4. Exemples

Jan Kowalski et Jacek Wesołowski

Précédent | Suivant

4.1 Scénario de Patterson, p = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGWbGaey ypa0JaaGymaaaa@3B55@

Le scénario en cascade de Patterson est utilisé, par exemple, pour réaliser l’Enquête sur la population active en Australie ( N = n = 8 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaGGOaGaam Otaiabg2da9iaad6gacqGH9aqpcaaI4aGaaiilaaaa@3E55@  voir Australian Bureau of Statistics (2002)) et au Canada ( N = n = 6 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaGGOaGaam Otaiabg2da9iaad6gacqGH9aqpcaaI2aGaaiilaaaa@3E53@  voir Singh, Drew, Gambino et Mayda (1990)). Il n’y a pas de zéros dans le schéma, d’où h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObGaey ypa0JaaGimaaaa@3B12@  et le polynôme Q p = Q 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaOGaeyypa0JaamyuamaaBaaaleaacaaIXaaa beaakiaacYcaaaa@3DE3@  voir (3.3), ne contient pas l’opérande de somme avec la trace, c’est-à-dire

Q 1 ( x ) = ( N 1 ) ( 1 + ρ 2 2 ρ x ) + 1 ρ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacaWGobGaeyOeI0IaaGymaaGaayjkaiaawMcaam aabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaikdacqaHbpGCcaWG4baacaGLOaGaayzkaaGaey4kaS IaaGymaiabgkHiTiabeg8aYnaaCaaaleqabaGaaGOmaaaakiaai6ca aaa@51EF@

Sa seule racine x 1 = 1 + ρ 2 2 ρ 1 ρ 2 2 ( N 1 ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaGa ey4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiabeg 8aYbaacqGHsisldaWcaaqaaiaaigdacqGHsislcqaHbpGCdaahaaWc beqaaiaaikdaaaaakeaacaaIYaWaaeWaaeaacaWGobGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiabeg8aYbaaaaa@4EFA@  est réelle et satisfait | x 1 | > 1 + ρ 2 2 | ρ | > 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aadIhadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoacqGH+aGp daWcaaqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikdaaa aakeaacaaIYaWaaqWaaeaacqaHbpGCaiaawEa7caGLiWoaaaGaeyOp a4JaaGymaiaacYcaaaa@4AEE@  c’est-à-dire que l’HYPOTHÈSE I est satisfaite. Il donne aussi d 1 = d ( x 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGHsisl aeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa Gaayzkaaaaaa@40C8@  réelle de la forme

d 1 = N + ( N 2 ) ρ 2 [ N + ( N 2 ) ρ 2 ] 2 4 ( N 1 ) 2 ρ 2 2 ( N 1 ) ρ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGobGaey4kaSYa aeWaaeaacaWGobGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiabeg8aYn aaCaaaleqabaGaaGOmaaaakiabgkHiTmaakaaabaWaamWaaeaacaWG obGaey4kaSYaaeWaaeaacaWGobGaeyOeI0IaaGOmaaGaayjkaiaawM caaiabeg8aYnaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqadaqaaiaad6eacq GHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa eqyWdi3aaWbaaSqabeaacaaIYaaaaaqabaaakeaacaaIYaWaaeWaae aacaWGobGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabeg8aYbaacaaI Uaaaaa@609D@

En outre, S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbaaaa@3941@  définie en (3.4) est une matrice de dimensions 1 × 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIXaGaey 41aqRaaGymaaaa@3BF2@  de la forme S = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbGaey ypa0daaa@3A47@   [ ( N 1 ) 1 d 1 ρ 1 ρ 2 + 1 ] 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aabmaabaGaamOtaiabgkHiTiaaigdaaiaawIcacaGLPaaadaWcaaqa aiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaeqyWdi habaGaaGymaiabgkHiTiabeg8aYnaaCaaaleqabaGaaGOmaaaaaaGc cqGHRaWkcaaIXaaacaGLBbGaayzxaaGaeyiyIKRaaCimaiaacYcaaa a@4CD5@  c’est-à-dire que l’HYPOTHÈSE II est vérifiée trivialement. Donc, en vertu du théorème 3.1, pour tout t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bGaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF KeIwcaGGSaaaaa@4659@  nous avons

μ ^ t = a 1 μ ^ t 1 + r _ 0 T X _ t + r _ 1 T X _ t 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWG0baabeaakiabg2da9iaadggadaWgaaWcbaGa aGymaaqabaGccuaH8oqBgaqcamaaBaaaleaacaWG0bGaeyOeI0IaaG ymaaqabaGccqGHRaWkdaadaaqaaiaadkhaaaWaa0baaSqaaiaaicda aeaacaWGubaaaOWaaWaaaeaacaWGybaaamaaBaaaleaacaWG0baabe aakiabgUcaRmaamaaabaGaamOCaaaadaqhaaWcbaGaaGymaaqaaiaa dsfaaaGcdaadaaqaaiaadIfaaaWaaSbaaSqaaiaadshacqGHsislca aIXaaabeaakiaaiYcaaaa@50D0@

{ a 1 = d 1 r _ 0 = c 0,1 N ( d 1 ) 1 _ r _ 1 = c 0,1 C T N ( d 1 ) 1 _ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqadeaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Ja amizamaaBaaaleaacaaIXaaabeaaaOqaamaamaaabaGaamOCaaaada WgaaWcbaGaaGimaaqabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaaicda caaISaGaaGymaaqabaGccaWHobWaaeWaaeaacaWGKbWaaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaGabGymayaaDaaabaWaaWaaaeaa caWGYbaaamaaBaaaleaacaaIXaaabeaakiabg2da9iabgkHiTiaado gadaWgaaWcbaGaaGimaiaaiYcacaaIXaaabeaakiaahoeadaahaaWc beqaaiaadsfaaaGccaWHobWaaeWaaeaacaWGKbWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGabGymayaaDaaaaaGaay5EaaGaaiil aaaa@587B@

c 0,1 = 1 ( N 1 ) 1 d 1 ρ 1 ρ 2 + 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaicdacaaISaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaa igdaaeaadaqadaqaaiaad6eacqGHsislcaaIXaaacaGLOaGaayzkaa WaaSaaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIXaaabeaa kiabeg8aYbqaaiaaigdacqGHsislcqaHbpGCdaahaaWcbeqaaiaaik daaaaaaOGaey4kaSIaaGymaaaacaaIUaaaaa@4D84@

En prenant par exemple N = 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0JaaGOnaaaa@3AFE@  et ρ=0,9, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcq GH9aqpcaaIWaGaaeilaiaaiMdacaGGSaaaaa@3E07@  nous obtenons pour tout t : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bGaai Ooaaaa@3A1C@

μ ^ t =0,7942 μ ^ t1 + [ 0,1765 0,1765 0,1765 0,1765 0,1765 0,1176 ] T X _ t + [ 0,0000 0,1588 0,1588 0,1588 0,1588 0,1588 ] T X _ t1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWG0baabeaakiabg2da9iaaicdacaqGSaGaaG4n aiaaiMdacaaI0aGaaGOmaiqbeY7aTzaajaWaaSbaaSqaaiaadshacq GHsislcaaIXaaabeaakiabgUcaRmaadmaabaqbaeGabyqaaaaabaGa aGimaiaabYcacaaIXaGaaG4naiaaiAdacaaI1aaabaGaaGimaiaabY cacaaIXaGaaG4naiaaiAdacaaI1aaabaGaaGimaiaabYcacaaIXaGa aG4naiaaiAdacaaI1aaabaGaaGimaiaabYcacaaIXaGaaG4naiaaiA dacaaI1aaabaGaaGimaiaabYcacaaIXaGaaG4naiaaiAdacaaI1aaa baGaaGimaiaabYcacaaIXaGaaGymaiaaiEdacaaI2aaaaaGaay5wai aaw2faamaaCaaaleqabaGaamivaaaakmaamaaabaGaamiwaaaadaWg aaWcbaGaamiDaaqabaGccqGHRaWkdaWadaqaauaabiqageaaaaqaai aaicdacaqGSaGaaGimaiaaicdacaaIWaGaaGimaaqaaiabgkHiTiaa icdacaqGSaGaaGymaiaaiwdacaaI4aGaaGioaaqaaiabgkHiTiaaic dacaqGSaGaaGymaiaaiwdacaaI4aGaaGioaaqaaiabgkHiTiaaicda caqGSaGaaGymaiaaiwdacaaI4aGaaGioaaqaaiabgkHiTiaaicdaca qGSaGaaGymaiaaiwdacaaI4aGaaGioaaqaaiabgkHiTiaaicdacaqG SaGaaGymaiaaiwdacaaI4aGaaGioaaaaaiaawUfacaGLDbaadaahaa WcbeqaaiaadsfaaaGcdaadaaqaaiaadIfaaaWaaSbaaSqaaiaadsha cqGHsislcaaIXaaabeaakiaai6caaaa@8D38@

Remarque 4.1 Patterson (1950) a considéré le même scénario dans le modèle « classique ». Il a prouvé formellement que le coefficient de récurrence a 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa aa@3CBE@  converge quand t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bGaey OKH4QaeyOhIukaaa@3CBC@  et a montré que la limite était a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaigdaaeqaaaaa@3A32@  telle que donnée plus haut. Les vecteurs r _ 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai aadkhaaaWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3CDE@  et r _ 1 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai aadkhaaaWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaaiilaaaa@3D8F@  étant des fonctions continues de a 1 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGa aiilaaaa@3D6E@  convergent vers r _ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai aadkhaaaWaaSbaaSqaaiaaicdaaeqaaaaa@3A52@  et r _ 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai aadkhaaaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaaaa@3B0D@  respectivement. Autrement dit, la solution « stationnaire » est en effet en harmonie avec l’asymptotique de la solution « classique ».

4.2 Scénarios avec intervalles de taille 1, p = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGWbGaey ypa0JaaGOmaaaa@3B56@

Le polynôme Q p = Q 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaOGaeyypa0JaamyuamaaBaaaleaacaaIYaaa beaakiaacYcaaaa@3DE4@  voir (3.3), a la forme suivante :

Q 2 ( x ) = 4 h ρ 2 1 + ρ 2 x 2 2 ( N 2 h 1 ) ρ x + ( N h 1 ) ( 1 + ρ 2 ) + 1 ρ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0JaeyOeI0YaaSqaaeaacaaI0aGaamiAaiabeg8aYnaaCaaale qabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqa aiaaikdaaaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaikdadaqadaqaaiaad6eacqGHsislcaaIYaGaamiAaiabgkHiTiaa igdaaiaawIcacaGLPaaacqaHbpGCcaWG4bGaey4kaSYaaeWaaeaaca WGobGaeyOeI0IaamiAaiabgkHiTiaaigdaaiaawIcacaGLPaaadaqa daqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikdaaaaaki aawIcacaGLPaaacqGHRaWkcaaIXaGaeyOeI0IaeqyWdi3aaWbaaSqa beaacaaIYaaaaOGaaGOlaaaa@66E2@

Comme 1 ρ 2 > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIXaGaey OeI0IaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaeyOpa4JaaGimaiaa cYcaaaa@3F32@  on voit immédiatement que son discriminant

Δ = 4 ( N 2 h 1 ) 2 ρ 2 + 4 4 h ρ 2 1 + ρ 2 [ ( N h 1 ) ( 1 + ρ 2 ) + 1 ρ 2 ] > 4 ρ 2 ( N 1 ) 2 > 0. ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoarcq GH9aqpcaaI0aWaaeWaaeaacaWGobGaeyOeI0IaaGOmaiaadIgacqGH sislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeq yWdi3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinamaalaaabaGa aGinaiaadIgacqaHbpGCdaahaaWcbeqaaiaaikdaaaaakeaacaaIXa Gaey4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaaaakmaadmaabaWa aeWaaeaacaWGobGaeyOeI0IaamiAaiabgkHiTiaaigdaaiaawIcaca GLPaaadaqadaqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaa ikdaaaaakiaawIcacaGLPaaacqGHRaWkcaaIXaGaeyOeI0IaeqyWdi 3aaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaGaeyOpa4JaaGin aiabeg8aYnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamOtaiabgk HiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH +aGpcaaIWaGaaiOlaiaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaG ymaiaacMcaaaa@7596@

Donc, Q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaikdaaeqaaaaa@3A23@  possède deux racines réelles uniques

x ± = ( 1 + ρ 2 ) 2 ( N 2 h 1 ) ρ ± Δ 8 h ρ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiabgglaXcqabaGccqGH9aqpdaqadaqaaiaaigdacqGHRaWk cqaHbpGCdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaWcaa qaaiabgkHiTiaaikdadaqadaqaaiaad6eacqGHsislcaaIYaGaamiA aiabgkHiTiaaigdaaiaawIcacaGLPaaacqaHbpGCcqGHXcqSdaGcaa qaaiabfs5aebWcbeaaaOqaaiaaiIdacaWGObGaeqyWdi3aaWbaaSqa beaacaaIYaaaaaaakiaai6caaaa@550A@

Notons que, puisque la taille de tous les intervalles est égale à un, nous avons nécessairement N h 1 h 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey OeI0IaamiAaiabgkHiTiaaigdacqGHLjYScaWGObGaeyyzImRaaGym aiaac6caaaa@42A0@  En utilisant ce fait et l’inégalité (4.1), nous obtenons par conséquent

| x ± | > ( 1 + ρ 2 ) N h 1 2 | ρ | 1 + ρ 2 2 | ρ | > 1 ,   puisque   | ρ | ( 0,1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aadIhadaWgaaWcbaGaeyySaelabeaaaOGaay5bSlaawIa7aiabg6da +maabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOmaa aaaOGaayjkaiaawMcaamaalaaabaGaamOtaiabgkHiTiaadIgacqGH sislcaaIXaaabaGaaGOmamaaemaabaGaeqyWdihacaGLhWUaayjcSd aaaiabgwMiZoaaleaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqa baGaaGOmaaaaaOqaaiaaikdadaabdaqaaiabeg8aYbGaay5bSlaawI a7aaaacqGH+aGpcaaIXaGaaiilaiaabccacaqGGaGaaeiCaiaabwha caqGPbGaae4CaiaabghacaqG1bGaaeyzaiaabccacaqGGaWaaqWaae aacqaHbpGCaiaawEa7caGLiWoacqGHiiIZdaqadaqaaiaaicdacaaI SaGaaGymaaGaayjkaiaawMcaaiaai6caaaa@71C2@

Donc l’HYPOTHÈSE I du théorème 3.1 est satisfaite.

De la remarque 3.1 il découle que d 1 = d ( x ) = x + x 2 1 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGHsisl aeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiabgkHiTaqabaaakiaawI cacaGLPaaacqGH9aqpcaWG4bWaaSbaaSqaaiabgkHiTaqabaGccqGH RaWkdaGcaaqaaiaadIhadaqhaaWcbaGaeyOeI0cabaGaaGOmaaaaki abgkHiTiaaigdaaSqabaGccqGH8aapcaaIWaaaaa@4B6A@  et d 2 = d ( x + )= x + x + 2 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaikdaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGHsisl aeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiabgUcaRaqabaaakiaawI cacaGLPaaacqGH9aqpcaWG4bWaaSbaaSqaaiabgUcaRaqabaGccqGH sisldaGcaaqaaiaadIhadaqhaaWcbaGaey4kaScabaGaaGOmaaaaki abgkHiTiaaigdaaSqabaGccqGH+aGpcaaIWaaaaa@4B59@  sont des nombres réels.

Puisque, dans ce cas, s = h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGZbGaey ypa0JaamiAaaaa@3B50@  et m 1 = = m h = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaeSOjGSKaeyypa0JaamyBamaa BaaaleaacaWGObaabeaakiabg2da9iaaigdacaGGSaaaaa@41FC@  nous avons H ˜ 1 ( d i ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aahIeaaiaawoWaamaaBaaaleaacaaIXaaabeaakmaabmaabaGaamiz amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaig daaaa@4040@  et H 1 ( d i ) = 1 + ρ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHibWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGymaiabgUcaRiabeg8aYn aaCaaaleqabaGaaGOmaaaakiaacYcaaaa@43C3@   i = 1 , 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey ypa0JaaGymaiaacYcacaaIYaGaaiOlaaaa@3D32@  Par conséquent, l’équation S c _ = e _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaW aaaeaacaWGJbaaaiabg2da9maamaaabaGaamyzaaaaaaa@3C39@  implique que

( 1 d i ρ ) ( d i ρ ) c 0, i + ( 1 + ρ 2 ) c k , i = 0 , k = 1 , , h , i = 1 , 2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaigdacqGHsislcaWGKbWaaSbaaSqaaiaadMgaaeqaaOGaeqyWdiha caGLOaGaayzkaaWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0IaeqyWdihacaGLOaGaayzkaaGaam4yamaaBaaaleaacaaI WaGaaGilaiaadMgaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaey4kaS IaeqyWdi3aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaam4y amaaBaaaleaacaWGRbGaaGilaiaadMgaaeqaaOGaeyypa0JaaGimai aacYcacaaMf8Uaam4Aaiabg2da9iaaigdacaGGSaGaeSOjGSKaaGil aiaadIgacaaISaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaac6 caaaa@6335@

Donc, c 1,1 = c 2,1 = = c h ,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaigdacaaISaGaaGymaaqabaGccqGH9aqpcaWGJbWaaSba aSqaaiaaikdacaaISaGaaGymaaqabaGccqGH9aqpcqWIMaYscqGH9a qpcaWGJbWaaSbaaSqaaiaadIgacaaISaGaaGymaaqabaaaaa@46A0@  et c 1,2 = c 2,2 = = c h ,2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaigdacaaISaGaaGOmaaqabaGccqGH9aqpcaWGJbWaaSba aSqaaiaaikdacaaISaGaaGOmaaqabaGccqGH9aqpcqWIMaYscqGH9a qpcaWGJbWaaSbaaSqaaiaadIgacaaISaGaaGOmaaqabaGccaGGUaaa aa@475F@  Conséquemment, le système S c _ = e _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaW aaaeaacaWGJbaaaiabg2da9maamaaabaGaamyzaaaaaaa@3C39@  se réduit au système à quatre inconnues c 0,1 , c 1,1 , c 0,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaicdacaaISaGaaGymaaqabaGccaGGSaGaam4yamaaBaaa leaacaaIXaGaaGilaiaaigdaaeqaaOGaaiilaiaadogadaWgaaWcba GaaGimaiaaiYcacaaIYaaabeaaaaa@4398@  et c 1,2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaigdacaaISaGaaGOmaaqabaGccaGG6aaaaa@3C6E@

S ˜ ( c 0,1 , c 1,1 , c 0,2 , c 1,2 ) T = ( 1,0,0,0 ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aahofaaiaawoWaamaabmaabaGaam4yamaaBaaaleaacaaIWaGaaGil aiaaigdaaeqaaOGaaGilaiaadogadaWgaaWcbaGaaGymaiaaiYcaca aIXaaabeaakiaaiYcacaWGJbWaaSbaaSqaaiaaicdacaaISaGaaGOm aaqabaGccaaISaGaam4yamaaBaaaleaacaaIXaGaaGilaiaaikdaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaeyypa0Za aeWaaeaacaaIXaGaaGilaiaaicdacaaISaGaaGimaiaaiYcacaaIWa aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaaaa@5485@

avec

S ˜ = 1 1 ρ 2 [ ( N 1 ) ( 1 d 1 ρ ) + 1 ρ 2 h ( 1 d 1 ρ ) ( N 1 ) ( 1 d 2 ρ ) + 1 ρ 2 h ( 1 d 2 ρ ) 1 d 1 ρ 1 1 d 2 ρ 1 ( 1 d 1 ρ ) ( d 1 ρ ) d 1 ( 1 + ρ 2 ) 0 0 0 0 ( 1 d 2 ρ ) ( d 2 ρ ) d 2 ( 1 + ρ 2 ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aahofaaiaawoWaaiabg2da9maaleaabaGaaGymaaqaaiaaigdacqGH sislcqaHbpGCdaahaaWcbeqaaiaaikdaaaaaaOWaamWaaeaafaqabe abeaaaaaqaamaabmaabaGaamOtaiabgkHiTiaaigdaaiaawIcacaGL PaaadaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaigdaae qaaOGaeqyWdihacaGLOaGaayzkaaGaey4kaSIaaGymaiabgkHiTiab eg8aYnaaCaaaleqabaGaaGOmaaaaaOqaaiaadIgadaqadaqaaiaaig dacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaeqyWdihacaGL OaGaayzkaaaabaWaaeWaaeaacaWGobGaeyOeI0IaaGymaaGaayjkai aawMcaamaabmaabaGaaGymaiabgkHiTiaadsgadaWgaaWcbaGaaGOm aaqabaGccqaHbpGCaiaawIcacaGLPaaacqGHRaWkcaaIXaGaeyOeI0 IaeqyWdi3aaWbaaSqabeaacaaIYaaaaaGcbaGaamiAamaabmaabaGa aGymaiabgkHiTiaadsgadaWgaaWcbaGaaGOmaaqabaGccqaHbpGCai aawIcacaGLPaaaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaI Xaaabeaakiabeg8aYbqaaiaaigdaaeaacaaIXaGaeyOeI0Iaamizam aaBaaaleaacaaIYaaabeaakiabeg8aYbqaaiaaigdaaeaadaqadaqa aiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaeqyWdi hacaGLOaGaayzkaaWaaeWaaeaacaWGKbWaaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaeqyWdihacaGLOaGaayzkaaaabaGaamizamaaBaaale aacaaIXaaabeaakmaabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaadaqadaqaaiaaigdacqGHsislcaWG KbWaaSbaaSqaaiaaikdaaeqaaOGaeqyWdihacaGLOaGaayzkaaWaae WaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyWdiha caGLOaGaayzkaaaabaGaamizamaaBaaaleaacaaIYaaabeaakmaabm aabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaacaaIUaaaaa@AA85@

Pour montrer que S ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aahofaaiaawoWaaaaa@3A03@  est non singulière, nous commençons par montrer que

ρ ( d 1 + d 2 ) 0. ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda qadaqaaiaadsgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyyzImRaaGimai aai6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGa aiOlaiaaikdacaGGPaaaaa@4EC7@

À cette fin, nous notons d’abord que

ρ ( x + x + ) = ( 1 + ρ 2 ) N 2 h 1 2 h 0. ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda qadaqaaiaadIhadaWgaaWcbaGaeyOeI0cabeaakiabgUcaRiaadIha daWgaaWcbaGaey4kaScabeaaaOGaayjkaiaawMcaaiabg2da9iabgk HiTmaabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaamaaleaabaGaamOtaiabgkHiTiaaikdaca WGObGaeyOeI0IaaGymaaqaaiaaikdacaWGObaaaiabgsMiJkaaicda caaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinai aac6cacaaIZaGaaiykaaaa@5DCE@

En outre,

ρ( d 1 + d 2 ) = ρ( x + x + x 2 1 x + 2 1 )=ρ( x + x + )( 1+ x x + x 2 1 + x + 2 1 ) = ρ( x + x + ) x 2 1 + x + 2 1 ( x 2 1 + x + x + 2 1 x + ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGada aabaGaeqyWdi3aaeWaaeaacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamizamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa qaaiabg2da9aqaaiabeg8aYnaabmaabaGaamiEamaaBaaaleaacqGH sislaeqaaOGaey4kaSIaamiEamaaBaaaleaacqGHRaWkaeqaaOWaaO aaaeaacaWG4bWaa0baaSqaaiabgkHiTaqaaiaaikdaaaGccqGHsisl caaIXaaaleqaaOGaeyOeI0YaaOaaaeaacaWG4bWaa0baaSqaaiabgU caRaqaaiaaikdaaaGccqGHsislcaaIXaaaleqaaaGccaGLOaGaayzk aaGaeyypa0JaeqyWdi3aaeWaaeaacaWG4bWaaSbaaSqaaiabgkHiTa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiabgUcaRaqabaaakiaawIca caGLPaaadaqadaqaaiaaigdacqGHRaWkdaWcbaqaaiaadIhadaWgaa WcbaGaeyOeI0cabeaakiabgkHiTiaadIhadaWgaaWcbaGaey4kaSca beaaaOqaamaakaaabaGaamiEamaaDaaaleaacqGHsislaeaacaaIYa aaaOGaeyOeI0IaaGymaaqabaGaey4kaSYaaOaaaeaacaWG4bWaa0ba aSqaaiabgUcaRaqaaiaaikdaaaGccqGHsislcaaIXaaabeaaaaaaca GLOaGaayzkaaaabaaabaGaeyypa0dabaWaaSqaaeaacqaHbpGCcaGG OaGaamiEamaaBaaaleaacqGHsislaeqaaOGaey4kaSIaamiEamaaBa aaleaacqGHRaWkaeqaaOGaaiykaaqaamaakaaabaGaamiEamaaDaaa leaacqGHsislaeaacaaIYaaaaOGaeyOeI0IaaGymaaqabaGaey4kaS YaaOaaaeaacaWG4bWaa0baaSqaaiabgUcaRaqaaiaaikdaaaGccqGH sislcaaIXaaabeaaaaWaaeWaaeaadaGcaaqaaiaadIhadaqhaaWcba GaeyOeI0cabaGaaGOmaaaakiabgkHiTiaaigdaaeqaaiabgUcaRiaa dIhadaWgaaWcbaGaeyOeI0cabeaakiabgUcaRmaakaaabaGaamiEam aaDaaaleaacqGHRaWkaeaacaaIYaaaaOGaeyOeI0IaaGymaaqabaGa eyOeI0IaamiEamaaBaaaleaacqGHRaWkaeqaaaGccaGLOaGaayzkaa GaaiOlaaaaaaa@953A@

En raison de (4.3), la dernière expression est non négative, puisque le second facteur est strictement négatif. Maintenant, nous sommes prêts à considérer le déterminant

det S ˜ = ( d 2 d 1 ) ρ ( 1 ρ 2 ) 4 s ( d 1 , d 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGKbGaai yzaiaacshadaaiaaqaaiaahofaaiaawoWaaiabg2da9maalaaabaWa aeWaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaamizam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabeg8aYbqaamaa bmaabaGaaGymaiabgkHiTiabeg8aYnaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaaaaGccaWGZbWaaeWa aeaacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadsgadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaaISaaaaa@5449@

s ( d 1 , d 2 ) = ( 1 + ρ 2 ) [ ( N 1 ) ( 1 d 1 ρ ) ( 1 d 2 ρ ) + ( 1 ρ 2 ) ( 1 + d 1 d 2 ρ 2 ) ] + h ( 1 d 1 ρ ) ( 1 d 2 ρ ) ( 1 + ( d 1 + d 2 ) ρ + d 1 d 2 ρ 2 2 ρ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGada aabaGaam4CamaabmaabaGaamizamaaBaaaleaacaaIXaaabeaakiaa iYcacaWGKbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaba Gaeyypa0dabaWaaeWaaeaacaaIXaGaey4kaSIaeqyWdi3aaWbaaSqa beaacaaIYaaaaaGccaGLOaGaayzkaaWaamWaaeaadaqadaqaaiaad6 eacqGHsislcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOe I0IaamizamaaBaaaleaacaaIXaaabeaakiabeg8aYbGaayjkaiaawM caamaabmaabaGaaGymaiabgkHiTiaadsgadaWgaaWcbaGaaGOmaaqa baGccqaHbpGCaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaaigdacq GHsislcqaHbpGCdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa daqadaqaaiaaigdacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaamizamaaBaaaleaacaaIYaaabeaakiabeg8aYnaaCaaaleqabaGa aGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqaaaqaaiabgU caRaqaaiaadIgadaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqa aiaaigdaaeqaaOGaeqyWdihacaGLOaGaayzkaaWaaeWaaeaacaaIXa GaeyOeI0IaamizamaaBaaaleaacaaIYaaabeaakiabeg8aYbGaayjk aiaawMcaamaabmaabaGaeyOeI0IaaGymaiabgUcaRmaabmaabaGaam izamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaacqaHbpGCcqGHRaWkcaWGKbWaaS baaSqaaiaaigdaaeqaaOGaamizamaaBaaaleaacaaIYaaabeaakiab eg8aYnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacqaHbpGCda ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaGGUaaaaaaa@91D3@

Nous notons que | d i | < 1 , i = 1 , 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aadsgadaWgaaWcbaGaamyAaaqabaaakiaawEa7caGLiWoacqGH8aap caaIXaGaaiilaiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSa aaaa@44CE@  et donc | d 1 d 2 | < 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aadsgadaWgaaWcbaGaaGymaaqabaGccaWGKbWaaSbaaSqaaiaaikda aeqaaaGccaGLhWUaayjcSdGaeyipaWJaaGymaiaac6caaaa@41AD@  Par conséquent, nous avons 1 + ρ 2 > ( 1 d 1 ρ ) ( 1 d 2 ρ ) > 0 , 1 + d 1 d 2 ρ 2 > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIXaGaey 4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaeyOpa4ZaaeWaaeaa caaIXaGaeyOeI0IaamizamaaBaaaleaacaaIXaaabeaakiabeg8aYb GaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaadsgadaWgaaWc baGaaGOmaaqabaGccqaHbpGCaiaawIcacaGLPaaacqGH+aGpcaaIWa GaaiilaiaaigdacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa amizamaaBaaaleaacaaIYaaabeaakiabeg8aYnaaCaaaleqabaGaaG Omaaaakiabg6da+iaaicdacaGGUaaaaa@583F@  Ces inégalités ainsi que (4.2) donnent

s ( d 1 , d 2 ) > ( 1 d 1 ρ ) ( 1 d 2 ρ ) { ( N 1 ) ( 1 + ρ 2 ) h [ 1 + d 1 d 2 ρ 2 + 2 ρ 2 ] } > ( 1 d 1 ρ ) ( 1 d 2 ρ ) [ ( N h 1 ) ( 1 + ρ 2 ) 2 h ρ 2 ] > ( 1 d 1 ρ ) ( 1 d 2 ρ ) ( N 2 h 1 ) ( 1 + ρ 2 ) 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeabda aaaeaacaWGZbWaaeWaaeaacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa aGilaiaadsgadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaae aacqGH+aGpaeaadaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqa aiaaigdaaeqaaOGaeqyWdihacaGLOaGaayzkaaWaaeWaaeaacaaIXa GaeyOeI0IaamizamaaBaaaleaacaaIYaaabeaakiabeg8aYbGaayjk aiaawMcaamaacmaabaWaaeWaaeaacaWGobGaeyOeI0IaaGymaaGaay jkaiaawMcaamaabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTiaadIgadaWadaqaai aaigdacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamizamaa BaaaleaacaaIYaaabeaakiabeg8aYnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaikdacqaHbpGCdaahaaWcbeqaaiaaikdaaaaakiaawUfa caGLDbaaaiaawUhacaGL9baaaeaaaeaacqGH+aGpaeaadaqadaqaai aaigdacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaeqyWdiha caGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaamizamaaBaaale aacaaIYaaabeaakiabeg8aYbGaayjkaiaawMcaamaadmaabaWaaeWa aeaacaWGobGaeyOeI0IaamiAaiabgkHiTiaaigdaaiaawIcacaGLPa aadaqadaqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacqGHsislcaaIYaGaamiAaiabeg8aYnaaCa aaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaqaaaqaaiabg6da+aqa amaabmaabaGaaGymaiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqaba GccqaHbpGCaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWG KbWaaSbaaSqaaiaaikdaaeqaaOGaeqyWdihacaGLOaGaayzkaaWaae WaaeaacaWGobGaeyOeI0IaaGOmaiaadIgacqGHsislcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqyWdi3aaWbaaSqabe aacaaIYaaaaaGccaGLOaGaayzkaaaabaaabaGaeyyzImlabaGaaGim aiaai6caaaaaaa@AA14@

Conséquemment, det S ˜ 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGKbGaai yzaiaacshadaaiaaqaaiaahofaaiaawoWaaiabgcMi5kaaicdacaGG Uaaaaa@4001@

Puisque rang  S = rang  S ˜ + 2 ( h 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGYbGaae yyaiaab6gacaqGNbGaaeiiaiaahofacqGH9aqpcaqGYbGaaeyyaiaa b6gacaqGNbGaaeiiamaaGaaabaGaaC4uaaGaay5adaGaey4kaSIaaG OmamaabmaabaGaamiAaiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@4A4F@ , nous obtenons rang  S = 2 ( h + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGYbGaae yyaiaab6gacaqGNbGaaeiiaiaahofacqGH9aqpcaaIYaWaaeWaaeaa caWGObGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa@436D@  et donc l’HYPOTHÈSE II du théorème 3.1 est satisfaite. En outre, S ˜ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aahofaaiaawoWaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3BD8@  existe. Donc,

( c 0,1 , c 1,1 , c 0,2 , c 1,2 ) = ( 1,0,0,0 ) [ S ˜ 1 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadogadaWgaaWcbaGaaGimaiaaiYcacaaIXaaabeaakiaaiYcacaWG JbWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGccaaISaGaam4yam aaBaaaleaacaaIWaGaaGilaiaaikdaaeqaaOGaaGilaiaadogadaWg aaWcbaGaaGymaiaaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiabg2 da9maabmqabaGaaGymaiaaiYcacaaIWaGaaGilaiaaicdacaaISaGa aGimaaGaayjkaiaawMcaamaadmqabaWaaacaaeaacaWHtbaacaGLdm aadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawUfacaGLDbaadaah aaWcbeqaaiaadsfaaaGccaGGUaaaaa@5806@

Enfin, nous concluons que la récurrence est de la forme suivante :

μ ^ t = a 1 μ ^ t 1 + a 2 μ ^ t 2 + r _ 0 T X _ t + r _ 1 T X _ t 1 + r _ 2 T X _ t 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWG0baabeaakiabg2da9iaadggadaWgaaWcbaGa aGymaaqabaGccuaH8oqBgaqcamaaBaaaleaacaWG0bGaeyOeI0IaaG ymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGafqiV d0MbaKaadaWgaaWcbaGaamiDaiabgkHiTiaaikdaaeqaaOGaey4kaS YaaWaaaeaacaWGYbaaamaaDaaaleaacaaIWaaabaGaamivaaaakmaa maaabaGaamiwaaaadaWgaaWcbaGaamiDaaqabaGccqGHRaWkdaadaa qaaiaadkhaaaWaa0baaSqaaiaaigdaaeaacaWGubaaaOWaaWaaaeaa caWGybaaamaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRa WkdaadaaqaaiaadkhaaaWaa0baaSqaaiaaikdaaeaacaWGubaaaOWa aWaaaeaacaWGybaaamaaBaaaleaacaWG0bGaeyOeI0IaaGOmaaqaba GccaaISaaaaa@5FA2@

{ a 1 = d 1 + d 2 a 2 = d 1 d 2 r _ 0 =N( d 1 )[ ( c 0,1 + c 1,1 ) 1 _ c 1,1 ε _ ]+N( d 2 )[ ( c 0,2 + c 1,2 ) 1 _ c 1,2 ε _ ] r _ 1 =( d 2 I+ C T )N( d 1 )[ ( c 0,1 + c 1,1 ) 1 _ c 1,1 ε _ ]( d 1 I+ C T )N( d 2 )[ ( c 0,2 + c 1,2 ) 1 _ c 1,2 ε _ ] r _ 2 = d 2 C T N( d 1 )[ ( c 0,1 + c 1,1 ) 1 _ c 1,1 ε _ ]+ d 1 C T N( d 2 )[ ( c 0,2 + c 1,2 ) 1 _ c 1,2 ε _ ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqafeaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGH9aqp caWGKbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamizamaaBaaale aacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGH 9aqpcqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamizamaaBa aaleaacaaIYaaabeaaaOqaamaamaaabaGaamOCaaaadaWgaaWcbaGa aGimaaqabaGccqGH9aqpcaWHobWaaeWaaeaacaWGKbWaaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaWaamWaaeaadaqadaqaaiaadoga daWgaaWcbaGaaGimaiaaiYcacaaIXaaabeaakiabgUcaRiaadogada WgaaWcbaGaaGymaiaaiYcacaaIXaaabeaaaOGaayjkaiaawMcaaiqa igdagaqhaiabgkHiTiaadogadaWgaaWcbaGaaGymaiaaiYcacaaIXa aabeaakmaamaaabaGaeqyTdugaaaGaay5waiaaw2faaiabgUcaRiaa h6eadaqadaqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaadaWadaqaamaabmaabaGaam4yamaaBaaaleaacaaIWaGaaGil aiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGilai aaikdaaeqaaaGccaGLOaGaayzkaaGabGymayaaDaGaeyOeI0Iaam4y amaaBaaaleaacaaIXaGaaGilaiaaikdaaeqaaOWaaWaaaeaacqaH1o qzaaaacaGLBbGaayzxaaaabaWaaWaaaeaacaWGYbaaamaaBaaaleaa caaIXaaabeaakiabg2da9iabgkHiTmaabmaabaGaamizamaaBaaale aacaaIYaaabeaakiaahMeacqGHRaWkcaWHdbWaaWbaaSqabeaacaWG ubaaaaGccaGLOaGaayzkaaGaaCOtamaabmaabaGaamizamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaamaadmaabaWaaeWaaeaacaWG JbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGccqGHRaWkcaWGJb WaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaaakiaawIcacaGLPaaa ceaIXaGba0bacqGHsislcaWGJbWaaSbaaSqaaiaaigdacaaISaGaaG ymaaqabaGcdaadaaqaaiabew7aLbaaaiaawUfacaGLDbaacqGHsisl daqadaqaaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWHjbGaey4kaS IaaC4qamaaCaaaleqabaGaamivaaaaaOGaayjkaiaawMcaaiaah6ea daqadaqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aadaWadaqaamaabmaabaGaam4yamaaBaaaleaacaaIWaGaaGilaiaa ikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGilaiaaik daaeqaaaGccaGLOaGaayzkaaGabGymayaaDaGaeyOeI0Iaam4yamaa BaaaleaacaaIXaGaaGilaiaaikdaaeqaaOWaaWaaaeaacqaH1oqzaa aacaGLBbGaayzxaaaabaWaaWaaaeaacaWGYbaaamaaBaaaleaacaaI Yaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaGOmaaqabaGccaWHdb WaaWbaaSqabeaacaWGubaaaOGaaCOtamaabmaabaGaamizamaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaamaadmaabaWaaeWaaeaaca WGJbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGccqGHRaWkcaWG JbWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaaakiaawIcacaGLPa aaceaIXaGba0bacqGHsislcaWGJbWaaSbaaSqaaiaaigdacaaISaGa aGymaaqabaGcdaadaaqaaiabew7aLbaaaiaawUfacaGLDbaacqGHRa WkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaC4qamaaCaaaleqabaGa amivaaaakiaah6eadaqadaqaaiaadsgadaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaadaWadaqaamaabmaabaGaam4yamaaBaaaleaa caaIWaGaaGilaiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaaca aIXaGaaGilaiaaikdaaeqaaaGccaGLOaGaayzkaaGabGymayaaDaGa eyOeI0Iaam4yamaaBaaaleaacaaIXaGaaGilaiaaikdaaeqaaOWaaW aaaeaacqaH1oqzaaaacaGLBbGaayzxaaaaaaGaay5EaaGaaiOlaaaa @EEF8@

Par exemple, soit N = 7 , h = 2 , H = { 3 , 6 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0JaaG4naiaacYcacaWGObGaeyypa0JaaGOmaiaacYcacaWGibGa eyypa0ZaaiWaaeaacaaIZaGaaiilaiaaiAdaaiaawUhacaGL9baaaa a@453E@  et soit ρ=0,5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcq GH9aqpcaaIWaGaaeilaiaaiwdacaGGUaaaaa@3E05@  Alors

Q 2 ( x )=1,6 x 2 2x+5,75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0JaeyOeI0IaaGymaiaabYcacaaI2aGaamiEamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaaikdacaWG4bGaey4kaSIaaGynaiaabYca caaI3aGaaGynaaaa@4935@

et

{ x 1 =2,6211 x 2 =1,3711 { d + ( x 1 ) = 5,0439 d 1 = d ( x 1 ) = 0,1983 d + ( x 2 ) = 2,3091 d 2 = d ( x 2 ) = 0,4331 { a 1 =0,2348 a 2 =0,0859 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqaceaaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Ja eyOeI0IaaGOmaiaabYcacaaI2aGaaGOmaiaaigdacaaIXaaabaGaam iEamaaBaaaleaacaaIYaaabeaakiabg2da9iaaigdacaqGSaGaaG4m aiaaiEdacaaIXaGaaGymaaaaaiaawUhaaiabgkDiEpaaceaabaqbae GabqWaaaaabaGaamizamaaBaaaleaacqGHRaWkaeqaaOWaaeWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaabaGaey ypa0dabaGaeyOeI0IaaGynaiaabYcacaaIWaGaaGinaiaaiodacaaI 5aaabaGaamizamaaBaaaleaacaaIXaaabeaakiabg2da9iaadsgada WgaaWcbaGaeyOeI0cabeaakmaabmaabaGaamiEamaaBaaaleaacaaI XaaabeaaaOGaayjkaiaawMcaaaqaaiabg2da9aqaaiabgkHiTiaaic dacaqGSaGaaGymaiaaiMdacaaI4aGaaG4maaqaaiaadsgadaWgaaWc baGaey4kaScabeaakmaabmaabaGaamiEamaaBaaaleaacaaIYaaabe aaaOGaayjkaiaawMcaaaqaaiabg2da9aqaaiaaikdacaqGSaGaaG4m aiaaicdacaaI5aGaaGymaaqaaiaadsgadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcaWGKbWaaSbaaSqaaiabgkHiTaqabaGcdaqadaqaaiaa dIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacqGH9a qpaeaacaaIWaGaaeilaiaaisdacaaIZaGaaG4maiaaigdaaaaacaGL 7baacqGHshI3daGabaqaauaabaqaceaaaeaacaWGHbWaaSbaaSqaai aaigdaaeqaaOGaeyypa0JaaGimaiaabYcacaaIYaGaaG4maiaaisda caaI4aaabaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iaaic dacaqGSaGaaGimaiaaiIdacaaI1aGaaGyoaaaaaiaawUhaaiaac6ca aaa@929A@

Enfin, (3.9) prend la forme

μ ^ t =0,2348 μ ^ t1 +0,0859 μ ^ t2 + [ 0,2171 0,1904 0,0000 0,2171 0,1904 0,0000 0,1850 ] T X _ t + [ 0,0093 0,1086 0,0000 0,0093 0,1086 0,0000 0,0010 ] T X _ t1 + [ 0,0000 0,0047 0,0000 0,0476 0,0047 0,0000 0,0476 ] T X _ t2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWG0baabeaakiabg2da9iaaicdacaqGSaGaaGOm aiaaiodacaaI0aGaaGioaiqbeY7aTzaajaWaaSbaaSqaaiaadshacq GHsislcaaIXaaabeaakiabgUcaRiaaicdacaqGSaGaaGimaiaaiIda caaI1aGaaGyoaiqbeY7aTzaajaWaaSbaaSqaaiaadshacqGHsislca aIYaaabeaakiabgUcaRmaadmaabaqbaeGabCqaaaaabaGaaGimaiaa bYcacaaIYaGaaGymaiaaiEdacaaIXaaabaGaaGimaiaabYcacaaIXa GaaGyoaiaaicdacaaI0aaabaGaaGimaiaabYcacaaIWaGaaGimaiaa icdacaaIWaaabaGaaGimaiaabYcacaaIYaGaaGymaiaaiEdacaaIXa aabaGaaGimaiaabYcacaaIXaGaaGyoaiaaicdacaaI0aaabaGaaGim aiaabYcacaaIWaGaaGimaiaaicdacaaIWaaabaGaaGimaiaabYcaca aIXaGaaGioaiaaiwdacaaIWaaaaaGaay5waiaaw2faamaaCaaaleqa baGaamivaaaakmaamaaabaGaamiwaaaadaWgaaWcbaGaamiDaaqaba GccqGHRaWkdaWadaqaauaabiqaheaaaaqaaiabgkHiTiaaicdacaqG SaGaaGimaiaaicdacaaI5aGaaG4maaqaaiabgkHiTiaaicdacaqGSa GaaGymaiaaicdacaaI4aGaaGOnaaqaaiaaicdacaqGSaGaaGimaiaa icdacaaIWaGaaGimaaqaaiabgkHiTiaaicdacaqGSaGaaGimaiaaic dacaaI5aGaaG4maaqaaiabgkHiTiaaicdacaqGSaGaaGymaiaaicda caaI4aGaaGOnaaqaaiaaicdacaqGSaGaaGimaiaaicdacaaIWaGaaG imaaqaaiaaicdacaqGSaGaaGimaiaaicdacaaIXaGaaGimaaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaadaaqaaiaadIfaaa WaaSbaaSqaaiaadshacqGHsislcaaIXaaabeaakiabgUcaRmaadmaa baqbaeGabCqaaaaabaGaaGimaiaabYcacaaIWaGaaGimaiaaicdaca aIWaaabaGaaGimaiaabYcacaaIWaGaaGimaiaaisdacaaI3aaabaGa aGimaiaabYcacaaIWaGaaGimaiaaicdacaaIWaaabaGaeyOeI0IaaG imaiaabYcacaaIWaGaaGinaiaaiEdacaaI2aaabaGaaGimaiaabYca caaIWaGaaGimaiaaisdacaaI3aaabaGaaGimaiaabYcacaaIWaGaaG imaiaaicdacaaIWaaabaGaeyOeI0IaaGimaiaabYcacaaIWaGaaGin aiaaiEdacaaI2aaaaaGaay5waiaaw2faamaaCaaaleqabaGaamivaa aakmaamaaabaGaamiwaaaadaWgaaWcbaGaamiDaiabgkHiTiaaikda aeqaaOGaaiOlaaaa@C672@

4.3 Scénario de Szarkowski, p = 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGWbGaey ypa0JaaG4maaaa@3B57@

S’il existe h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObWaaS baaSqaaiaaikdaaeqaaaaa@3A3A@  intervalles de taille 2 et h 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObWaaS baaSqaaiaaigdaaeqaaaaa@3A39@  intervalles de taille 1 dans le schéma en cascade, le polynôme Q p = Q 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaOGaeyypa0JaamyuamaaBaaaleaacaaIZaaa beaakiaacYcaaaa@3DE5@  voir (3.3), prend la forme

Q 3 ( x ) = ( N 1 ) ( 1 + ρ 2 2 ρ x ) + 1 ρ 2 ( 1 + ρ 2 2 ρ x ) 2 ( h 2 2 ρ x + 2 ( 1 + ρ 2 ) 1 + ρ 2 + ρ 4 + h 1 1 1 + ρ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaiodaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacaWGobGaeyOeI0IaaGymaaGaayjkaiaawMcaam aabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaikdacqaHbpGCcaWG4baacaGLOaGaayzkaaGaey4kaS IaaGymaiabgkHiTiabeg8aYnaaCaaaleqabaGaaGOmaaaakiabgkHi TmaabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaaleqabaGaaGOmaa aakiabgkHiTiaaikdacqaHbpGCcaWG4baacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOWaaeWaaeaacaWGObWaaSbaaSqaaiaaikdaae qaaOWaaSaaaeaacaaIYaGaeqyWdiNaamiEaiabgUcaRiaaikdadaqa daqaaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikdaaaaaki aawIcacaGLPaaaaeaacaaIXaGaey4kaSIaeqyWdi3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaI0aaaaaaaki abgUcaRiaadIgadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiaaigda aeaacaaIXaGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaaiaai6caaaa@7C3A@

Le scénario de Szarkowski est défini par le schéma en cascade ε _ = ( 1,1,0,0,1,1 ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai abew7aLbaacqGH9aqpdaqadaqaaiaaigdacaaISaGaaGymaiaaiYca caaIWaGaaGilaiaaicdacaaISaGaaGymaiaaiYcacaaIXaaacaGLOa GaayzkaaWaaWbaaSqabeaacaWGubaaaaaa@459F@  (souvent noté aussi sous la forme 2 2 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIYaGaey OeI0IaaGOmaiabgkHiTiaaikdacaGGPaGaaiilaaaa@3DD0@  utilisé, par exemple, par le Bureau central de la statistique de la Pologne pour réaliser l’Enquête sur la population active (connue sous l’acronyme BAEL), voir Szarkowski et Witkowski (1994) ou Popiński (2006). En fait, ce genre de scénario est utilisé également dans l’EPA d’autres pays européens. Ici, N = 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0JaaGOnaaaa@3AFE@  et H = { 3 , 4 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0ZaaiWaaeaacaaIZaGaaiilaiaaisdaaiaawUhacaGL9baacaGG Uaaaaa@3F46@  Donc h 2 = 1 , h 1 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObWaaS baaSqaaiaaikdaaeqaaOGaeyypa0JaaGymaiaacYcacaWGObWaaSba aSqaaiaaigdaaeqaaOGaeyypa0JaaGimaiaacYcaaaa@4103@  et

Q 3 ( x ) = 5 ( 1 + ρ 2 2 ρ x ) + 1 ρ 2 2 ( 1 + ρ 2 2 ρ x ) 2 ρ x + 1 + ρ 2 1 + ρ 2 + ρ 4 . ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaiodaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0JaaGynamaabmaabaGaaGymaiabgUcaRiabeg8aYnaaCaaale qabaGaaGOmaaaakiabgkHiTiaaikdacqaHbpGCcaWG4baacaGLOaGa ayzkaaGaey4kaSIaaGymaiabgkHiTiabeg8aYnaaCaaaleqabaGaaG OmaaaakiabgkHiTiaaikdadaqadaqaaiaaigdacqGHRaWkcqaHbpGC daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaeqyWdiNaamiEaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaeqyW diNaamiEaiabgUcaRiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaai aaikdaaaaakeaacaaIXaGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaI0aaaaaaakiaai6 cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOl aiaaisdacaGGPaaaaa@76BA@

Wesołowski (2010) a prouvé que, dans ce cas, Q 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaiodaaeqaaaaa@3A24@  est strictement croissant ou décroissant dans le domaine entier et possède deux racines conjuguées complexes x 1 , x 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqa baGccaGGSaaaaa@3DA2@  et une racine réelle x 3 [ 1,1 ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaaiodaaeqaaOGafyicI4SbaybadaWadaqaaiabgkHiTiaa igdacaaISaGaaGymaaGaay5waiaaw2faaiaacYcaaaa@41B1@  ce qui signifie que l’HYPOTHÈSE I du théorème 3.1 est vérifiée. Il a également montré dans cet article que la matrice S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbGaai ilaaaa@39F1@  dans ce cas de dimensions 9 × 9 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaI5aGaey 41aqRaaGyoaiaacYcaaaa@3CB2@  est inversible (ce qui signifie que l’HYPOTHÈSE II du théorème 3.1 est vérifiée). Donc, comme pour p = 1 , 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey ypa0JaaGymaiaacYcacaaIYaGaaiilaaaa@3D37@  la récurrence (3.9) pour le scénario de Szarkowski est toujours vérifiée.

En général, même dans le cas p = 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey ypa0JaaG4maiaacYcaaaa@3BCD@  la vérification des HYPOTHÈSES I et II du théorème 3.1 doit être effectuée numériquement, c’est-à-dire après l’attribution de la valeur du coefficient de corrélation ρ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca GGUaaaaa@3AD7@  Cependant, il convient de noter que toutes les simulations exécutées confirment l’existence de la solution. L’approximation asymptotique des paramètres du modèle « classique » a également été observée dans les expériences numériques que nous avons effectuées.

Les coefficients a 1 , a 2 , a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadggadaWgaaWcbaGaaGOmaaqa baGccaaISaGaamyyamaaBaaaleaacaaIZaaabeaaaaa@3F4F@  dépendent de d 1 = d ( x 1 ) , d 2 = d ( x 2 ) = d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGHsisl aeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaGaaiilaiaadsgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caWGKbWaaSbaaSqaaiabgkHiTaqabaGcdaqadaqaaiaadIhadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGKbWaa0ba aSqaaiaaigdaaeaacqGHxiIkaaaaaa@4DA3@  et d 3 = d ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaaiodaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGHsisl aeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@40CC@  de la façon suivante (voir (3.10)):

{ a 1 = d 1 + d 2 + d 3 a 2 = ( d 1 d 2 + d 2 d 3 + d 1 d 3 ) a 3 = d 1 d 2 d 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqadeaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Ja amizamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaaGc baGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTmaabm aabaGaamizamaaBaaaleaacaaIXaaabeaakiaadsgadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam izamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGymaaqabaGccaWGKbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaay zkaaaabaGaamyyamaaBaaaleaacaaIZaaabeaakiabg2da9iaadsga daWgaaWcbaGaaGymaaqabaGccaWGKbWaaSbaaSqaaiaaikdaaeqaaO GaamizamaaBaaaleaacaaIZaaabeaaaaaakiaawUhaaiaai6caaaa@5F20@

Pour le scénario de Szarkowski, en prenant par exemple ρ=0,7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcq GH9aqpcaaIWaGaaeilaiaaiEdaaaa@3D55@  dans (4.4), nous obtenons

{ x 1 =0,56681,4069i x 2 =0,5668+1,4069i x 3 =1,1336 { d + ( x 1 ) d 1 = d ( x 1 ) d + ( x 2 ) d 2 = d ( x 2 ) d + ( x 3 ) d 3 = d ( x 3 ) =1,03683,1035i =0,0968+0,2899i =1,0368+3,1035i =0,09680,2899i =1,6675 =0,5997 { a 1 =0,4060 a 2 =0,0227 a 3 =0,0560 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqadeaaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Ja eyOeI0IaaGimaiaabYcacaaI1aGaaGOnaiaaiAdacaaI4aGaeyOeI0 IaaGymaiaabYcacaaI0aGaaGimaiaaiAdacaaI5aGaamyAaaqaaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsislcaaIWaGaae ilaiaaiwdacaaI2aGaaGOnaiaaiIdacqGHRaWkcaaIXaGaaeilaiaa isdacaaIWaGaaGOnaiaaiMdacaWGPbaabaGaamiEamaaBaaaleaaca aIZaaabeaakiabg2da9iaaigdacaqGSaGaaGymaiaaiodacaaIZaGa aGOnaaaaaiaawUhaaiabgkDiEpaaceaabaqbaeGabyqaaaaabaGaam izamaaBaaaleaacqGHRaWkaeqaaOWaaeWaaeaacaWG4bWaaSbaaSqa aiaaigdaaeqaaaGccaGLOaGaayzkaaaabaGaamizamaaBaaaleaaca aIXaaabeaakiabg2da9iaadsgadaWgaaWcbaGaeyOeI0cabeaakmaa bmaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaa qaaiaadsgadaWgaaWcbaGaey4kaScabeaakmaabmaabaGaamiEamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaadsgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiabgkHiTaqa baGcdaqadaqaaiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaaaeaacaWGKbWaaSbaaSqaaiabgUcaRaqabaGcdaqadaqaaiaa dIhadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaeaacaWGKb WaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGH sislaeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcca GLOaGaayzkaaaaauaabaqageaaaaqaaiabg2da9iabgkHiTiaaigda caqGSaGaaGimaiaaiodacaaI2aGaaGioaiabgkHiTiaaiodacaqGSa GaaGymaiaaicdacaaIZaGaaGynaiaadMgaaeaacqGH9aqpcqGHsisl caaIWaGaaeilaiaaicdacaaI5aGaaGOnaiaaiIdacqGHRaWkcaaIWa GaaeilaiaaikdacaaI4aGaaGyoaiaaiMdacaWGPbaabaGaeyypa0Ja eyOeI0IaaGymaiaabYcacaaIWaGaaG4maiaaiAdacaaI4aGaey4kaS IaaG4maiaabYcacaaIXaGaaGimaiaaiodacaaI1aGaamyAaaqaaiab g2da9iabgkHiTiaaicdacaqGSaGaaGimaiaaiMdacaaI2aGaaGioai abgkHiTiaaicdacaqGSaGaaGOmaiaaiIdacaaI5aGaaGyoaiaadMga aeaacqGH9aqpcaaIXaGaaeilaiaaiAdacaaI2aGaaG4naiaaiwdaae aacqGH9aqpcaaIWaGaaeilaiaaiwdacaaI5aGaaGyoaiaaiEdaaaaa caGL7baacqGHshI3daGabaqaauaabaqadeaaaeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGimaiaabYcacaaI0aGaaGimaiaa iAdacaaIWaaabaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9i aaicdacaqGSaGaaGimaiaaikdacaaIYaGaaG4naaqaaiaadggadaWg aaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaGaaeilaiaaicdacaaI1a GaaGOnaiaaicdaaaaacaGL7baacaaIUaaaaa@E243@

En raison du théorème 3.1, nous obtenons la forme suivante de (3.9):

μ ^ t =0,4060 μ ^ t1 +0,0227 μ ^ t2 +0,0560 μ ^ t3 + [ 0,2862 0,2217 0,0000 0,0000 0,2862 0,2059 ] T X _ t + [ 0,0036 0,2004 0,0000 0,0000 0,0036 0,1984 ] T X _ t1 + [ 0,0143 0,0026 0,0000 0,0000 0,0143 0,0033 ] T X _ t2 + [ 0,0000 0,0100 0,0000 0,0000 0,0760 0,0100 ] T X _ t3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGafqiVd0MbaKaadaWgaaWcbaGaamiDaaqabaaakeaacqGH9aqp caaIWaGaaeilaiaaisdacaaIWaGaaGOnaiaaicdacuaH8oqBgaqcam aaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRaWkcaaIWaGa aeilaiaaicdacaaIYaGaaGOmaiaaiEdacuaH8oqBgaqcamaaBaaale aacaWG0bGaeyOeI0IaaGOmaaqabaGccqGHRaWkcaaIWaGaaeilaiaa icdacaaI1aGaaGOnaiaaicdacuaH8oqBgaqcamaaBaaaleaacaWG0b GaeyOeI0IaaG4maaqabaaakeaaaeaacqGHRaWkdaWadaqaauaabiqa geaaaaqaaiaaicdacaqGSaGaaGOmaiaaiIdacaaI2aGaaGOmaaqaai aaicdacaqGSaGaaGOmaiaaikdacaaIXaGaaG4naaqaaiaaicdacaqG SaGaaGimaiaaicdacaaIWaGaaGimaaqaaiaaicdacaqGSaGaaGimai aaicdacaaIWaGaaGimaaqaaiaaicdacaqGSaGaaGOmaiaaiIdacaaI 2aGaaGOmaaqaaiaaicdacaqGSaGaaGOmaiaaicdacaaI1aGaaGyoaa aaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaadaaqaaiaa dIfaaaWaaSbaaSqaaiaadshaaeqaaOGaey4kaSYaamWaaeaafaqace GbbaaaaeaacqGHsislcaaIWaGaaeilaiaaicdacaaIWaGaaG4maiaa iAdaaeaacqGHsislcaaIWaGaaeilaiaaikdacaaIWaGaaGimaiaais daaeaacaaIWaGaaeilaiaaicdacaaIWaGaaGimaiaaicdaaeaacaaI WaGaaeilaiaaicdacaaIWaGaaGimaiaaicdaaeaacqGHsislcaaIWa GaaeilaiaaicdacaaIWaGaaG4maiaaiAdaaeaacqGHsislcaaIWaGa aeilaiaaigdacaaI5aGaaGioaiaaisdaaaaacaGLBbGaayzxaaWaaW baaSqabeaacaWGubaaaOWaaWaaaeaacaWGybaaamaaBaaaleaacaWG 0bGaeyOeI0IaaGymaaqabaGccqGHRaWkdaWadaqaauaabiqageaaaa qaaiabgkHiTiaaicdacaqGSaGaaGimaiaaigdacaaI0aGaaG4maaqa aiaaicdacaqGSaGaaGimaiaaicdacaaIYaGaaGOnaaqaaiaaicdaca qGSaGaaGimaiaaicdacaaIWaGaaGimaaqaaiaaicdacaqGSaGaaGim aiaaicdacaaIWaGaaGimaaqaaiabgkHiTiaaicdacaqGSaGaaGimai aaigdacaaI0aGaaG4maaqaaiaaicdacaqGSaGaaGimaiaaicdacaaI ZaGaaG4maaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcda adaaqaaiaadIfaaaWaaSbaaSqaaiaadshacqGHsislcaaIYaaabeaa kiabgUcaRmaadmaabaqbaeGabyqaaaaabaGaaGimaiaabYcacaaIWa GaaGimaiaaicdacaaIWaaabaGaaGimaiaabYcacaaIWaGaaGymaiaa icdacaaIWaaabaGaaGimaiaabYcacaaIWaGaaGimaiaaicdacaaIWa aabaGaaGimaiaabYcacaaIWaGaaGimaiaaicdacaaIWaaabaGaeyOe I0IaaGimaiaabYcacaaIWaGaaG4naiaaiAdacaaIWaaabaGaaGimai aabYcacaaIWaGaaGymaiaaicdacaaIWaaaaaGaay5waiaaw2faamaa CaaaleqabaGaamivaaaakmaamaaabaGaamiwaaaadaWgaaWcbaGaam iDaiabgkHiTiaaiodaaeqaaOGaaiOlaaaaaaa@E5D3@

4.4 Scénario de la CPS, p = 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaacaWGWbGaey ypa0JaaGyoaaaa@3B5D@

Considérons le scénario 4-8-4 bien connu et qui a fait l’objet de nombreuses études, pour lequel le schéma en cascade est

ε _ = ( 1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1 ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaadaaqaai abew7aLbaacqGH9aqpdaqadaqaaiaaigdacaaISaGaaGymaiaaiYca caaIXaGaaGilaiaaigdacaaISaGaaGimaiaaiYcacaaIWaGaaGilai aaicdacaaISaGaaGimaiaaiYcacaaIWaGaaGilaiaaicdacaaISaGa aGimaiaaiYcacaaIWaGaaGilaiaaigdacaaISaGaaGymaiaaiYcaca aIXaGaaGilaiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadsfa aaaaaa@5402@

qui est utilisé aux États-Unis pour la Current Population Survey, voir U.S. Bureau of Census (2002). Dans ce cas, N = 16 , h = 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0JaaGymaiaaiAdacaGGSaGaamiAaiabg2da9iaaiIdaaaa@3F1E@  et H = { 5, ,12 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0ZaaiWaaeaacaaI1aGaaGilaiablAciljaaiYcacaaIXaGaaGOm aaGaay5Eaiaaw2haaiaac6caaaa@41DF@  Nous ne possédons aucune preuve analytique que les HYPOTHÈSES I et II sont satisfaites dans ce scénario pour tout ρ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca GGUaaaaa@3AD7@

Le polynôme Q p = Q 9 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaOGaeyypa0JaamyuamaaBaaaleaacaaI5aaa beaakiaacYcaaaa@3DEB@  voir (3.3), est de degré 9 et de la forme

Q 9 ( x ) = 15 ( 1 + ρ 2 2 ρ x ) + 1 ρ 2 ( 1 + ρ 2 2 ρ x ) 2 tr ( T 8 ( x ) R 8 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaiMdaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa eyypa0JaaGymaiaaiwdadaqadaqaaiaaigdacqGHRaWkcqaHbpGCda ahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaeqyWdiNaamiEaaGa ayjkaiaawMcaaiabgUcaRiaaigdacqGHsislcqaHbpGCdaahaaWcbe qaaiaaikdaaaGccqGHsisldaqadaqaaiaaigdacqGHRaWkcqaHbpGC daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaeqyWdiNaamiEaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaabshacaqGYbWa aeWaaeaacaWHubWaaSbaaSqaaiaaiIdaaeqaaOWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaaCOuamaaDaaaleaacaaI4aaabaGaeyOeI0Ia aGymaaaaaOGaayjkaiaawMcaaiaai6caaaa@66D8@

Par conséquent, son analyse, ainsi que l’analyse de la matrice S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHtbaaaa@3941@  (qui est de dimensions 81 × 81 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaI4aGaaG ymaiabgEna0kaaiIdacaaIXaaaaa@3D76@  dans ce schéma), peut être effectuée numériquement, après avoir attribué une valeur pour ρ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca GGUaaaaa@3AD7@  Afin d’utiliser le résultat du théorème 3.1, nous devons vérifier numériquement que les HYPOTHÈSES I et II sont satisfaites pour une valeur concrète donnée de ρ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca GGUaaaaa@3AD7@  Nous avons confirmé que les hypothèses sont vérifiées pour plusieurs valeurs de ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaa a@3A25@  prises au hasard dans l’intervalle ( 1,1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abgkHiTiaaigdacaaISaGaaGymaaGaayjkaiaawMcaaiaac6caaaa@3DB9@

En prenant par exemple ρ=0,9, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcq GH9aqpcaaIWaGaaeilaiaaiMdacaGGSaaaaa@3E07@  nous obtenons que Q 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaaiMdaaeqaaaaa@3A2A@  possède huit racines complexes et une racine réelle de la forme

{ x 1 =0,76670,0208i x 2 =0,7667+0,0208i x 3 =0,17460,0320i x 4 =0,1746+0,0320i x 5 =0,49890,0284i x 6 =0,4989+0,0284i x 7 =0,93910,0121i x 8 =0,9391+0,0121i x 9 =1,0006 { d 1 = d ( x 1 ) =0,74190,6220i d 2 = d ( x 2 ) =0,7419+0,6220i d 3 = d ( x 3 ) =0,16890,9532i d 4 = d ( x 4 ) =0,1689+0,9532i d 5 = d ( x 5 ) =0,48250,8389i d 6 = d ( x 6 ) =0,4825+0,8389i d 7 = d ( x 7 ) =0,90640,3335i d 8 = d ( x 8 ) =0,9064+0,3335i d 9 = d ( x 9 ) =0,9682 { a 1 =0,7429 a 2 =0,0019 a 3 =0,0023 a 4 =0,0029 a 5 =0,0037 a 6 =0,0049 a 7 =0,0066 a 8 =0,0088 a 9 =0,0119 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGabaqaau aabaqajeaaaaaabaGaamiEamaaBaaaleaacaaIXaaabeaakiabg2da 9iabgkHiTiaaicdacaqGSaGaaG4naiaaiAdacaaI2aGaaG4naiabgk HiTiaaicdacaqGSaGaaGimaiaaikdacaaIWaGaaGioaiaadMgaaeaa caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGimai aabYcacaaI3aGaaGOnaiaaiAdacaaI3aGaey4kaSIaaGimaiaabYca caaIWaGaaGOmaiaaicdacaaI4aGaamyAaaqaaiaadIhadaWgaaWcba GaaG4maaqabaGccqGH9aqpcqGHsislcaaIWaGaaeilaiaaigdacaaI 3aGaaGinaiaaiAdacqGHsislcaaIWaGaaeilaiaaicdacaaIZaGaaG OmaiaaicdacaWGPbaabaGaamiEamaaBaaaleaacaaI0aaabeaakiab g2da9iabgkHiTiaaicdacaqGSaGaaGymaiaaiEdacaaI0aGaaGOnai abgUcaRiaaicdacaqGSaGaaGimaiaaiodacaaIYaGaaGimaiaadMga aeaacaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaeyypa0JaaGimaiaabY cacaaI0aGaaGyoaiaaiIdacaaI5aGaeyOeI0IaaGimaiaabYcacaaI WaGaaGOmaiaaiIdacaaI0aGaamyAaaqaaiaadIhadaWgaaWcbaGaaG OnaaqabaGccqGH9aqpcaaIWaGaaeilaiaaisdacaaI5aGaaGioaiaa iMdacqGHRaWkcaaIWaGaaeilaiaaicdacaaIYaGaaGioaiaaisdaca WGPbaabaGaamiEamaaBaaaleaacaaI3aaabeaakiabg2da9iaaicda caqGSaGaaGyoaiaaiodacaaI5aGaaGymaiabgkHiTiaaicdacaqGSa GaaGimaiaaigdacaaIYaGaaGymaiaadMgaaeaacaWG4bWaaSbaaSqa aiaaiIdaaeqaaOGaeyypa0JaaGimaiaabYcacaaI5aGaaG4maiaaiM dacaaIXaGaey4kaSIaaGimaiaabYcacaaIWaGaaGymaiaaikdacaaI XaGaamyAaaqaaiaadIhadaWgaaWcbaGaaGyoaaqabaGccqGH9aqpcq GHsislcaaIXaGaaeilaiaaicdacaaIWaGaaGimaiaaiAdaaaaacaGL 7baacqGHshI3daGabaqaauaabaqajiaaaaaabaGaamizamaaBaaale aacaaIXaaabeaakiabg2da9iaadsgadaWgaaWcbaGaeyOeI0cabeaa kmaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM caaaqaaiabg2da9iabgkHiTiaaicdacaqGSaGaaG4naiaaisdacaaI XaGaaGyoaiabgkHiTiaaicdacaqGSaGaaGOnaiaaikdacaaIYaGaaG imaiaadMgaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja amizamaaBaaaleaacqGHsislaeqaaOWaaeWaaeaacaWG4bWaaSbaaS qaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaeyypa0JaeyOeI0Ia aGimaiaabYcacaaI3aGaaGinaiaaigdacaaI5aGaey4kaSIaaGimai aabYcacaaI2aGaaGOmaiaaikdacaaIWaGaamyAaaqaaiaadsgadaWg aaWcbaGaaG4maaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiabgkHiTa qabaGcdaqadaqaaiaadIhadaWgaaWcbaGaaG4maaqabaaakiaawIca caGLPaaaaeaacqGH9aqpcqGHsislcaaIWaGaaeilaiaaigdacaaI2a GaaGioaiaaiMdacqGHsislcaaIWaGaaeilaiaaiMdacaaI1aGaaG4m aiaaikdacaWGPbaabaGaamizamaaBaaaleaacaaI0aaabeaakiabg2 da9iaadsgadaWgaaWcbaGaeyOeI0cabeaakmaabmaabaGaamiEamaa BaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaaqaaiabg2da9iabgk HiTiaaicdacaqGSaGaaGymaiaaiAdacaaI4aGaaGyoaiabgUcaRiaa icdacaqGSaGaaGyoaiaaiwdacaaIZaGaaGOmaiaadMgaaeaacaWGKb WaaSbaaSqaaiaaiwdaaeqaaOGaeyypa0JaamizamaaBaaaleaacqGH sislaeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaiwdaaeqaaaGcca GLOaGaayzkaaaabaGaeyypa0JaaGimaiaabYcacaaI0aGaaGioaiaa ikdacaaI1aGaeyOeI0IaaGimaiaabYcacaaI4aGaaG4maiaaiIdaca aI5aGaamyAaaqaaiaadsgadaWgaaWcbaGaaGOnaaqabaGccqGH9aqp caWGKbWaaSbaaSqaaiabgkHiTaqabaGcdaqadaqaaiaadIhadaWgaa WcbaGaaGOnaaqabaaakiaawIcacaGLPaaaaeaacqGH9aqpcaaIWaGa aeilaiaaisdacaaI4aGaaGOmaiaaiwdacqGHRaWkcaaIWaGaaeilai aaiIdacaaIZaGaaGioaiaaiMdacaWGPbaabaGaamizamaaBaaaleaa caaI3aaabeaakiabg2da9iaadsgadaWgaaWcbaGaeyOeI0cabeaakm aabmaabaGaamiEamaaBaaaleaacaaI3aaabeaaaOGaayjkaiaawMca aaqaaiabg2da9iaaicdacaqGSaGaaGyoaiaaicdacaaI2aGaaGinai abgkHiTiaaicdacaqGSaGaaG4maiaaiodacaaIZaGaaGynaiaadMga aeaacaWGKbWaaSbaaSqaaiaaiIdaaeqaaOGaeyypa0JaamizamaaBa aaleaacqGHsislaeqaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaiIda aeqaaaGccaGLOaGaayzkaaaabaGaeyypa0JaaGimaiaabYcacaaI5a GaaGimaiaaiAdacaaI0aGaey4kaSIaaGimaiaabYcacaaIZaGaaG4m aiaaiodacaaI1aGaamyAaaqaaiaadsgadaWgaaWcbaGaaGyoaaqaba GccqGH9aqpcaWGKbWaaSbaaSqaaiabgkHiTaqabaGcdaqadaqaaiaa dIhadaWgaaWcbaGaaGyoaaqabaaakiaawIcacaGLPaaaaeaacqGH9a qpcqGHsislcaaIWaGaaeilaiaaiMdacaaI2aGaaGioaiaaikdaaaaa caGL7baacqGHshI3daGabaqaauaabaqajeaaaaaabaGaamyyamaaBa aaleaacaaIXaaabeaakiabg2da9iaaicdacaqGSaGaaG4naiaaisda caaIYaGaaGyoaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGH9a qpcaaIWaGaaeilaiaaicdacaaIWaGaaGymaiaaiMdaaeaacaWGHbWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaiaabYcacaaIWaGaaG imaiaaikdacaaIZaaabaGaamyyamaaBaaaleaacaaI0aaabeaakiab g2da9iaaicdacaqGSaGaaGimaiaaicdacaaIYaGaaGyoaaqaaiaadg gadaWgaaWcbaGaaGynaaqabaGccqGH9aqpcaaIWaGaaeilaiaaicda caaIWaGaaG4maiaaiEdaaeaacaWGHbWaaSbaaSqaaiaaiAdaaeqaaO Gaeyypa0JaaGimaiaabYcacaaIWaGaaGimaiaaisdacaaI5aaabaGa amyyamaaBaaaleaacaaI3aaabeaakiabg2da9iaaicdacaqGSaGaaG imaiaaicdacaaI2aGaaGOnaaqaaiaadggadaWgaaWcbaGaaGioaaqa baGccqGH9aqpcaaIWaGaaeilaiaaicdacaaIWaGaaGioaiaaiIdaae aacaWGHbWaaSbaaSqaaiaaiMdaaeqaaOGaeyypa0JaaGimaiaabYca caaIWaGaaGymaiaaigdacaaI5aaaaaGaay5EaaGaaGOlaaaa@AE0F@

Le coefficient a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaigdaaeqaaaaa@3A32@  est dominant en ce qui concerne la valeur absolue. Le deuxième plus grand coefficient, a 9 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaaiMdaaeqaaOGaaiilaaaa@3AF4@  est plus petit d’un ordre de grandeur, et les autres coefficients sont plus petits d’au moins deux ordres de grandeur. Les résultats pour d’autres valeurs du paramètre ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaa a@3A25@  ont un comportement similaire.

 

Précédent | Suivant

Date de modification :