaaWcbaGaaGOmaaqabaGccq GHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaaIXaaa caGLOaGaayzkaaGaaGilaiaaxMaacaWLjaGaaCzcaiaacIcacaqGbb GaaeOlaiaabwdacaGGPaaaaa@5D07@

où les vecteurs constants a k j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaGaam4AaiaadQgaaeqaaaaa@3BED@ (et μ x , μ y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeY7aTn aaBaaaleaacaWG4baabeaakiaaiYcacqaH8oqBdaWgaaWcbaGaamyE aaqabaaaaa@3F7B@ ) ont été définis dans la partie (d) du théorème 1. De même,

n ( Y ^ reg,1 Y )/N = a 11 T Ω ¯ 1 + a 12 T Ω ¯ 2 + o p ( 1 ).      (A.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaigdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaeyypa0JaamyyamaaDaaa leaacaaIXaGaaGymaaqaaiaadsfaaaGccuqHPoWvgaqeamaaBaaale aacaaIXaaabeaakiabgUcaRiaadggadaqhaaWcbaGaaGymaiaaikda aeaacaWGubaaaOGafuyQdCLbaebadaWgaaWcbaGaaGOmaaqabaGccq GHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaaIXaaa caGLOaGaayzkaaGaaGOlaiaaxMaacaWLjaGaaCzcaiaacIcacaqGbb GaaeOlaiaabAdacaGGPaaaaa@5D07@

Quand (2.3) est vérifiée, β j =β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaWGQbaabeaakiabg2da9iabek7aIbaa@3E69@ (en vertu de la partie (b) du théorème 1) et μ y β μ x = j=1 2 ω j ( μ yj β j μ xj )= μ y2 β μ x2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeY7aTn aaBaaaleaacaWG5baabeaakiabgkHiTiabek7aIjabeY7aTnaaBaaa leaacaWG4baabeaakiabg2da9maaqadabeWcbaGaamOAaiabg2da9i aaigdaaeaacaaIYaaaniabggHiLdGccaaMc8UaeqyYdC3aaSbaaSqa aiaadQgaaeqaaOWaaeWaaeaacqaH8oqBdaWgaaWcbaGaamyEaiaadQ gaaeqaaOGaeyOeI0IaeqOSdi2aaSbaaSqaaiaadQgaaeqaaOGaeqiV d02aaSbaaSqaaiaadIhacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2 da9iabeY7aTnaaBaaaleaacaWG5bGaaGOmaaqabaGccqGHsislcqaH YoGycqaH8oqBdaWgaaWcbaGaamiEaiaaikdaaeqaaOGaaiilaaaa@64D5@ de sorte que a 1j = a 2j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaGaaGymaiaadQgaaeqaaOGaeyypa0JaamyyamaaBaaaleaa caaIYaGaamOAaaqabaaaaa@3F85@ pour j=1,2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGUaaaaa@3DCA@ Il découle directement de (A.5) et (A.6) que n ( Y ^ reg,1 Y ^ reg,2 )/N P 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaigdaaeqaaOGaeyOeI0Iabm ywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zaiaaiYcacaaIYaaa beaaaOGaayjkaiaawMcaaaqaaiaad6eaaaGaeyOKH46aaSbaaSqaam aaBaaabaGaamiuaaqabaaabeaakiaaykW7caaIWaGaaiilaaaa@4E3A@ et donc que les estimateurs Y ^ reg , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaam4Aaaqabaaa aa@3E83@ suivent la même loi asymptotique, qui est normale comme nous l'avons montré à la partie (d) du théorème 1. Enfin, la définition de Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@ implique que P( Y ^ dec = Y ^ reg,1 ou Y ^ reg,2 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIXaaabeaakiaaykW7caaMc8Uaae4BaiaabwhacaaMc8Ua aGPaVlqadMfagaqcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISa GaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIXaaaaa@54C9@ , et (A.5) et (A.6) impliquent que

n ( Y ^ dec Y )/N = a 21 T Ω ¯ 1 + a 22 T Ω ¯ 2 + o p ( 1 ),      (A.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeizaiaabwgacaqGJbaabeaakiabgkHiTiaadMfaaiaawIcaca GLPaaaaeaacaWGobaaaiabg2da9iaadggadaqhaaWcbaGaaGOmaiaa igdaaeaacaWGubaaaOGafuyQdCLbaebadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGHbWaa0baaSqaaiaaikdacaaIYaaabaGaamivaaaa kiqbfM6axzaaraWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4Bam aaBaaaleaacaWGWbaabeaakmaabmaabaGaaGymaaGaayjkaiaawMca aiaaiYcacaWLjaGaaCzcaiaaxMaacaGGOaGaaeyqaiaab6cacaqG3a Gaaiykaaaa@5B85@

ce qui achève la preuve de (2.5) dans (a).

Preuve de (b). Si β 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI YaaabeaakiaacYcaaaa@4098@ alors (A.4) implique que P( Y ^ dec = Y ^ reg,2 )1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkziUkaaigdacaGG Saaaaa@48EE@ c.-à-d. que le test t pour l'égalité de β ^ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaWaaSbaaSqaaiaadQgaaeqaaaaa@3BC8@ donne lieu au rejet avec certitude à la limite. Alors (A.7) continue d'être vérifiée, et la loi asymptotique de Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@ demeure la même que celle de Y ^ reg ,2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaGc caGGUaaaaa@3F0B@

Preuve du théorème 3. Dans ce théorème, les hypothèses (C2) à (C4) sont remplacées par les hypothèses selon lesquelles les triplets iid ( y i , x i , z i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaamyEamaaBaaaleaacaWGPbaabeaakiaaiYcacaWG4bWaaSbaaSqa aiaadMgaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaaa@4257@ satisfont les conditions de moments et le modèle (2.7). Les assertions dans (C2) à (C4) restent alors vérifiées lorsque la probabilité tend vers 1 quand n , N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gaca aISaGaamOtaaaa@3B78@ sont grands, ce qui est établi à l'aide de la loi (forte) des grands nombres.

Outre les conclusions des théorèmes 1 et 2, il reste à montrer que Y ^ reg ,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@ possède une plus petite variance asymptotique que Y ^ reg ,1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaGc caGGUaaaaa@3F0A@ Soit ϑ=( ϑ 1 , ϑ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg9akj abg2da9maabmaabaGaeqy0dO0aaSbaaSqaaiaaigdaaeqaaOGaaGil aiabeg9aknaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@431C@ et

F j ( ϑ )=[ ϑ 1 , ϑ 2 ,1 ] D j [ ϑ 1 , ϑ 2 ,1 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeada WgaaWcbaGaamOAaaqabaGcdaqadaqaaiabeg9akbGaayjkaiaawMca aiabg2da9maadmaabaGaeyOeI0Iaeqy0dO0aaSbaaSqaaiaaigdaae qaaOGaaGilaiabgkHiTiabeg9aknaaBaaaleaacaaIYaaabeaakiaa iYcacaaIXaaacaGLBbGaayzxaaGaamiramaaBaaaleaacaWGQbaabe aakmaadmaabaGaeyOeI0Iaeqy0dO0aaSbaaSqaaiaaigdaaeqaaOGa aGilaiabgkHiTiabeg9aknaaBaaaleaacaaIYaaabeaakiaaiYcaca aIXaaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaaiOlaaaa @591F@

Selon la définition de σ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIXaaabaGaaGOmaaaaaaa@3C63@ et σ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIYaaabaGaaGOmaaaaaaa@3C64@ dans (2.2), il suffit de montrer que F j ( ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeada WgaaWcbaGaamOAaaqabaGcdaqadaqaaiabeg9akbGaayjkaiaawMca aaaa@3E1D@ prend sa valeur minimale à ϑ=( α j , β j ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg9akj abg2da9maabmaabaGaeqySde2aaSbaaSqaaiaadQgaaeqaaOGaaGil aiabek7aInaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaac6 caaaa@4425@ Nous allons maintenant prouver cela pour j=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIXaGaaiOlaaaa@3C5E@ La preuve pour j=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIYaaaaa@3BAD@ est similaire. Soit m i i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gada WgaaWcbaGaamyAaiqadMgagaqbaaqabaaaaa@3C02@ l'élément ( i , i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaamyAaiaaiYcaceWGPbGbauaaaiaawIcacaGLPaaaaaa@3D23@ de D 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaaGymaaqabaGccaGGUaaaaa@3B68@ Puisque D 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaaGymaaqabaaaaa@3AAC@ est symétrique et définie positive sous la condition (C3), m 12 = m 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gada WgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaamyBamaaBaaaleaa caaIYaGaaGymaaqabaaaaa@3F36@ et il existe un θ =( θ 1 , θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXn aaCaaaleqabaGaey4fIOcaaOGaeyypa0ZaaeWaaeaacqaH4oqCdaqh aaWcbaGaaGymaaqaaiabgEHiQaaakiaaiYcacqaH4oqCdaqhaaWcba GaaGOmaaqaaiabgEHiQaaaaOGaayjkaiaawMcaaaaa@464C@ unique tel que F 1 ( θ )= min ϑ F 1 ( ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeada WgaaWcbaGaaGymaaqabaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGa ey4fIOcaaaGccaGLOaGaayzkaaGaeyypa0JaciyBaiaacMgacaGGUb WaaSbaaSqaaiabeg9akbqabaGccaWGgbWaaSbaaSqaaiaaigdaaeqa aOWaaeWaaeaacqaHrpGsaiaawIcacaGLPaaaaaa@49C0@ et F 1 ( ϑ )/ ϑ T | ϑ= θ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaeyOaIyRaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaeqy0 dOeacaGLOaGaayzkaaaabaWaaqGabeaacqGHciITcqaHrpGsdaahaa WcbeqaaiaadsfaaaaakiaawIa7amaaBaaaleaacqaHrpGscqGH9aqp cqaH4oqCdaahaaadbeqaaiabgEHiQaaaaSqabaaaaOGaeyypa0JaaG imaiaac6caaaa@4D4E@ Cela implique que θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXn aaCaaaleqabaGaey4fIOcaaaaa@3BCE@ est la solution des deux équations suivantes :

m 11 ϑ 1 + m 12 ϑ 2 = m 13 , m 12 ϑ 1 + m 22 ϑ 2 = m 23      (A.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gada WgaaWcbaGaaGymaiaaigdaaeqaaOGaeqy0dO0aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIXaGaaGOmaaqabaGccq aHrpGsdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGTbWaaSbaaSqa aiaaigdacaaIZaaabeaakiaaiYcacaaMf8UaamyBamaaBaaaleaaca aIXaGaaGOmaaqabaGccqaHrpGsdaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGTbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabeg9aknaaBa aaleaacaaIYaaabeaakiabg2da9iaad2gadaWgaaWcbaGaaGOmaiaa iodaaeqaaOGaaCzcaiaaxMaacaWLjaGaaiikaiaabgeacaqGUaGaae ioaiaacMcaaaa@5EA2@

Par conséquent, il suffit de montrer que θ =( α 1 , β 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXn aaCaaaleqabaGaey4fIOcaaOGaeyypa0ZaaeWaaeaacqaHXoqydaWg aaWcbaGaaGymaaqabaGccaaISaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGccaGLOaGaayzkaaGaaiOlaaaa@44F1@ Puisque D 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaaGymaaqabaaaaa@3AAC@ est définie positive, le système d'équations (A.8) possède une solution unique. Étant donné la définition de D 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaaGymaaqabaGccaGGSaaaaa@3B66@

m 11 α 1 + m 12 β 1 = lim N 1 1 N 1 2 [ i U 1 ( 1 p i1 N 1 ) 2 p i1 α 1 + i U 1 ( 1 p i1 N 1 )( x i p i1 X 1 ) p i1 β 1 ] = lim N 1 1 N 1 2 [ i U 1 ( 1 p i1 N 1 )( α 1 N 1 α 1 p i1 + β 1 x i β 1 p i1 X 1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaaciWaaa uaaiaad2gadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeqySde2aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIXaGaaG OmaaqabaGccqaHYoGydaWgaaWcbaGaaGymaaqabaaakeaacqGH9aqp aeaadaGfqbqabSqaaiaad6eadaWgaaqaaiaaigdaaeqaaiabgkziUk abg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaWcaaqaaiaaigda aeaacaWGobWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakmaadmaaba WaaabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaabaGaaGymaaqa baaabeqdcqGHris5aOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGWb WaaSbaaSqaaiaadMgacaaIXaaabeaaaaGccqGHsislcaWGobWaaSba aSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOGaamiCamaaBaaaleaacaWGPbGaaGymaaqabaGccqaHXoqydaWg aaWcbaGaaGymaaqabaGccqGHRaWkdaaeqbqabSqaaiaadMgacqGHii IZcaWGvbWaaSbaaeaacaaIXaaabeaaaeqaniabggHiLdGcdaqadaqa amaalaaabaGaaGymaaqaaiaadchadaWgaaWcbaGaamyAaiaaigdaae qaaaaakiabgkHiTiaad6eadaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaadaqadaqaamaalaaabaGaamiEamaaBaaaleaacaWGPbaabe aaaOqaaiaadchadaWgaaWcbaGaamyAaiaaigdaaeqaaaaakiabgkHi TiaadIfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWGWb WaaSbaaSqaaiaadMgacaaIXaaabeaakiabek7aInaaBaaaleaacaaI XaaabeaaaOGaay5waiaaw2faaaqaaaqaaiabg2da9aqaamaawafabe WcbaGaamOtamaaBaaabaGaaGymaaqabaGaeyOKH4QaeyOhIukabeGc baGaciiBaiaacMgacaGGTbaaamaalaaabaGaaGymaaqaaiaad6eada qhaaWcbaGaaGymaaqaaiaaikdaaaaaaOWaamWaaeaadaaeqbqabSqa aiaadMgacqGHiiIZcaWGvbWaaSbaaeaacaaIXaaabeaaaeqaniabgg HiLdGcdaqadaqaamaalaaabaGaaGymaaqaaiaadchadaWgaaWcbaGa amyAaiaaigdaaeqaaaaakiabgkHiTiaad6eadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaadaqadaqaaiabeg7aHnaaBaaaleaacaaI XaaabeaakiabgkHiTiaad6eadaWgaaWcbaGaaGymaaqabaGccqaHXo qydaWgaaWcbaGaaGymaaqabaGccaWGWbWaaSbaaSqaaiaadMgacaaI XaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadI hadaWgaaWcbaGaamyAaaqabaGccqGHsislcqaHYoGydaWgaaWcbaGa aGymaaqabaGccaWGWbWaaSbaaSqaaiaadMgacaaIXaaabeaakiaadI fadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawUfacaGL DbaacaaISaaaaaaa@B9E1@

et

m 13 = lim N 1 1 N 1 2 [ i U 1 ( 1 p i1 N 1 )( y i p i1 Y 1 ) p i1 ] = lim N 1 1 N 1 2 [ i U 1 ( 1 p i1 N 1 )( α 1 + β 1 x i + ε i N 1 α 1 p i1 β 1 p i1 X 1 ) ] = lim N1 1 N 1 2 [ i U 1 ( 1 p i1 N 1 )( α 1 N 1 α 1 p i1 + β 1 x i β 1 p i1 X 1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaacmWaaa uaaiaad2gadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaeyypa0da baWaaybuaeqaleaacaWGobWaaSbaaeaacaaIXaaabeaacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaSaaaeaacaaIXaaa baGaamOtamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGcdaWadaqaam aaqafabeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaaiaaigdaaeqa aaqab0GaeyyeIuoakmaabmaabaWaaSaaaeaacaaIXaaabaGaamiCam aaBaaaleaacaWGPbGaaGymaaqabaaaaOGaeyOeI0IaamOtamaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaamaabmaabaWaaSaaaeaaca WG5bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamiCamaaBaaaleaacaWG PbGaaGymaaqabaaaaOGaeyOeI0IaamywamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaiaadchadaWgaaWcbaGaamyAaiaaigdaaeqa aaGccaGLBbGaayzxaaaabaaabaGaeyypa0dabaWaaybuaeqaleaaca WGobWaaSbaaeaacaaIXaaabeaacqGHsgIRcqGHEisPaeqakeaaciGG SbGaaiyAaiaac2gaaaWaaSaaaeaacaaIXaaabaGaamOtamaaDaaale aacaaIXaaabaGaaGOmaaaaaaGcdaWadaqaamaaqafabeWcbaGaamyA aiabgIGiolaadwfadaWgaaqaaiaaigdaaeqaaaqab0GaeyyeIuoakm aabmaabaWaaSaaaeaacaaIXaaabaGaamiCamaaBaaaleaacaWGPbGa aGymaaqabaaaaOGaeyOeI0IaamOtamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaamaabmaabaGaeqySde2aaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBa aaleaacaWGPbaabeaakiabgUcaRiabew7aLnaaBaaaleaacaWGPbaa beaakiabgkHiTiaad6eadaWgaaWcbaGaaGymaaqabaGccqaHXoqyda WgaaWcbaGaaGymaaqabaGccaWGWbWaaSbaaSqaaiaadMgacaaIXaaa beaakiabgkHiTiabek7aInaaBaaaleaacaaIXaaabeaakiaadchada WgaaWcbaGaamyAaiaaigdaaeqaaOGaamiwamaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqaaaqaaiabg2da9a qaamaawafabeWcbaGaamOtaiaaigdacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaaSaaaeaacaaIXaaabaGaamOtamaaDa aaleaacaaIXaaabaGaaGOmaaaaaaGcdaWadaqaamaaqafabeWcbaGa amyAaiabgIGiolaadwfadaWgaaqaaiaaigdaaeqaaaqab0GaeyyeIu oakmaabmaabaWaaSaaaeaacaaIXaaabaGaamiCamaaBaaaleaacaWG PbGaaGymaaqabaaaaOGaeyOeI0IaamOtamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaamaabmaabaGaeqySde2aaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaamOtamaaBaaaleaacaaIXaaabeaakiabeg7aHn aaBaaaleaacaaIXaaabeaakiaadchadaWgaaWcbaGaamyAaiaaigda aeqaaOGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaamiEam aaBaaaleaacaWGPbaabeaakiabgkHiTiabek7aInaaBaaaleaacaaI XaaabeaakiaadchadaWgaaWcbaGaamyAaiaaigdaaeqaaOGaamiwam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa aiaaiYcaaaaaaa@D390@

où la dernière égalité découle de l'hypothèse que ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLn aaBaaaleaacaWGPbaabeaaaaa@3BBD@ est indépendant de x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaamyAaaqabaaaaa@3B13@ et z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQhada WgaaWcbaGaamyAaaqabaaaaa@3B15@ , et est de moyenne 0 et de variance finie, et chacune des séquences z i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQhada WgaaWcbaGaamyAaaqabaGccaGGSaaaaa@3BCF@ 1 / z i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaaGymaaqaaiaadQhadaWgaaWcbaGaamyAaaqabaaaaOGaaiilaaaa @3CA0@ et x i / z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadQhadaWgaaWcbaGa amyAaaqabaaaaaaa@3D4C@ est iid avec une espérance finie. Par conséquent, m 11 α 1 + m 12 β 1 = m 13 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gada WgaaWcbaGaaGymaiaaigdaaeqaaOGaeqySde2aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIXaGaaGOmaaqabaGccq aHYoGydaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGTbWaaSbaaSqa aiaaigdacaaIZaaabeaakiaac6caaaa@4895@ On prouve de même que m 12 α 1 + m 22 β 2 = m 23 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gada WgaaWcbaGaaGymaiaaikdaaeqaaOGaeqySde2aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaGaaGOmaaqabaGccq aHYoGydaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGTbWaaSbaaSqa aiaaikdacaaIZaaabeaakiaac6caaaa@4899@ Par conséquent, ( α 1 , β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabek7aInaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaaaaa@405D@ est la solution unique du système d'équations (A.8), c.-à-d. que F 1 ( ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeada WgaaWcbaGaaGymaaqabaGcdaqadaqaaiabeg9akbGaayjkaiaawMca aaaa@3DE9@ prend sa valeur minimale à ϑ=( α 1 , β 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg9akj abg2da9maabmaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGil aiabek7aInaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaac6 caaaa@43BD@ D'où, σ 2 2 < σ 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIYaaabaGaaGOmaaaakiaaysW7caqG8aGaaGjbVlab eo8aZnaaDaaaleaacaaIXaaabaGaaGOmaaaakiaac6caaaa@446A@ Cela termine la preuve du théorème 3.

Remerciements

Le présent article décrit les travaux de recherche et analyses des auteurs et est diffusé en vue d’informer les parties intéressées et de favoriser la discussion. Les conclusions n’engagent que les auteurs et n’ont pas été approuvées par le Census Bureau. Nous tenons à remercier trois examinateurs et un rédacteur associé de leurs commentaires et suggestions utiles qui nous ont permis d’améliorer l’article. Les travaux de recherche de Jun Shao ont été financés partiellement par la bourse NSF Grant DMS-1007454.

Bibliographie

Bancroft, T., et Han, C.-P. (1977). Inference based on conditional specifications: A note and a bibliography. International Statistical Review, 45, 117-127.

Cheng, Y., Corcoran, C., Barth, J. et Hogue, C. (2009). An estimation procedure for the new public employment survey design. Washington, DC: American Statistical Association. Survey Research Methods Section, American Statistical Association, 3032-3046.

Cheng, Y., Slud, E. et Hogue, C. (2010). Variance estimation for decision-based estimators with application to the annual survey of public employment and payroll. Government Statistics Section of the American Statistical Association. Vancouver: American Statistical Association.

Deville, J.-C., et Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Fuller, W.A. (2009). Sampling Statistics. New York: John Wiley & Sons, Inc.

Isaki, C., et Fuller, W. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77, 89-96.

Rao, J.N.K., et Ramachandran, V. (1974). Comparison of the separate and combined ratio estimators. Sankhy�, C, 36, 151-156.

Saleh, A.K. Md. (2006). Theory of Preliminary Test and Stein-type Estimation, with Applications. Hoboken: Wiley-Interscience.

Särndal, C.-E., Swensson, B. et Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer-Verlag.

Shao, J., et Tu, D. (1995) The Jackknife and Bootstrap. New York: Springer.

Slud, E.V. (2012). Moderate-sample behavior of adaptively pooled stratified regression estimators. U.S. Census Bureau preprint.

Précédent

Date de modification :