Une mesure de l’effet de plan pour la pondération par calage dans les échantillons à un degré 3. Mesure proposée de l’effet de plan

Nous étendons l’approche de Spencer (2000) dans le cas de l’échantillonnage à un degré afin de produire un nouvel effet de plan dû à la pondération pour un estimateur par calage. Alors que Spencer a supposé que y i = α + β p i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaeqOSdiMa amiCamaaBaaaleaacaWGPbaabeaakiabgUcaRiabew7aLnaaBaaale aacaWGPbaabeaakiaacYcaaaa@4625@ nous modélisons y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaaaa@3A7D@ sous la forme y i = α + x i T β + ε i = x ˙ i T β ˙ + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda WgaaWcbaGaamyAaaqabaGccqGH9aqpceWH4bGbaiaadaqhaaWcbaGa amyAaaqaaiaadsfaaaGcceWHYoGbaiaacqGHRaWkcqaH1oqzdaWgaa WcbaGaamyAaaqabaGccaGGSaaaaa@4FAA@ x ˙ i = [ 1 x i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4bGbai aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWadaqaauaabeqabiaa aeaacaaIXaaabaGaaCiEamaaBaaaleaacaWGPbaabeaaaaaakiaawU facaGLDbaaaaa@4078@ et β ˙ = [ α β ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbai aacqGH9aqpdaWadaqaauaabeqabiaaaeaacqaHXoqyaeaacaWHYoaa aaGaay5waiaaw2faaiaac6caaaa@4040@ Désignons les estimateurs en population finie complète de α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ et β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoaaaa@39A3@ par A = Y ¯ X ¯ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey ypa0JabmywayaaraGaeyOeI0IabCiwayaaraGaaCOqaaaa@3DD8@ et B = ( X T X ) 1 X T Y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada ahaaWcbeqaaiaadsfaaaGccaWHzbGaaiilaaaa@43F3@ X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@ est la matrice de dimensions N × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey 41aqRaamiCaaaa@3C44@ des variables auxiliaires pour les N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3938@ unités dans la population finie et Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHzbaaaa@3947@ est le vecteur de dimension N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@3928@ des valeurs de  y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@3A15@ Les résidus dans la population finie sont définis comme étant e i = y i ( A + x i T B ) y i x ˙ i T B ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTmaabmaabaGaamyqaiabgUcaRiaahIhadaqhaaWcba GaamyAaaqaaiaadsfaaaGccaWHcbaacaGLOaGaayzkaaGaeyyyIORa amyEamaaBaaaleaacaWGPbaabeaakiabgkHiTiqahIhagaGaamaaDa aaleaacaWGPbaabaGaamivaaaakiqahkeagaGaaaaa@4E37@ B ˙ = [ A B ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbai aacqGH9aqpdaWadaqaauaabeqabiaaaeaacaWGbbaabaGaaCOqaaaa aiaawUfacaGLDbaacaGGUaaaaa@3E81@

La production de l’effet de plan proposé plus bas comprend quatre étapes, à savoir 1) construire une approximation linéaire de l’estimateur GREG, 2) obtenir la variance sous le plan de cette approximation linéaire, 3) substituer les composantes fondées sur un modèle dans l’expression de la variance de l’estimateur GREG, et 4) prendre le ratio de cette variance assistée par modèle à la variance de l’estimateur pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbaaaa@3B37@ du total sous easar . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yyaiaabohacaqGHbGaaeOCaiaac6caaaa@3DB2@ Puisque les étapes (1) à (4) produisent l’effet de plan théorique d’un estimateur, nous ajoutons l’étape finale, à savoir introduire les estimations fondées sur l’échantillon pour chaque composante de l’effet de plan théorique.

Étape 1. Une linéarisation de l’estimateur GREG (expression 6.6.9 dans Särndal et coll. 1992) prend la forme

T ^ GREG T ^ HT y + ( T x T ^ HT x ) T B ˙ = T x T B ˙ + i s e i / π i ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGabmivayaajaWaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEea aeqaaaGcbaGaeSiuIiKabmivayaajaWaaSbaaSqaaiaabIeacaqGub GaamyEaaqabaGccqGHRaWkdaqadaqaaiaahsfadaWgaaWcbaGaamiE aaqabaGccqGHsislceWHubGbaKaadaWgaaWcbaGaaeisaiaabsfaca WG4baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiqa hkeagaGaaaqaaaqaaiabg2da9iaahsfadaqhaaWcbaGaamiEaaqaai aadsfaaaGcceWHcbGbaiaacqGHRaWkdaaeqaqaamaalyaabaGaamyz amaaBaaaleaacaWGPbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaaaOGa aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6caca aIXaGaaiykaaaa@688B@

i s e i / π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaaaa@42A2@ est l’estimateur HT du total de population des e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B23@ E U = i U e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabeaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aO GaaiOlaaaa@4329@ Pour obtenir une formule de variance simple à l’étape 2, nous traitons le cas de l’échantillonnage avec remise et remplaçons i s e i / π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaaaa@42A2@ par l’estimateur pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbaaaa@3B37@ n 1 i = 1 n e i / p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeWaqaaiaadwga daWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaaca WGUbaaniabggHiLdaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGa aiOlaaaaaaa@45BF@ Ensuite, nous définissons δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaamyAaaqabaaaaa@3B24@ comme étant le nombre de fois que l’unité i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3953@ est sélectionnée dans l’échantillon. Puisque E π ( δ i ) = n p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiabec8aWbqabaGcdaqadaqaaiabes7aKnaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiabg2da9iaad6gacaWGWbWaaSbaaS qaaiaadMgaaeqaaOGaaiilaaaa@4436@ l’espérance sous le plan de la deuxième composante dans (3.1) est de la forme E π ( n 1 i = 1 n e i / p i ) = E U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiabec8aWbqabaGcdaqadaqaamaalyaabaGaamOBamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaaqadabaGaamyzamaaBaaaleaaca WGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye IuoaaOqaaiaadchadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaay zkaaGaeyypa0JaamyramaaBaaaleaacaWGvbaabeaakiaac6caaaa@4CE5@

Étape 2. De l’étape 1 avec l’hypothèse d’échantillonnage avec remise, il découle que T ^ GREG T x T B ˙ n 1 i = 1 n e i / p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGubGbaK aadaWgaaWcbaGaae4raiaabkfacaqGfbGaae4raaqabaGccqGHsisl caWHubWaa0baaSqaaiaadIhaaeaacaWGubaaaOGabCOqayaacaGaeS iuIi0aaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBaaaleaa caWGPbaabeaaaaGccaGGSaaaaa@4FFD@ dont la variance sous le plan est donnée par

Var π ( T ^ GREG T x T B ˙ U ) Var π ( n 1 i = 1 n e i / p i ) = n 1 i U p i ( e i / p i E U ) 2 . ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGaaeOvaiaabggacaqGYbWaaSbaaSqaaiabec8aWbqabaGcdaqa daqaaiqadsfagaqcamaaBaaaleaacaqGhbGaaeOuaiaabweacaqGhb aabeaakiabgkHiTiaahsfadaqhaaWcbaGaamiEaaqaaiaadsfaaaGc ceWHcbGbaiaadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGLPaaaae aacqWIqjIqcaqGwbGaaeyyaiaabkhadaWgaaWcbaGaeqiWdahabeaa kmaabmaabaWaaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga cqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBa aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaeaaaeaacqGH9aqp caWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabeaeaacaWGWb WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaaiaadwgadaWg aaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabgIGiolaadwfaae qaniabggHiLdGccaGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@7DD8@

Étapes 3 et 4. Nous suivons l’approche de Spencer et substituons les valeurs du modèle dans l’expression de la variance (3.2) pour formuler une mesure de l’effet de plan. Cependant, nous substituons l’équivalent fondé sur un modèle de e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaaaa@3A69@ et non de y i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B39@ La substitution des résidus GREG e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaaaa@3A69@ dans l’expression de la variance et le calcul de son ratio à la variance de l’estimateur pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbaaaa@3B37@ sous échantillonnage aléatoire simple avec remise, Var easar ( T ^ easar ) = N 2 σ y 2 / n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaWgaaWcbaGaaeyzaiaabggacaqGZbGaaeyyaiaabkha aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaaeyzaiaabggaca qGZbGaaeyyaiaabkhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSGb aeaacaWGobWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaai aadMhaaeaacaaIYaaaaaGcbaGaamOBaaaacaGGSaaaaa@4F64@ σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaaaaa@4C7B@ produira notre effet de plan approximatif dû à la pondération par calage inégale. Nous pouvons simplifier grandement les choses en définissant u i = A + e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@ u i = y i x i T B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca WHcbGaaiilaaaa@4312@ ce qui implique que U ¯ = A + E ¯ U = A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae bacqGH9aqpcaWGbbGaey4kaSIabmyrayaaraWaaSbaaSqaaiaadwfa aeqaaOGaeyypa0Jaamyqaiaac6caaaa@4075@ L’effet de plan résultant (voir l’annexe) est

Deff H = n W ¯ N ( σ u 2 σ y 2 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa GccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaG4maiaac6cacaaIZaGaaiykaaaa@7201@

σ u 2 = N 1 i = 1 N ( u i U ¯ ) 2 , σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , ρ u 2 w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadwhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGvbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMhaaeaa caaIYaaaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOeI0IaaGymaa aakmaaqadabaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGa eyOeI0IabmywayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGa aiilaiabeg8aYnaaBaaaleaacaWG1bWaaWbaaWqabeaacaaIYaaaaS Gaam4Daaqabaaaaa@655C@ est la corrélation en population finie entre u i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0 baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@ et w i , σ u 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaaiilaiabeo8aZnaaDaaaleaacaWG1bWa aWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaaaaa@3FD0@ est la variance de u i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0 baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@ , et ρ u w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyDaiaadEhaaeqaaaaa@3C47@ est la corrélation entre u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaaaa@3A79@ et w i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B37@

Dans (3.3), la première composante est d’ordre O ( 1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae WaaeaacaaIXaaacaGLOaGaayzkaaGaai4oaaaa@3C3C@ le facteur n W ¯ / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gaceWGxbGbaebaaeaacaWGobaaaaaa@3B35@ est apparenté au deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de Kish comme il est décrit plus bas. Le facteur σ u 2 / σ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai abeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqaaiabeo8aZnaa DaaaleaacaWG5baabaGaaGOmaaaaaaaaaa@3FD5@ est un ajustement basé sur l’efficacité avec laquelle les covariables prédisent y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@3A15@ La deuxième composante dans (3.3) est d’ordre O ( n / N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae WaaeaadaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaawMcaaaaa @3C9E@ et incorpore des termes reliés à la force de la relation entre les covariables de calage et les poids.

Notons que l’expression (3.3) est établie en supposant que l’on a procédé à un échantillonnage avec remise (AR). Bien que l’échantillonnage sans remise (SR) soit plus fréquent en pratique, le calcul de la variance SR d’un total estimé est compliqué, puisqu’il fait intervenir les probabilités de sélection conjointe. La formule de la variance AR est suffisamment simple pour donner une idée de l’effet du calage sur un deff . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@ Quand l’utilisation de l’échantillonnage SR donne lieu à des gains de précision, un facteur de correction pour population finie ponctuel peut être intégré dans (3.3), c’est-à-dire ( 1 n / N ) Deff H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaigdacqGHsisldaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaa wMcaaiaabseacaqGLbGaaeOzaiaabAgadaWgaaWcbaGaamisaaqaba GccaGGUaaaaa@42A8@

Étape 5. Pour estimer (3.3), nous utilisons

deff H deff K ( w ) σ ^ u 2 σ ^ y 2 + n σ ^ w N σ ^ y 2 ( ρ ^ u 2 w σ ^ u 2 2 α ^ ρ ^ u w σ ^ u ) , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba GaaC4DaaGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWc baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca WG5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWC gaqcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcam aaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaa jaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabe aakiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikda aaaaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaada WgaaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGa amyDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiykaaaa@77C3@

où l’estimation des paramètres du modèle α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHXoqyga qcaaaa@3A14@ est obtenue par la méthode des moindres carrés pondérés par les poids de sondage, σ ^ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG5baabaGaaGOmaaaaaaa@3C1F@ a été défini à la section 2.3, σ ^ u 2 = i s w i ( u ^ i u ¯ w ) 2 / i s w i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG1baabaGaaGOmaaaakiabg2da9maalyaabaWa aabeaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaceWG1b GbaKaadaWgaaWcbaGaamyAaaqabaGccqGHsislceWG1bGbaebadaWg aaWcbaGaam4DaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaakeaadaae qaqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiol aadohaaeqaniabggHiLdaaaOGaaiilaaaa@5490@ u ¯ ^ w = i s w i u ^ i / i s w i , u ^ i = y i x i T β ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae HbaKaadaWgaaWcbaGaam4DaaqabaGccqGH9aqpdaWcgaqaamaaqaba baGaam4DamaaBaaaleaacaWGPbaabeaakiqadwhagaqcamaaBaaale aacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa aOqaamaaqababaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPb GaeyicI4Saam4Caaqab0GaeyyeIuoaaaGccaGGSaGabmyDayaajaWa aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPb aabeaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGc ceWHYoGbaKaacaGGSaaaaa@58B6@ et β ^ = ( X s T W X s ) 1 X s T W y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbaK aacqGH9aqpdaqadaqaaiaahIfadaqhaaWcbaGaam4Caaqaaiaadsfa aaGccaWHxbGaaCiwamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGa am4CaaqaaiaadsfaaaGccaWHxbGaaCyEamaaBaaaleaacaWGZbaabe aaaaa@49E8@ est l’estimation par les moindres carrés pondérés par les poids de sondage de β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoGaai ilaaaa@3A53@ avec W = diag ( w 1 , , w n ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHxbGaey ypa0JaaeizaiaabMgacaqGHbGaae4zamaabmaabaGaam4DamaaBaaa leaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaale aacaWGUbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@46B9@ et les autres termes définis à la section 2.1.

Si les corrélations dans (3.3) sont négligeables ou que la fraction d’échantillonnage n / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gaaeaacaWGobaaaaaa@3A41@ est faible, le premier terme domine et nous obtenons

Deff H n W ¯ N ( σ u 2 σ y 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacY caaaa@4B11@

qui peut être estimé au moyen de

deff H deff K ( w ) σ ^ u 2 / σ ^ y 2 . ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba GaaC4DaaGaayjkaiaawMcaamaalyaabaGafq4WdmNbaKaadaqhaaWc baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca WG5baabaGaaGOmaaaaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaG4maiaac6cacaaI1aGaaiykaaaa@5982@

Notons que, dans les échantillons sans ajustement des poids par calage, nous avons u ^ i = y i x i T β ^ y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaaiaa dMgaaeqaaOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaamivaa aakiqahk7agaqcaiabgIKi7kaadMhadaWgaaWcbaGaamyAaaqabaaa aa@46BE@ et σ u 2 σ y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHijYUcqaHdpWCdaqhaaWc baGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@422C@ Dans ce cas, l’expression (3.5) devient Deff H n W ¯ / N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSGb aeaacaWGUbGabm4vayaaraaabaGaamOtaaaacaGGSaaaaa@421A@ que nous estimons en utilisant la mesure de Kish deff K = 1 + [ CV ( w ) ] 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadUeaaeqaaOGaeyypa0JaaGym aiabgUcaRmaadmaabaGaae4qaiaabAfadaqadaqaaiaahEhaaiaawI cacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGccaGG Uaaaaa@476E@ Cependant, quand la relation entre les covariables de calage x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ et y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ est plus forte, la variance σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@ doit être plus petite que σ y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@3CCB@ Dans ce cas, la mesure (3.5) est plus petite que l’estimation de Kish. Les poids variables découlant des ajustements par calage ne sont donc pas aussi « pénalisés » (pénalité manifestée par des effets de plan exagérément élevés) qu’ils ne le seraient si on utilisait les mesures de Kish ou de Spencer. Cependant, si le calage est « inefficace », ou si la relation entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ et y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ est faible, alors σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@ peut être plus grande que σ y 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaaaaa@3CC9@ ce qui produit un effet de plan plus grand que l’unité. La mesure de Spencer tient compte uniquement d’une relation indirecte entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ et y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ s’il n’existe qu’une seule variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@3962@ et qu’elle a été utilisée pour produire p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B30@ Cela est illustré à la section 4. Nous examinons également la mesure dans laquelle les composantes de corrélation dans notre effet de plan proposé (3.3) sont suffisamment grandes pour influer sur la mesure exacte. Le calcul de (3.3) requiert uniquement les valeurs d’échantillon de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3953@ , les covariables et les poids de calage. Cette mesure peut donc être produite plus rapidement que la mesure (2.3), dont les composantes ne sont souvent disponibles qu’à une étape ultérieure du traitement des données, après qu’un système d’estimation de la variance ait été mis en place.

Date de modification :