Une mesure de l’effet de plan pour la pondération par calage dans les échantillons à un degré 5. Discussion, limites et conclusions

Nous proposons un nouvel effet de plan qui permet d’évaluer l’effet des ajustements de la pondération par calage sur un total estimé dans le cas d’un échantillonnage à un degré. Deux mesures existantes des effets de plan sont l’« effet de plan dû à la pondération » de Kish (1965) et celle établie par Spencer (2000). Ni l’une ni l’autre de ces mesures ne permet de tenir compte des gains d’efficacité dus au calage. Le deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de Kish est une mesure raisonnable si l’équipondération est optimale ou quasi optimale, mais ne révèle pas les gains d’efficacité qui pourraient être attribuables à l’échantillonnage avec probabilités variables. Le deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de Spencer indique si l’estimateur HT (ou pwr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGWbGaae 4DaiaabkhacaqGPaaaaa@3BF3@ est plus efficace sous échantillonnage avec probabilités variables que sous eas . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yyaiaabohacaqGUaaaaa@3BC8@ Toutefois, le deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de Spencer ne rend compte d’aucun gain d’efficacité dû à l’utilisation du calage.

L’effet de plan que nous proposons mesure l’effet de l’échantillonnage avec probabilités variables ainsi que celui de l’utilisation d’un estimateur par calage, tel que l’estimateur GREG, qui tire parti de l’information auxiliaire. Comme nous le démontrons empiriquement, les effets de plan proposés ne pénalisent pas l’utilisation de poids inégaux quand la relation entre la variable étudiée et la covariable de calage est forte. Nous démontrons aussi empiriquement que les composantes de corrélation dans la mesure de Spencer et dans notre mesure proposée peuvent être importantes dans certaines situations. Il n’est pas très difficile de calculer ces composantes, et celles-ci devraient être incorporées dans la mesure du possible pour éviter de surestimer les effets de plan. Cependant, les fortes corrélations entre les variables étudiées et les variables auxiliaires que nous avons observées dans nos données sur une pseudopopulation d’établissements pourraient être irréalisables dans le cas de certaines enquêtes pour lesquelles l’information auxiliaire fait défaut. Dans les cas où l’information auxiliaire est inefficace ou n’est pas utilisée, la mesure proposée s’approche du deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de Kish. La mesure présentée ici est applicable à l’échantillonnage à un degré, mais peut être étendue à des plans d’échantillonnage plus complexes, dont l’échantillonnage en grappes.

Notre mesure s’appuie sur le modèle qui sous-tend l’estimateur par la régression généralisée pour étendre la mesure de Spencer. La variable étudiée, les covariables et les poids sont nécessaires pour produire l’estimation de l’effet de plan. Puisque la variance (3.2) est approximativement correcte dans le cas de grands échantillons pour tous les estimateurs par calage, notre effet de plan devrait refléter les effets de nombreuses formes de méthodes d’ajustement de la pondération fréquemment utilisées, y compris la poststratification, le ratissage et la régression GREG. Bien que l’on puisse calculer des effets de plan tenant compte de ces ajustements directement d’après les variances estimées, il est important que les praticiens sachent que les deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ existants de Kish et de Spencer ne reflètent aucun des gains découlant de ces ajustements. Le deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ proposé dans le présent article sert donc à corriger ce défaut.

Comme considération pratique, le deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ de (3.4) est disponible dans la fonction « deffH » du package « PracTools » de R; voir Valliant et coll. (2015) pour la documentation et les exemples.

Remerciements

Nous remercions les examinateurs de leurs révisions approfondies qui ont permis d’améliorer la présentation. Les opinions exprimées sont celles des auteurs et ne reflètent pas celles de l’Internal Revenue Service.

Annexe

Effet de plan proposé sous échantillonnage à un degré

La présente annexe donne une esquisse du calcul du deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ proposé. La plupart de la notation a été définie aux sections précédentes de l’article. La probabilité moyenne dans la population pour un tirage est P ¯ = N 1 i = 1 N p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@454E@ Supposons que le plan d’échantillonnage satisfait P ¯ = N 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiOl aaaa@3DBC@ Considérons le modèle y i = α + x i T β + ε i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda WgaaWcbaGaamyAaaqabaGccaGGUaaaaa@46AA@ Si la population finie complète était disponible, la droite de régression par les moindres carrés pour la population serait

y i =A+ x i T B+ e i ,(A.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaahIhadaqh aaWcbaGaamyAaaqaaiaadsfaaaGccaWHcbGaey4kaSIaamyzamaaBa aaleaacaWGPbaabeaakiaacYcacaaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaqGbbGaaeOlaiaabgdacaGGPaaaaa@4FE6@

A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@392B@ et B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbaaaa@3930@ sont les valeurs obtenues en ajustant une droite de régression par les moindres carrés ordinaire à la population finie complète. C’est-à-dire A = Y ¯ B X ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey ypa0JabmywayaaraGaeyOeI0IaaCOqaiqahIfagaqeaiaacYcaaaa@3E88@ B = ( X T X ) 1 X T y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada ahaaWcbeqaaiaadsfaaaGccaWH5bGaaiilaaaa@4413@ X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@ est la matrice de dimensions N × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey 41aqRaamiCaaaa@3C44@ des variables auxiliaires de la population, Y ¯ = N 1 i = 1 N y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aaaa@44A4@ est la moyenne de la population, et X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbae baaaa@395E@ est le vecteur des moyennes de la population des x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bGaae Olaaaa@3A13@ Les e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaaaa@3A69@ sont définis comme étant les résidus dans la population finie, e i = y i A x i T B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaadgeacqGHsislcaWH4bWaa0baaSqaaiaadMgaae aacaWGubaaaOGaaCOqaiaacYcaaaa@44B5@ et ne sont pas les erreurs d’un modèle de superpopulation. Désignons la variance dans la population des y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai ilaaaa@3A13@ des e , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbGaai ilaaaa@39FF@ des e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaW baaSqabeaacaaIYaaaaaaa@3A38@ et des poids comme étant σ y 2 , σ e 2 , σ e 2 2 , σ w 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaGaeq4Wdm3aa0baaSqa aiaadwgaaeaacaaIYaaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGLb WaaWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaakiaacYcacqaHdpWC daqhaaWcbaGaam4DaaqaaiaaikdaaaGccaGGSaaaaa@4AC0@ par exemple, σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaaaaa@4C7B@ et les corrélations en population finie entre les variables désignées par les indices inférieurs comme étant ρ y p , ρ e w , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyEaiaadchaaeqaaOGaaiilaiabeg8aYnaaBaaaleaa caWGLbGaam4DaaqabaGccaGGSaaaaa@418A@ et ρ e 2 w . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyzamaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGa aiOlaaaa@3DE8@ La variance sous le plan théorique de l’estimateur GREG dans le cas de l’échantillonnage avec remise est

Var ( T ^ GREG ) = n 1 i = 1 N p i ( e i / p i E U ) 2 = n 1 ( i = 1 N e i 2 / p i E U 2 ) , (A.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGaaeOvaiaabggacaqGYbWaaeWaaeaaceWGubGbaKaadaWgaaWc baGaae4raiaabkfacaqGfbGaae4raaqabaaakiaawIcacaGLPaaaae aacqGH9aqpcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaai aadwgadaWgaaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaa dMgaaeqaaaaakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da 9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacqGH9aqpcaWGUb WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWaqaamaa lyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaadc hadaWgaaWcbaGaamyAaaqabaaaaOGaeyOeI0IaamyramaaDaaaleaa caWGvbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6 eaa0GaeyyeIuoaaOGaayjkaiaawMcaaiaacYcaaaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6cacaaIYaGaaiykaa aa@75C7@

E U = i = 1 N e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaaiOlaaaa@437E@ L’utilisation du modèle (A.1) produit un effet de plan comprenant plusieurs termes complexes, dont beaucoup contiennent des corrélations qui ne peuvent pas être abandonnées comme dans l’approximation de Spencer. L’effet de plan peut être simplifié en utilisant une formulation de rechange : u i = A + e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@ u i = y i x i T B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca WHcbGaaiOlaaaa@4314@ Premièrement, nous réécrivons le total de population des e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaaaa@3A69@ sous la forme E U = i = 1 N e i = N U ¯ N A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaeyypa0JaamOtaiqadwfagaqeaiabgkHiTiaad6eacaWG bbGaaiilaaaa@48CD@ U ¯ = N 1 i = 1 N u i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@4558@ D’où, E U 2 = ( N U ¯ ) 2 + ( N A ) 2 2 N 2 U ¯ A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0 baaSqaaiaadwfaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaacaWGobGa bmyvayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGobGaamyqaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWGobWaaWbaaSqabeaacaaIYa aaaOGabmyvayaaraGaamyqaiaac6caaaa@4B13@ Deuxièmement, en utilisant w i = ( n p i ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaamiCamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaakiaacYcaaaa@42AF@ ou p i = ( n w i ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaam4Damaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaakiaacYcaaaa@42AF@ nous réécrivons la composante i = 1 N e i 2 / p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaam aalyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaa dchadaWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGH9aqpcaaIXa aabaGaamOtaaqdcqGHris5aaaa@42CE@ sous la forme

i = 1 N e i 2 / p i = i = 1 N ( u i A ) 2 ( n w i ) 1 = n i = 1 N w i u i 2 + n A 2 i = 1 N w i 2 n A i = 1 N w i u i . (A.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaWaaabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaa ikdaaaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOqaaiabg2da9maa qadabaWaaSaaaeaadaqadaqaaiaadwhadaWgaaWcbaGaamyAaaqaba GccqGHsislcaWGbbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGcbaWaaeWaaeaacaWGUbGaam4DamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaaabaGa amyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacq GH9aqpcaWGUbWaaabmaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOGa amyDamaaDaaaleaacaWGPbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgUcaRiaad6gacaWGbbWa aWbaaSqabeaacaaIYaaaaOWaaabmaeaacaWG3bWaaSbaaSqaaiaadM gaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5 aOGaeyOeI0IaaGOmaiaad6gacaWGbbWaaabmaeaacaWG3bWaaSbaaS qaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaaaeaacaWG PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaac6caaaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6cacaaI ZaGaaiykaaaa@8764@

Soustraire E U 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0 baaSqaaiaadwfaaeaacaaIYaaaaaaa@3AF2@ de (A.3) et diviser par n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbaaaa@3958@ donne

n 1 ( i = 1 N e i 2 / p i E U 2 ) = i = 1 N w i u i 2 n 1 ( N U ¯ ) 2 + A 2 ( i = 1 N w i n 1 N 2 ) + n 1 2 N 2 U ¯ A 2 A i = 1 N w i u i . (A.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFkpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp daaeWaqaaiaadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaS qaaiaadMgaaeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGa amOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmaabaGaamOtaiqadwfagaqeaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabgUcaRiaaykW7caaMc8 UaamyqamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaabmaeaacaWG 3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaaba GaamOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaad6eadaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaaaeaaaeaacqGHRaWkcaaMc8UaaGPaVlaad6gadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaaIYaGaamOtamaaCaaaleqabaGaaGOmaa aakiqadwfagaqeaiaadgeacqGHsislcaaIYaGaamyqamaaqadabaGa am4DamaaBaaaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamyAaa qabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGc caGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacI cacaGGbbGaaiOlaiaaisdacaGGPaaaaa@97E1@

En suivant l’approche de Spencer en utilisant les substitutions des covariances, le premier et le cinquième termes dans (A.4) peuvent être réécrits comme i = 1 N w i u i 2 = N ρ u 2 w σ u 2 σ w + N W ¯ ( σ u 2 + U ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaSqaaiaadMga aeaacaaIYaaaaOGaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1b WaaWbaaWqabeaacaaIYaaaaSGaam4DaaqabaGccqaHdpWCdaWgaaWc baGaamyDamaaCaaameqabaGaaGOmaaaaaSqabaGccqaHdpWCaSqaai aadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOWaaSbaaSqa aiaadEhaaeqaaOGaey4kaSIaamOtaiqadEfagaqeamaabmqabaGaeq 4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIabmyvayaa raWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@5B2F@ et i = 1 N w i u i = N ρ u w σ u σ w + N W ¯ U ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaaSbaaSqaaiaadMga aeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aO Gaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1bGaam4DaaqabaGc cqaHdpWCdaWgaaWcbaGaamyDaaqabaGccqaHdpWCdaWgaaWcbaGaam 4DaaqabaGccqGHRaWkcaWGobGabm4vayaaraGabmyvayaaraGaaiOl aaaa@5216@ En introduisant ces expressions dans la variance (A.4), on obtient

n 1 ( i = 1 N e i 2 / p i E U 2 ) = N ρ u 2 w σ u 2 σ w + N W ¯ ( σ u 2 + U ¯ 2 ) n 1 ( N U ¯ ) 2 + N A 2 ( W ¯ n 1 N ) + 2 n 1 N 2 U ¯ A 2 A ( N ρ u w σ u σ w + N W ¯ U ¯ ) . (A.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp caWGobGaeqyWdi3aaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa WccaWG3baabeaakiabeo8aZnaaBaaaleaacaWG1bWaaWbaaWqabeaa caaIYaaaaaWcbeaakiabeo8aZnaaBaaaleaacaWG3baabeaakiabgU caRiaad6eaceWGxbGbaebadaqadaqaaiabeo8aZnaaDaaaleaacaWG 1baabaGaaGOmaaaakiabgUcaRiqadwfagaqeamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaiabgkHiTiaad6gadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaqadaqaaiaad6eaceWGvbGbaebaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaakeaaaeaacqGHRaWkcaaMc8Ua aGPaVlaad6eacaWGbbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaace WGxbGbaebacqGHsislcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaamOtaaGaayjkaiaawMcaaaqaaaqaaiabgUcaRiaaykW7caaMc8 UaaGOmaiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGobWa aWbaaSqabeaacaaIYaaaaOGabmyvayaaraGaamyqaiabgkHiTiaaik dacaWGbbWaaeWaaeaacaWGobGaeqyWdi3aaSbaaSqaaiaadwhacaWG 3baabeaakiabeo8aZnaaBaaaleaacaWG1baabeaakiabeo8aZnaaBa aaleaacaWG3baabeaakiabgUcaRiaad6eaceWGxbGbaebaceWGvbGb aebaaiaawIcacaGLPaaacaGGUaaaaiaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaiikaiaacgeacaGGUaGaaGynaiaacMcaaaa@A265@

La variance de l’estimateur pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbaaaa@3B27@ sous échantillonnage aléatoire simple avec remise, où p i = N 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaacYcaaaa@3EE6@ se réduit à Var easar ( T ^ pwr ) = N 2 σ y 2 / n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaWgaaWcbaGaaeyzaiaabggacaqGZbGaaeyyaiaabkha aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaaeiCaiaabEhaca qGYbaabeaaaOGaayjkaiaawMcaaiabg2da9maalyaabaGaamOtamaa CaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG5baabaGaaG OmaaaaaOqaaiaad6gaaaGaaiOlaaaa@4DAD@ En prenant le ratio de (A.5) à la variance de l’estimateur pwr, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaaeilaaaa@3BD6@ on obtient l’effet de plan suivant :

Deff H = Var GREG ( T ^ cal ) / Var easar ( T ^ pwr ) = n W ¯ N ( σ u 2 σ y 2 ) + ( U ¯ A ) 2 σ y 2 ( n W ¯ N 1 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) . (A.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaaeiraiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGibaabeaa aOqaaiabg2da9maalyaabaGaaeOvaiaabggacaqGYbWaaSbaaSqaai aabEeacaqGsbGaaeyraiaabEeaaeqaaOWaaeWaaeaaceWGubGbaKaa daWgaaWcbaGaae4yaiaabggacaqGSbaabeaaaOGaayjkaiaawMcaaa qaaiaabAfacaqGHbGaaeOCamaaBaaaleaacaqGLbGaaeyyaiaaboha caqGHbGaaeOCaaqabaGcdaqadaqaaiqadsfagaqcamaaBaaaleaaca qGWbGaae4DaiaabkhaaeqaaaGccaGLOaGaayzkaaaaaaqaaaqaaiab g2da9maalaaabaGaamOBaiqadEfagaqeaaqaaiaad6eaaaWaaeWaae aadaWcaaqaaiabeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqa aiabeo8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaaakiaawIcaca GLPaaacqGHRaWkdaWcaaqaamaabmaabaGabmyvayaaraGaeyOeI0Ia amyqaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiabeo 8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaamaalaaa baGaamOBaiqadEfagaqeaaqaaiaad6eaaaGaeyOeI0IaaGymaaGaay jkaiaawMcaaaqaaaqaaiabgUcaRmaalaaabaGaamOBaiabeo8aZnaa BaaaleaacaWG3baabeaaaOqaaiaad6eacqaHdpWCdaqhaaWcbaGaam yEaaqaaiaaikdaaaaaaOWaaeWaaeaacqaHbpGCdaWgaaWcbaGaamyD amaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGaeq4Wdm3aaSbaaS qaaiaadwhadaahaaadbeqaaiaaikdaaaaaleqaaOGaeyOeI0IaaGOm aiaadgeacqaHbpGCdaWgaaWcbaGaamyDaiaadEhaaeqaaOGaeq4Wdm 3aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaacaaM f8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiA dacaGGPaaaaa@9CAA@

Comme u i = A + e i , U ¯ = A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlqadwfagaqeaiabg2da9i aadgeacaGGSaaaaa@44EA@ l’expression (A.6) devient

Deff H = n W ¯ N ( σ u 2 σ y 2 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) . (A.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa GccaGLOaGaayzkaaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaacgeacaGGUaGaaG4naiaacMcaaaa@72BF@

Nous estimons la mesure (A.7) au moyen de

deff H ( 1 + [ CV ( w ) ] 2 ) σ ^ u 2 σ ^ y 2 + n σ ^ w N σ ^ y 2 ( ρ ^ u 2 w σ ^ u 2 2 α ^ ρ ^ u w σ ^ u ) , (A.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaeWa aeaacaaIXaGaey4kaSYaamWaaeaacaqGdbGaaeOvamaabmaabaGaaC 4DaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWcba GaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaacaWG 5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWCga qcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcamaa DaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaaja WaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabeaa kiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa aaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaadaWg aaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGaam yDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaGGbbGaaiOlaiaaiIdacaGGPaaaaa@7944@

où les estimations des paramètres du modèle sont définies aux sections 2.3 et 3.

Bibliographie

Brick, M., et Montaquila, J. (2009). Nonresponse. Dans Handbook of Statistics, Sample Surveys: Design, Methods and Application, (Éds., D. Pfeffermann et C.R. Rao), 29A, Amsterdam : Elsevier BV.

Chambers, J.M., Cleveland, W.S., Kleiner, B. et Tukey, P.A. (1983). Graphical Methods for Data Analysis. Pacific Grove CA : Wadsworth.

Deville, J.-C., et Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Deville, J.-C., Särndal, C.-E. et Sautory, O. (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association, 88, 1013-1020.

Hansen, M.H., et Hurwitz, W.N. (1943). On the theory of sampling from a finite population. Annals of Mathematical Statistics, 14, 333-362.

Horvitz, D., et Thompson, D. (1952). A generalisation of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

Kalton, G., et Flores-Cervantes, A. (2003). Weighting methods. Journal of Official Statistics, 19 (2), 81-97.

Kish, L. (1965). Survey Sampling. New York : John Wiley & Sons, Inc.

Kish, L. (1990). Weighting: Why, when, and how? Proceedings of the Joint Statistical Meetings, Section on Survey Research Methods, American Statistical Association, 121-129.

Kish, L. (1992). Weighting for unequal Pi. Journal of Official Statistics, 8, 183-200.

Kott, P. (2009). Calibration weighting: Combining probability samples and linear prediction models. Dans Handbook of Statistics, Sample Surveys: Design, Methods and Application, (Éds., D. Pfeffermann et C.R. Rao), 29B, Amsterdam : Elsevier BV.

Lumley, T. (2012). Survey: Analysis of complex survey samples. R package version 3.28-2.

Park, I., et Lee, H. (2004). Effets de plan pour les estimateurs pondérés de la moyenne et du total sous échantillonnage complexe. Techniques d’enquête, 30, 2, 205-216.

Rao, J.N.K., et Scott, A.J. (1984). On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data. Annals of Statistics, 12, 46-60.

Särndal, C.-E., et Lundström, S. (2005). Estimation in Surveys with Nonresponse. New York : John Wiley & Sons, Inc.

Särndal, C.-E., Swensson, B. et Wretman, J. (1992). Model Assisted Survey Sampling. New York : Springer: Berlin.

Spencer, B.D. (2000). Un effet de plan de sondage approximatif pour une pondération inégale en cas de corrélation possible entre les mesures et les probabilités de sélection. Techniques d’enquête, 26, 2, 153-155.

Statistics of Income (2011). 2007 Charities & Tax-Exempt Microdata Files. Disponible au : http://www.irs.gov/uac/SOI-Tax-Stats-2007-Charities-&-Tax-Exempt-Microdata-Files.

Valliant, R., Dever, J.A. et Kreuter, F. (2013). Practical Tools for Designing and Weighting Survey Samples. New York : Springer.

Valliant, R., Dever, J.A. et Kreuter, F. (2015). PracTools: Tools for Designing and Weighting Survey Samples. R package version 0.2. http://CRAN.R-project.org/package=PracTools.

Date de modification :