4. Simulation study

John Preston

Previous | Next

A Monte Carlo simulation study was conducted to examine the performance of the proposed composite regression estimator. Ten artificial populations were created for the simulation study. Firstly, a base population (Population I) was generated to resemble the physical appearance of typical monthly business surveys conducted over a five year time period. Secondly, six additional populations (Populations II to VII) were each generated by modifying one of six key characteristics of the base population to help determine whether this particular characteristic had an impact on the performance of the proposed composite regression estimator. Finally, three supplementary populations (Populations VIII to X) were generated to examine the impact of auxiliary variables on the performance of the proposed composite regression estimator. A brief description of the ten artificial populations is given in Table 4.1.

The population totals at time  t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ for the various artificial populations were produced using the time series model:

Y ( t ) = T ( t ) + α 2 S ( t ) + α 3 I ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMfada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiabg2da 9iaadsfadaahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaa aakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadofadaah aaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiabgUcaRi abeg7aHnaaBaaaleaacaaIZaaabeaakiaadMeadaahaaWcbeqaamaa bmqabaGaamiDaaGaayjkaiaawMcaaaaaaaa@4F24@

where T ( t ) , S ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiaacYca caWGtbWaaWbaaSqabeaadaqadeqaaiaadshaaiaawIcacaGLPaaaaa aaaa@40C8@ and I ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMeada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaaaaa@3C7B@ are the trend, seasonality and irregular components of the time series given by:

T ( t ) = 1,000 + 5 ( t 1 ) + 50 ( 1 cos ( π ( t 1 ) / 18 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiabg2da 9iaabgdacaqGSaGaaeimaiaabcdacaqGWaGaey4kaSIaaGynamaabm qabaGaamiDaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkcaaI 1aGaaGimamaabmqabaGaaGymaiabgkHiTiGacogacaGGVbGaai4Cam aabmqabaWaaSGbaeaacqaHapaCdaqadeqaaiaadshacqGHsislcaaI XaaacaGLOaGaayzkaaaabaGaaGymaiaaiIdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaaaa@5842@

S ( t ) = 25 [ sin ( π t / 6 ) cos ( π t / 6 ) + cos ( π t / 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiabg2da 9iaaikdacaaI1aWaamWaaeaaciGGZbGaaiyAaiaac6gadaqadaqaam aalyaabaGaeqiWdaNaamiDaaqaaiaaiAdaaaaacaGLOaGaayzkaaGa eyOeI0Iaci4yaiaac+gacaGGZbWaaeWaaeaadaWcgaqaaiabec8aWj aadshaaeaacaaI2aaaaaGaayjkaiaawMcaaiabgUcaRiGacogacaGG VbGaai4CamaabmaabaWaaSGbaeaacqaHapaCcaWG0baabaGaaG4maa aaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@5A8A@

I ( t ) = 25 ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMeada ahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaakiabg2da 9iaaikdacaaI1aGaeqyTdu2aaWbaaSqabeaadaqadeqaaiaadshaai aawIcacaGLPaaaaaaaaa@435C@

with α 2 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIYaaabeaakiabg2da9iaaigdaaaa@3D4F@ for all artificial populations, except Population II (high seasonal series) where α 2 = 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIYaaabeaakiabg2da9iaaisdacaGGSaaaaa@3E02@ and α 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIZaaabeaakiabg2da9iaaigdaaaa@3D50@ for all artificial populations, except Population III (high irregular series) where α 3 = 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIZaaabeaakiabg2da9iaaisdacaGGSaaaaa@3E03@ and ε ( t ) N ( 0 , 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLn aaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaOGaeSip IOJaamOtamaabmaabaGaaGimaiaacYcacaaIXaaacaGLOaGaayzkaa GaaiOlaaaa@43BA@ The original ( T ( t ) + S ( t ) + I ( t ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamivamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaa aOGaey4kaSIaam4uamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOa GaayzkaaaaaOGaey4kaSIaamysamaaCaaaleqabaWaaeWabeaacaWG 0baacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiilaaaa@47A8@ seasonally adjusted ( T ( t ) + I ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamivamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaa aOGaey4kaSIaamysamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOa GaayzkaaaaaaGccaGLOaGaayzkaaaaaa@4284@ and trend ( T ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamivamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaa aaGccaGLOaGaayzkaaaaaa@3E1A@ series for the base artificial population are presented in Figure 4.1.

Table 4.1
Description of the artificial populations
Table summary
This table displays the results of Description of the artificial populations. The information is grouped by Artificial Populations (appearing as row headers), Population Descriptions (appearing as column headers).
Artificial Populations Population Descriptions
Population I Base Series
Population II High Seasonal Series
Population III High Irregular Series
Population IV High Population Rotation Series
Population V High Sample Rotation Series
Population VI High Unit Variation Series
Population VII Low Unit Correlation Series
Population VIII Base Auxiliary Correlation Series
Population IX High Auxiliary Correlation Series
Population X Low Auxiliary Correlation Series

Figure 4.1 Time series for population I

Figure 4.1 Time series for population I

Description for Figure 4.1

All ten artificial populations were partitioned into five strata; four take-some strata ( h = 1 , , 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamiAaiabg2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaaisdaaiaa wIcacaGLPaaaaaa@4075@ and one take-all strata ( h = 5 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamiAaiabg2da9iaaiwdaaiaawIcacaGLPaaacaGGUaaaaa@3DEB@ The stratum population sizes at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were chosen as N h ( t ) = N h [ 1 + 0.5 ( T ( t ) / T ( 1 ) 1 ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa kiabg2da9iaad6eadaWgaaWcbaGaamiAaaqabaGcdaWadaqaaiaaig dacqGHRaWkcaaIWaGaaiOlaiaaiwdadaqadaqaamaalyaabaGaamiv amaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaaGcba GaamivamaaCaaaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaa aaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaca GGSaaaaa@510C@ where N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaaqabaaaaa@3AE9@ is the stratum population for all artificial populations at time 1, selected to yield a skewed population often associated with typical business.

The expected population rotation rates between time t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GHsislcaaIXaaaaa@3B9E@ and time t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaca GGSaaaaa@3AA6@ due to the addition of "births� and the deletion of "deaths�, were specified as α 4 ( 1 R h ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI0aaabeaakmaabmaabaGaaGymaiabgkHiTiaadkfa daWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@416B@ where R h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkfada WgaaWcbaGaamiAaaqabaaaaa@3AED@ is the probability of a unit being "deathed� in the population for the base artificial population at any time period. A value of α 4 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI0aaabeaakiabg2da9iaaigdaaaa@3D51@ was used for all artificial populations, except Population IV (high population rotation series) where α 4 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI0aaabeaakiabg2da9iaaikdaaaa@3D52@ was used. The stratum sample sizes at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were set to n h ( t ) = n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa kiabg2da9iaad6gadaWgaaWcbaGaamiAaaqabaaaaa@40A9@ for the take-some strata, and n h ( t ) = N h ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa kiabg2da9iaad6eadaqhaaWcbaGaamiAaaqaamaabmqabaGaamiDaa GaayjkaiaawMcaaaaaaaa@430D@ for the take-all strata, where n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaamiAaaqabaaaaa@3B09@ is the stratum population at time 1.

The planned sample rotation rates between time t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GHsislcaaIXaaaaa@3B9E@ and time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were specified as α 5 ( 1 r h ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI1aaabeaakmaabmaabaGaaGymaiabgkHiTiaadkha daWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@418C@ where r h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhada WgaaWcbaGaamiAaaqabaaaaa@3B0D@ is equal to the inverse of the number of consecutive survey cycles a unit is expected to be in the sample given no population rotation, for the base artificial population at any time period (e.g., a planned sample rotation rate of 0.0417 equates to 24 survey cycles). A value of α 5 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI1aaabeaakiabg2da9iaaigdaaaa@3D52@ was used for all artificial populations, except Population V (high sample rotation series) where α 5 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI1aaabeaakiabg2da9iaaikdaaaa@3D53@ was used. The actual sample rotation rates will depend on these planned sample rotation as well as any unplanned sample rotation caused by the population rotation. The expected population rotation rates and the planned stratum sample rotation rate were selected to yield population and sample rotation rates similar to those often encountered in typical business surveys.

The stratum averages and stratum population variances at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were specified respectively as y ¯ h ( t ) = 0.2 ( Y ( t ) / N h ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baacaGLOaGaayzk aaaaaOGaeyypa0JaaGimaiaac6cacaaIYaWaaeWaaeaadaWcgaqaai aadMfadaahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa aOqaaiaad6eadaqhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaay jkaiaawMcaaaaaaaaakiaawIcacaGLPaaaaaa@4A99@ and S h ( t ) 2 = α 6 S h 2 ( y ¯ h ( t ) / y ¯ h ( t ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaiaa ikdaaaGccqGH9aqpcqaHXoqydaWgaaWcbaGaaGOnaaqabaGccaWGtb Waa0baaSqaaiaadIgaaeaacaaIYaaaaOWaaeWaaeaadaWcgaqaaiqa dMhagaqeamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baacaGLOa GaayzkaaaaaaGcbaGabmyEayaaraWaa0baaSqaaiaadIgaaeaadaqa deqaaiaadshaaiaawIcacaGLPaaaaaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaaa@508D@ with α 6 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI2aaabeaakiabg2da9iaaigdaaaa@3D53@ for all artificial populations, except Population VI (high unit variation series) where α 6 = 4. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI2aaabeaakiabg2da9iaaisdacaGGUaaaaa@3E08@ The stratum population correlations between time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ and time t k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GHsislcaWGRbaaaa@3BD3@ were defined using an exponential decay model, ρ ( y h ( t ) , y h ( t k ) ) = exp ( 0.02 α 7 k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg8aYn aabmaabaGaamyEamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baa caGLOaGaayzkaaaaaOGaaiilaiaadMhadaqhaaWcbaGaamiAaaqaam aabmaabaGaamiDaiabgkHiTiaadUgaaiaawIcacaGLPaaaaaaakiaa wIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiabgk HiTiaaicdacaGGUaGaaGimaiaaikdacqaHXoqydaWgaaWcbaGaaG4n aaqabaGccaWGRbaacaGLOaGaayzkaaaaaa@54DB@ with α 7 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI3aaabeaakiabg2da9iaaigdaaaa@3D54@ for all artificial populations, except Population VII (low unit correlation series) where α 7 = 4. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI3aaabeaakiabg2da9iaaisdacaGGUaaaaa@3E09@ The stratum population correlations between the variable of interest and the auxiliary variable at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were defined as ρ ( x h ( t ) , y h ( t ) ) = 1 α 8 ( 1 ρ h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg8aYn aabmaabaGaamiEamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baa caGLOaGaayzkaaaaaOGaaiilaiaadMhadaqhaaWcbaGaamiAaaqaam aabmqabaGaamiDaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaiab g2da9iaaigdacqGHsislcqaHXoqydaWgaaWcbaGaaGioaaqabaGcda qadaqaaiaaigdacqGHsislcqaHbpGCdaWgaaWcbaGaamiAaaqabaaa kiaawIcacaGLPaaaaaa@5198@ with α 8 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI4aaabeaakiabg2da9iaaigdaaaa@3D55@ for Population VIII (base auxiliary correlation series), α 8 = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI4aaabeaakiabg2da9iaaicdacaGGUaGaaGynaaaa @3EC5@ for Population IX (high auxiliary correlation series), α 8 = 1.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaI4aaabeaakiabg2da9iaaigdacaGGUaGaaGynaaaa @3EC6@ for Population X (low auxiliary correlation series) and not applicable for all other artificial populations.

The variables of interest y h i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada qhaaWcbaGaamiAaiaadMgaaeaadaqadeqaaiaadshaaiaawIcacaGL Paaaaaaaaa@3E86@ and auxiliary variables x h i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada qhaaWcbaGaamiAaiaadMgaaeaadaqadeqaaiaadshaaiaawIcacaGL Paaaaaaaaa@3E85@ for unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgaaa a@39EB@ in stratum h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaaa a@39EA@ at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ were generated from multivariate lognormal distributions with means y ¯ h ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baacaGLOaGaayzk aaaaaOGaaiilaaaa@3E6A@ variances S h ( t ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaiaa ikdaaaaaaa@3E2E@ and correlation coefficients ρ ( y h ( t ) , y h ( t k ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg8aYn aabmaabaGaamyEamaaDaaaleaacaWGObaabaWaaeWabeaacaWG0baa caGLOaGaayzkaaaaaOGaaiilaiaadMhadaqhaaWcbaGaamiAaaqaam aabmaabaGaamiDaiabgkHiTiaadUgaaiaawIcacaGLPaaaaaaakiaa wIcacaGLPaaacaGGUaaaaa@48CD@ The stratum level characteristics of N h , n h , R h , r h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaaqabaGccaGGSaGaamOBamaaBaaaleaacaWGObaa beaakiaacYcacaWGsbWaaSbaaSqaaiaadIgaaeqaaOGaaiilaiaadk hadaWgaaWcbaGaamiAaaqabaaaaa@4323@ and S h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada qhaaWcbaGaamiAaaqaaiaaikdaaaaaaa@3BAB@ are given by the values presented in Table 4.2.

A total of S = 10,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofacq GH9aqpcaqGXaGaaeimaiaabYcacaqGWaGaaeimaiaabcdaaaa@3F0A@ independent simulations were conducted for each of the ten artificial populations. In each of these simulations, stratified random samples s h ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa aaa@3D92@ of size n h ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa aaa@3D8D@ were selected from the population U h ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada qhaaWcbaGaamiAaaqaamaabmqabaGaamiDaaGaayjkaiaawMcaaaaa aaa@3D74@ using a permanent random number (PRN) selection technique at each time period, t = 1 , , 60. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GH9aqpcaaIXaGaaiilaiablAciljaacYcacaaI2aGaaGimaiaac6ca aaa@4065@ At each time period, t > 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GH+aGpcaaIXaGaaiilaaaa@3C69@ the "pseudo-populations�, U h * ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada qhaaWcbaGaamiAaaqaaiaacQcadaqadaqaaiaadshacqGHsislcaaI XaaacaGLOaGaayzkaaaaaaaa@3FC9@ and U h * ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada qhaaWcbaGaamiAaaqaaiaacQcadaqadaqaaiaadshaaiaawIcacaGL PaaaaaGccaGGSaaaaa@3EDB@ and "pseudo-samples�, s h * ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohada qhaaWcbaGaamiAaaqaaiaacQcadaqadaqaaiaadshacqGHsislcaaI XaaacaGLOaGaayzkaaaaaaaa@3FE7@ and s h * ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohada qhaaWcbaGaamiAaaqaaiaacQcadaqadeqaaiaadshaaiaawIcacaGL PaaaaaGccaGGSaaaaa@3EFA@ were identified, and the various MR estimators were evaluated. These included the MR1 estimator ( α = 0 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaaGaayjkaiaawMcaaiaacUdaaaa@3EA5@ the MR2 estimator ( α = 1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGymaaGaayjkaiaawMcaaiaacUdaaaa@3EA6@ the MR estimator using α = 0 .25 , 0 .5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHj abg2da9iaabcdacaqGUaGaaeOmaiaabwdacaGGSaGaaeimaiaab6ca caqG1aaaaa@413F@ and 0.75; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaaiOlaiaaiEdacaaI1aGaae4oaaaa@39B1@ the MRR estimator and the MRC estimator, with a compromise between the HT estimator and the MRR estimator for Populations I to VII and the GR estimator and the MRR estimator for Populations VIII to X , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIfaca GGSaaaaa@3A8A@ using α = 0.25 , 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHj abg2da9iaaicdacaGGUaGaaGOmaiaaiwdacaGGSaGaaGimaiaac6ca caaI1aaaaa@4164@ and 0.75. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaaiOlaiaaiEdacaaI1aGaaiOlaaaa@39A5@

Table 4.2
Stratum characteristics
Table summary
This table displays the results of Stratum characteristics. The information is grouped by XXXX (appearing as row headers), XXXX (appearing as column headers).
h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGObaaaa@3861@ N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGobWaaS baaSqaaiaadIgaaeqaaaaa@3960@ R h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGsbWaaS baaSqaaiaadIgaaeqaaaaa@3964@ n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGUbWaaS baaSqaaiaadIgaaeqaaaaa@3980@ r h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGYbWaaS baaSqaaiaadIgaaeqaaaaa@3984@ S h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGtbWaa0 baaSqaaiaadIgaaeaacaaIYaaaaaaa@3A22@ ρ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqFfpi0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFfr=dbba9q8aqLspe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacqaHbpGCda WgaaWcbaGaamiAaaqabaaaaa@3A4D@
S1 8,000 0.0150 12 0.042 0.4 0.85
S2 1,600 0.0125 18 0.042 3 0.75
S3 320 0.0100 24 0.042 20 0.65
S4 64 0.0075 30 0.000 125 0.55
S5 16 0.0025 16 0.000 625 0.95

The performance of the various MR estimators for the point-in-time and movement estimates were compared using their relative biases and the relative efficiencies with respect to the HT estimator for all artificial populations and also with respect to the GR estimator for Populations VIII to X. The relative biases and relative efficiencies of variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhaaa a@39FB@ at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ for the point-in-time and movement estimates were calculated as:

RB ( Y ^ ( t ) ) = 1 Y ( t ) [ 1 S s = 1 S ( Y ^ s ( t ) Y ( t ) ) ] RB ( Y ^ ( t ) Y ^ ( t 1 ) ) = 1 Y ( t 1 ) [ 1 S s = 1 S ( ( Y ^ s ( t ) Y ^ s ( t 1 ) ) ( Y ( t ) Y ( t 1 ) ) ) ] RE ( Y ^ ( t ) ) = MSE ( Y ^ * ( t ) ) / MSE ( Y ^ ( t ) ) RE ( Y ^ ( t ) Y ^ ( t 1 ) ) = MSE ( Y ^ * ( t ) Y ^ * ( t 1 ) ) / MSE ( Y ^ ( t ) Y ^ ( t 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabaqGem aaaaqaaiaabkfacaqGcbWaaeWaaeaaceWGzbGbaKaadaahaaWcbeqa amaabmqabaGaamiDaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaa qaaiabg2da9aqaamaalaaabaGaaGymaaqaaiaadMfadaahaaWcbeqa amaabmqabaGaamiDaaGaayjkaiaawMcaaaaaaaGcdaWadiqaamaala aabaGaaGymaaqaaiaadofaaaWaaabCaeaadaqadiqaaiqadMfagaqc amaaDaaaleaacaWGZbaabaWaaeWabeaacaWG0baacaGLOaGaayzkaa aaaOGaeyOeI0IaamywamaaCaaaleqabaWaaeWabeaacaWG0baacaGL OaGaayzkaaaaaaGccaGLOaGaayzkaaaaleaacaWGZbGaeyypa0JaaG ymaaqaaiaadofaa0GaeyyeIuoaaOGaay5waiaaw2faaaqaaiaabkfa caqGcbWaaeWaaeaaceWGzbGbaKaadaahaaWcbeqaamaabmqabaGaam iDaaGaayjkaiaawMcaaaaakiabgkHiTiqadMfagaqcamaaCaaaleqa baWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaO GaayjkaiaawMcaaaqaaiabg2da9aqaamaalaaabaGaaGymaaqaaiaa dMfadaahaaWcbeqaamaabmaabaGaamiDaiabgkHiTiaaigdaaiaawI cacaGLPaaaaaaaaOWaamWaceaadaWcaaqaaiaaigdaaeaacaWGtbaa amaaqahabaWaaeWaceaadaqadaqaaiqadMfagaqcamaaDaaaleaaca WGZbaabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaOGaeyOeI0Ia bmywayaajaWaa0baaSqaaiaadohaaeaadaqadaqaaiaadshacqGHsi slcaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaeyOeI0Ya aeWaaeaacaWGzbWaaWbaaSqabeaadaqadeqaaiaadshaaiaawIcaca GLPaaaaaGccqGHsislcaWGzbWaaWbaaSqabeaadaqadaqaaiaadsha cqGHsislcaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaaaleaacaWGZbGaeyypa0JaaGymaaqaaiaadofaa0Ga eyyeIuoaaOGaay5waiaaw2faaaqaaiaabkfacaqGfbWaaeWaaeaace WGzbGbaKaadaahaaWcbeqaamaabmqabaGaamiDaaGaayjkaiaawMca aaaaaOGaayjkaiaawMcaaaqaaiabg2da9aqaamaalyaabaGaaeytai aabofacaqGfbWaaeWaaeaaceWGzbGbaKaadaqhaaWcbaGaaiOkaaqa amaabmqabaGaamiDaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaa qaaiaab2eacaqGtbGaaeyramaabmaabaGabmywayaajaWaaWbaaSqa beaadaqadeqaaiaadshaaiaawIcacaGLPaaaaaaakiaawIcacaGLPa aaaaaabaGaaeOuaiaabweadaqadaqaaiqadMfagaqcamaaCaaaleqa baWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaOGaeyOeI0Iabmyway aajaWaaWbaaSqabeaadaqadaqaaiaadshacqGHsislcaaIXaaacaGL OaGaayzkaaaaaaGccaGLOaGaayzkaaaabaGaeyypa0dabaWaaSGbae aacaqGnbGaae4uaiaabweadaqadaqaaiqadMfagaqcamaaDaaaleaa caGGQaaabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaOGaeyOeI0 IabmywayaajaWaa0baaSqaaiaacQcaaeaadaqadaqaaiaadshacqGH sislcaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaabaGaae ytaiaabofacaqGfbWaaeWaaeaaceWGzbGbaKaadaahaaWcbeqaamaa bmqabaGaamiDaaGaayjkaiaawMcaaaaakiabgkHiTiqadMfagaqcam aaCaaaleqabaWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaa wMcaaaaaaOGaayjkaiaawMcaaaaaaaaaaa@D5B4@

where Y ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaDaaaleaacaWGZbaabaWaaeWabeaacaWG0baacaGLOaGaayzk aaaaaaaa@3D93@ is the estimator for variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhaaa a@39FB@ at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ for the s th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohada ahaaWcbeqaaiaabshacaqGObaaaaaa@3C04@ simulation sample, Y ^ * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaDaaaleaacaGGQaaabaWaaeWabeaacaWG0baacaGLOaGaayzk aaaaaaaa@3D49@ is the HT or GR estimator for variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhaaa a@39FB@ at time t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaca GGSaaaaa@3AA6@ and MSE ( Y ^ ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaab2eaca qGtbGaaeyramaabmaabaGabmywayaajaWaaWbaaSqabeaadaqadeqa aiaadshaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaa@409C@ and MSE ( Y ^ ( t ) Y ^ ( t 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaab2eaca qGtbGaaeyramaabmaabaGabmywayaajaWaaWbaaSqabeaadaqadeqa aiaadshaaiaawIcacaGLPaaaaaGccqGHsislceWGzbGbaKaadaahaa WcbeqaamaabmaabaGaamiDaiabgkHiTiaaigdaaiaawIcacaGLPaaa aaaakiaawIcacaGLPaaaaaa@46D8@ are the mean squared errors for variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhaaa a@39FB@ at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaaa a@39F6@ for the point-in-time and movement estimates given by:

MSE ( Y ^ ( t ) ) = 1 S s = 1 S ( Y ^ s ( t ) Y ( t ) ) 2 MSE ( Y ^ ( t ) Y ^ ( t 1 ) ) = 1 S s = 1 S ( ( Y ^ s ( t ) Y ^ s ( t 1 ) ) ( Y ( t ) Y ( t 1 ) ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabaqGcm aaaeaacaqGnbGaae4uaiaabweadaqadaqaaiqadMfagaqcamaaCaaa leqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaaGccaGLOaGaay zkaaaabaGaeyypa0dabaWaaSaaaeaacaaIXaaabaGaam4uaaaadaae WbqaamaabmGabaGabmywayaajaWaa0baaSqaaiaadohaaeaadaqade qaaiaadshaaiaawIcacaGLPaaaaaGccqGHsislcaWGzbWaaWbaaSqa beaadaqadeqaaiaadshaaiaawIcacaGLPaaaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaabaGaam4Caiabg2da9iaaigdaaeaa caWGtbaaniabggHiLdaakeaacaqGnbGaae4uaiaabweadaqadaqaai qadMfagaqcamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzk aaaaaOGaeyOeI0IabmywayaajaWaaWbaaSqabeaadaqadaqaaiaads hacqGHsislcaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaa baGaeyypa0dabaWaaSaaaeaacaaIXaaabaGaam4uaaaadaaeWbqaam aabmGabaWaaeWaaeaaceWGzbGbaKaadaqhaaWcbaGaam4Caaqaamaa bmqabaGaamiDaaGaayjkaiaawMcaaaaakiabgkHiTiqadMfagaqcam aaDaaaleaacaWGZbaabaWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGaam ywamaaCaaaleqabaWaaeWabeaacaWG0baacaGLOaGaayzkaaaaaOGa eyOeI0IaamywamaaCaaaleqabaWaaeWaaeaacaWG0bGaeyOeI0IaaG ymaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaeaacaWGZbGaeyypa0JaaGymaaqaai aadofaa0GaeyyeIuoakiaac6caaaaaaa@8854@

The relative biases of the point-in-time estimates for the MR1, MR2 and MRR estimators, averaged over the twelve months within each of the five years, for Population I (base series) are shown in Table 4.3. The proposed MR estimators (MR1-P, MR2-P, MRR-P) were compared against the current MR estimators (MR1-C, MR2-C, MRR-C), and the adjusted MR estimators (MR1-A, MR2-A, MRR-A), where a correction factor was applied to the MR values to account for the relative change in the population size in stratum h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaaa a@39EA@ between time t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacq GHsislcaaIXaaaaa@3B9E@ and time t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshaca GGUaaaaa@3AA8@

Table 4.3
Average relative bias (%) of point-in-time estimates for population I
Table summary
This table displays the results of Average relative bias (%) of point-in-time estimates for population I Year 1, Year 2, Year 3, Year 4 and Year 5 (appearing as column headers).
  Year 1 Year 2 Year 3 Year 4 Year 5
HT 0.024 -0.032 -0.015 -0.003 -0.005
MR1-C -0.909 -2.871 -2.292 -2.836 -4.122
MR2-C -0.918 -3.432 -3.449 -4.502 -6.820
MRR-C -0.919 -3.437 -3.458 -4.515 -6.839
MR1-A 0.064 -0.129 0.002 -0.062 -0.068
MR2-A 0.169 0.024 0.039 -0.109 -0.317
MRR-A 0.152 -0.027 -0.014 -0.174 -0.410
MR1-P 0.009 -0.066 -0.040 -0.051 -0.054
MR2-P 0.022 -0.053 -0.028 -0.039 -0.034
MRR-P 0.020 -0.056 -0.030 -0.039 -0.036

The current MR estimators exhibit substantial negative biases which compound over time. While the adjusted MR estimator removes the majority of these biases, the MR2-A and MRR-A estimators still display small negative biases which compound over time. On the other hand, the relative biases of the proposed MR estimator are negligible, with no apparent change in the magnitude of the relative biases over the five years.

Table 4.4 presents the absolute relative biases and relative efficiencies of the estimators for Population I (base series), averaged over the twelve months within each of the five years. The average absolute relative biases of the point-in-time and movement estimates were negligible for all of the estimators, and there was no appreciable change in the magnitude of the relative biases in any of the estimators over the five years. For the point-in-time estimates, the MR1 estimator performed better than the HT estimator, while the MR2 and MRR estimators performed poorer than the HT estimator. The relative efficiency of the MR2 and MRR estimators declined substantially over the five years, which suggests that these estimators are susceptible to the "drift� problem. The presence of the "drift� problem is evident by observing the relationship between the point-in-time estimates at the start of the first year ( t = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamiDaiabg2da9iaaigdaaiaawIcacaGLPaaaaaa@3D41@ and those at the start of the third year ( t = 25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaamiDaiabg2da9iaaikdacaaI1aaacaGLOaGaayzkaaaaaa@3E01@ from the simulation samples (Figure 4.2).

It can be seen that there are positive correlations between the point-in-time estimates at the start of the first and third years for the MR1, MR2, MRR and MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaiaac6cacaaI3aGaaGynaaGaayjkaiaa wMcaaaaa@4018@ estimators, signifying that once these estimators vary greatly from the true population totals, then there is a high likelihood that they will continue to drift further from the true population totals over time. While the correlations for the MR1 estimator are lower than those for the MR2 estimator, positive correlations are still evident signifying that the MR1 estimator is not immune from the drift problem. The positive correlations are not apparent for the HT and MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaiaac6cacaaIYaGaaGynaaGaayjkaiaa wMcaaaaa@4013@ estimators, and hence these estimators are not prone to the "drift� problem. Furthermore, it is clear that the MR2, MRR and MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaiaac6cacaaI3aGaaGynaaGaayjkaiaa wMcaaaaa@4018@ estimators are much more variable than the HT, MR1 and MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaiaac6cacaaIYaGaaGynaaGaayjkaiaa wMcaaaaa@4013@ estimators at start of the third year.

Table 4.4
Average absolute relative bias (%) and average relative efficiency (%) for population I
Table summary
This table displays the results of Average absolute relative bias (%) and average relative efficiency (%) for population I Point-in-Time Estimates, Movement Estimates, Year 1, Year 2, Year 3, Year 4 and Year 5 (appearing as column headers).
  Point-in-Time Estimates Movement Estimates
Year 1 Year 2 Year 3 Year 4 Year 5 Year 1 Year 2 Year 3 Year 4 Year 5
Average Absolute Relative Bias (%)
HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabIeaca qGubaaaa@3CCB@ 0.031 0.032 0.030 0.025 0.010 0.021 0.011 0.012 0.019 0.014
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 0.032 0.066 0.041 0.051 0.054 0.021 0.011 0.010 0.010 0.016
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 0.024 0.053 0.030 0.039 0.034 0.014 0.009 0.009 0.009 0.013
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 0.029 0.067 0.045 0.058 0.063 0.019 0.010 0.009 0.009 0.015
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 0.027 0.066 0.045 0.060 0.064 0.017 0.010 0.009 0.009 0.014
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 0.025 0.061 0.040 0.054 0.055 0.016 0.009 0.009 0.009 0.014
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 0.023 0.056 0.032 0.040 0.036 0.014 0.009 0.009 0.009 0.013
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 0.027 0.041 0.025 0.018 0.011 0.016 0.009 0.010 0.009 0.014
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 0.028 0.036 0.028 0.021 0.010 0.018 0.008 0.011 0.010 0.014
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 0.029 0.033 0.029 0.024 0.010 0.019 0.008 0.011 0.014 0.014
  Average Relative Efficiency (%)
HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabIeaca qGubaaaa@3CCB@ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 122.0 126.0 118.4 112.7 114.6 137.6 132.8 132.7 134.2 133.0
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 92.4 74.7 57.7 47.8 45.8 223.0 203.0 206.5 206.4 204.8
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 121.6 123.4 110.6 100.9 100.9 168.3 158.4 159.7 160.7 159.2
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 115.3 110.0 92.8 80.9 79.3 199.0 182.8 185.6 186.0 184.3
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 104.7 91.9 73.5 62.0 59.7 220.4 199.6 203.5 203.4 201.6
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 94.1 79.6 63.0 53.4 53.1 223.3 203.3 206.9 206.8 204.8
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 110.8 113.7 113.1 113.7 113.1 198.5 182.7 186.5 187.1 184.4
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 106.0 105.9 105.6 105.9 105.5 164.2 155.0 157.3 157.6 155.8
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 102.7 102.4 102.3 102.4 102.3 130.9 127.4 128.3 128.4 127.6

An appropriate choice of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHb aa@3A9C@ for the MRC estimators will minimize the likelihood of the "drift� problem. Compared to the MRR estimator, this MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeyypa0JaaGimaiaac6cacaaIYaGaaGynaaGaayjkaiaa wMcaaaaa@4013@ estimator will improve the efficiency of the point-in-time estimates, but reduce the efficiency of the movement estimates. For the movement estimates, the MR1 estimator performed slightly better than the HT estimator while the MR2 and MRR estimators performed considerably better than the HT estimator. Overall, the MRC estimator appears to perform slightly better than MR estimator. If the objective is to choose an estimator which is not too susceptible to the "drift� problem and which maximises the efficiency of the movement estimates without any loss in relative efficiency for the point-in-times estimates, then the "best� estimator for this particular population is the MRC estimator with α 0.10. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHj abgIKi7kaaicdacaGGUaGaaGymaiaaicdacaGGUaaaaa@3FE0@ This estimator is likely to have minimal drift and leads to moderate efficiency gains of 21.6 percent in the point-in-time estimates and significant efficiency gains of 104.2 percent in the movement estimates.

The average absolute relative biases and average relative efficiencies of the estimators for Populations I to VII are shown in Table 4.5. Large increases in the seasonality (Population II) or irregularity (Population III) of the time series had almost no impact on the performance of the various estimators for the point-in-time estimates. While there were small reductions in the relative efficiency of the movement estimates for MR2 and MRR estimators, there was no impact for the MR1 estimator.

Figure 4.2 Plots of various estimators for population I

Figure 4.2 Plots
of various estimators for population I

Description for Figure 4.2

Table 4.5
Average absolute relative bias (%) and average relative efficiency (%)
Table summary
This table displays the results of Average absolute relative bias (%) and average relative efficiency (%) Point-in-Time Estimates, Movement Estimates, Pop, I, II, III, IV, V, VI and VII (appearing as column headers).
  Point-in-Time Estimates Movement Estimates
Average Absolute Relative Bias (%)
HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabIeaca qGubaaaa@3CCB@ 0.038 0.027 0.049 0.048 0.048 0.065 0.032 0.017 0.012 0.016 0.018 0.020 0.025 0.020
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 0.050 0.098 0.074 0.052 0.089 0.150 0.078 0.014 0.012 0.013 0.015 0.020 0.020 0.018
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 0.081 0.028 0.039 0.063 0.047 0.218 0.120 0.012 0.011 0.011 0.014 0.013 0.017 0.017
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 0.052 0.083 0.070 0.046 0.095 0.139 0.090 0.013 0.011 0.012 0.014 0.018 0.018 0.017
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 0.057 0.058 0.059 0.043 0.089 0.136 0.103 0.012 0.010 0.011 0.014 0.016 0.016 0.017
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 0.066 0.038 0.047 0.050 0.069 0.160 0.111 0.012 0.010 0.011 0.014 0.014 0.016 0.017
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 0.074 0.032 0.045 0.065 0.055 0.223 0.124 0.012 0.011 0.011 0.014 0.013 0.017 0.017
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 0.034 0.023 0.046 0.049 0.049 0.059 0.034 0.012 0.010 0.012 0.015 0.015 0.018 0.017
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 0.037 0.025 0.048 0.049 0.050 0.064 0.033 0.014 0.011 0.014 0.017 0.017 0.023 0.019
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 0.038 0.026 0.048 0.048 0.049 0.065 0.032 0.015 0.012 0.015 0.018 0.019 0.025 0.019
  Average Relative Efficiency (%)
HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabIeaca qGubaaaa@3CCB@ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 118.7 119.6 118.9 126.4 143.5 127.2 98.9 134.2 133.4 133.9 132.9 147.2 138.0 115.5
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 59.6 60.9 58.1 64.2 49.7 67.8 48.7 208.9 192.6 180.0 202.0 455.7 226.2 137.0
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 110.8 112.0 110.4 119.8 134.2 121.5 89.2 161.6 159.3 158.5 159.0 215.0 169.3 125.7
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 93.6 95.0 92.4 101.4 99.4 103.8 74.6 188.0 182.1 178.2 183.7 315.4 201.0 133.5
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 75.0 76.4 73.5 80.6 69.0 83.8 60.2 206.1 194.9 186.3 200.0 424.9 222.4 137.5
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 65.3 66.6 63.7 76.8 52.9 74.0 53.7 209.2 194.6 183.3 202.4 454.8 225.6 137.2
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 112.9 111.9 112.2 114.5 151.9 112.7 107.5 188.2 183.7 181.4 184.8 347.1 193.7 134.9
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 105.8 105.4 105.5 107.2 123.3 105.7 104.5 158.3 156.0 154.4 156.6 223.8 160.5 126.2
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 102.4 102.3 102.3 103.0 109.1 102.4 102.1 128.6 127.9 127.2 128.1 149.7 129.5 114.6

Additional numbers of "births� and "deaths� in the population (Population IV) led to small gains in the relative efficiency of the point-in-time estimates for all of the modified regression estimators, due to reductions in the MSE for the modified regression estimators. While there were small losses in the relative efficiency of the movement estimates for MR2 and MRR estimators, there was no impact for the MR1 estimator. A doubling of the amount of unplanned sample rotation (Population V) produced increases in the relative efficiency of the point-in-time estimates for the MR1 estimator, but decreases in relative efficiency for the MR2 and MRR estimators. There were substantial improvements in relative efficiency of the movement estimates for all of the modified regression estimators as a result of larger increases in the MSE for the HT estimator compared with the modified regression estimators.

Higher unit variation in the reported values (Population VI) led to small gains in the relative efficiency of the point-in-time estimates for all of the modified regression estimators, primarily due to larger increases in the MSE for the HT estimator compared with the modified regression estimators. However, there was no impact in the relative efficiency of the movement estimates as the size of the increases in the MSE for the modified regression estimators were similar to the HT estimator. Low unit correlation in the reported values over time (Population VII) produced large reductions in the relative efficiency of the point-in-time and movement estimates.        

Across Populations I to VII, the MR1 estimator performed better than the MR2 and MRR estimators for the point-in-time estimates, while the MR2 and MRR estimators performed better than the MR1 estimator for the movement estimates. The "best� estimator in terms of maximising the relative efficiency of the movement estimates without any loss in relative efficiency for the point-in-times estimates is the MRC estimator, although the "best� value of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHb aa@3A9C@ will differ across the different artificial populations.

The average absolute relative biases and average relative efficiencies of the estimators for Populations VIII to X are shown in Table 4.6. With respect to the HT estimator the use of auxiliary variables in the estimators led to large gains in the relative efficiency of the point-in-time estimates and movement estimates for all of the modified regression estimators. The higher the correlation between the variable of interest and the auxiliary variable the greater the gain in relative efficiency of the point-in-time and movement estimates. However, with respect to the GR estimator, the use of auxiliary variables in the estimators led to very small gains in the relative efficiency of the point-in-time estimates, but modest gains in the relative efficiency of the movement estimates for most of the modified regression estimators. The higher the correlation between the variable of interest and the auxiliary variable the lower the gain in relative efficiency of the point-in-time and movement estimates.

Table 4.6
Average absolute relative bias (%) and average relative efficiency (%)
Table summary
This table displays the results of Average absolute relative bias (%) and average relative efficiency (%) Point-in-Time Estimates, Movement Estimates, Pop VIII, Pop IX and Pop X (appearing as column headers).
  Point-in-Time Estimates Movement Estimates
Average Absolute Relative Bias (%)
GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabEeaca qGsbaaaa@3CC8@ 0.021 0.014 0.020 0.010 0.008 0.011
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 0.042 0.041 0.044 0.016 0.015 0.016
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 0.032 0.026 0.031 0.014 0.013 0.014
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 0.043 0.037 0.044 0.015 0.014 0.015
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 0.041 0.034 0.040 0.015 0.014 0.015
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 0.035 0.029 0.034 0.015 0.013 0.014
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 0.036 0.028 0.034 0.014 0.013 0.014
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 0.023 0.017 0.023 0.013 0.011 0.013
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 0.022 0.016 0.022 0.012 0.010 0.013
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 0.021 0.015 0.021 0.011 0.009 0.012
  Average Relative Efficiency (%) to HT Estimator
GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabEeaca qGsbaaaa@3CC8@ 256.4 428.9 183.3 169.7 215.3 140.2
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 258.9 421.5 191.1 166.8 198.0 150.5
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 265.8 436.0 194.4 218.7 247.5 202.2
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 263.8 428.3 194.9 184.4 213.7 168.7
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 267.6 434.7 197.4 202.5 230.5 186.9
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 268.6 438.1 197.3 215.9 244.0 199.8
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 266.5 437.5 194.6 216.3 245.8 199.2
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 266.7 441.2 192.6 225.7 257.7 204.7
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 265.3 442.0 190.3 217.3 254.4 191.6
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 261.4 437.0 187.0 197.5 239.7 168.6
  Average Relative Efficiency (%) to GR Estimator
GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaabEeaca qGsbaaaa@3CC8@ 100.0 100.0 100.0 100.0 100.0 100.0
MR1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeymaaaa@3D82@ 101.0 98.3 104.2 98.3 92.0 107.4
MR2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOmaaaa@3D83@ 103.7 101.6 106.1 128.9 115.0 144.3
MR ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aaacaGLOaGaayzkaaaaaa@43E4@ 102.9 99.9 106.3 108.7 99.3 120.3
MR ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiwdacaaI WaaacaGLOaGaayzkaaaaaa@43E2@ 104.4 101.3 107.7 119.3 107.1 133.3
MR ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbWaaeWabeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI 1aaacaGLOaGaayzkaaaaaa@43E9@ 104.8 102.1 107.7 127.2 113.3 142.5
MRR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaaeOuaaaa@3DA3@ 103.9 102.0 106.1 127.4 114.2 142.1
MRC ( α = 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI YaGaaGynaaGaayjkaiaawMcaaaaa@44AA@ 104.0 102.9 105.1 133.0 119.7 146.0
MRC ( α = 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 1aGaaGimaaGaayjkaiaawMcaaaaa@44A8@ 103.5 103.1 103.8 128.0 118.2 136.7
MRC ( α = 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaab2eaca qGsbGaae4qamaabmqabaGaeqySdeMaeyypa0JaaGimaiaac6cacaaI 3aGaaGynaaGaayjkaiaawMcaaaaa@44AF@ 102.0 101.9 102.0 116.4 111.3 120.3

 

Previous | Next

Date modified: