Estimation sur petits domaines fondée sur un modèle sous échantillonnage informatif 4. Étude en simulation

4.1 Exécution

Une approche plan de sondage-modèle (pm) a été utilisée pour l’étude en simulation en générant des données pour les N = i = 1 M N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0ZaaabmaeaacaWGobWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga cqGH9aqpcaaIXaaabaGaamytaaqdcqGHris5aaaa@41A3@ unités de la population conformément à un modèle spécifié, puis en sélectionnant un échantillon selon un plan de sondage spécifié. Le processus de génération des données de la population, puis de sélection d’un échantillon a été répété R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbaaaa@393C@ fois. Nous décrivons maintenant les étapes de l’exécution du processus. Les données de population, y i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C26@ pour M = 99 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0JaaGyoaiaaiMdaaaa@3BC3@ domaines et N i = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaaicdacaaIWaaaaa@3D91@ unités dans chaque domaine i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3953@ ont été générées au moyen du simple modèle de régression linéaire à erreurs emboîtées

y ij = β 0 + β 1 x ij + ν i + e ij ; i=1,,99; j=1,,100,(4.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iabek7aInaaBaaaleaa caaIWaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaaki aadIhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaeqyVd42a aSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyzamaaBaaaleaacaWGPb GaamOAaaqabaGccaGG7aGaaeiiaiaadMgacqGH9aqpcaaIXaGaaiil aiablAciljaacYcacaaI5aGaaGyoaiaacUdacaqGGaGaamOAaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaaigdacaaIWaGaaGimaiaa cYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaai OlaiaaigdacaGGPaaaaa@6A03@

β 0 = 1 , β 1 = 1 , v i iid N ( 0 , σ v 2 = 0,5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHYoGyda WgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIXaGaaiilaiabek7aInaa BaaaleaacaaIXaaabeaakiabg2da9iaaigdacaGGSaGaamODamaaBa aaleaacaWGPbaabeaakmaaxacabaGaeSipIOdaleqabaGaaeyAaiaa bMgacaqGKbaaaOGaamOtamaabmaabaGaaGimaiaacYcacqaHdpWCda qhaaWcbaGaamODaaqaaiaaikdaaaGccqGH9aqpcaqGWaGaaeilaiaa bwdaaiaawIcacaGLPaaaaaa@535B@ et indépendants des e i j iid N ( 0 , σ e 2 = 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWGQbaabeaakmaaxacabaGaeSipIOdaleqabaGa aeyAaiaabMgacaqGKbaaaOGaamOtamaabmaabaGaaGimaiaacYcacq aHdpWCdaqhaaWcbaGaamyzaaqaaiaaikdaaaGccqGH9aqpcaaIYaaa caGLOaGaayzkaaGaaiOlaaaa@4977@ Les valeurs de x i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3B5B@ dans la population ont été générées à partir d’une loi gamma de moyenne 10 et de variance 50, et maintenues fixes pendant la simulation des valeurs de y i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3B5C@ de la population au moyen de (4.1).

Nous avons considéré différentes tailles d’échantillon dans les domaines en fixant n i = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGynaaaa@3C41@ pour les 33 premiers domaines, n i = 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaG4naaaa@3C43@ pour les 33 domaines suivants et n i = 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGyoaaaa@3C45@ pour les 33 derniers domaines. L’objectif était d’étudier l’effet de tailles d’échantillon inégales sur le choix de la variable d’augmentation g i j = g ( p j | i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadEgadaqadaqaaiaa dchadaWgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaO GaayjkaiaawMcaaiaac6caaaa@442F@ Des échantillons de tailles spécifiées, n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B2C@ ont été sélectionnés dans les domaines avec probabilités proportionnelles aux tailles spécifiées, b i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C0F@ en utilisant la méthode d’échantillonnage de Rao-Sampford (Rao 1965 et Sampford 1967) avec probabilités inégales et sans remise. Cette dernière méthode fait en sorte que les probabilités d’inclusion π j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaaa@3DC1@ soient proportionnelles aux tailles b i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C0F@ c’est-à-dire, π j | i = n i b i j / B i = n i p j | i , j = 1 , , N i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaakiabg2da 9maalyaabaGaamOBamaaBaaaleaacaWGPbaabeaakiaadkgadaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaamOqamaaBaaaleaacaWGPbaa beaakiabg2da9iaad6gadaWgaaWcbaGaamyAaaqabaGccaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaOGaaiil aiaadQgacqGH9aqpcaaIXaGaaiilaiablAciljaacYcacaWGobWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@5627@ B i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGcbWaaS baaSqaaiaadMgaaeqaaaaa@3A46@ est le total des b i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B55@ dans le domaine i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai Olaaaa@3A05@

Nous avons considéré deux choix distincts des tailles b i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B55@ dans l’étude en simulation. Comme premier choix, nous avons utilisé

b i j = exp [ { ( y i j β 0 β 1 x i j ) / σ e + δ i j / 5 } / 3 ] = exp [ { ( v i + e i j ) / σ e + δ i j / 5 } / 3 ] , ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOada aabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGH9aqp aeaaciGGLbGaaiiEaiaacchadaWadeqaamaalyaabaWaaiWaaeaacq GHsisldaWcgaqaamaabmqabaGaamyEamaaBaaaleaacaWGPbGaamOA aaqabaGccqGHsislcqaHYoGydaWgaaWcbaGaaGimaaqabaGccqGHsi slcqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa dMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaaiabeo8aZnaaBaaale aacaWGLbaabeaaaaGccqGHRaWkdaWcgaqaaiabes7aKnaaBaaaleaa caWGPbGaamOAaaqabaaakeaacaaI1aaaaaGaay5Eaiaaw2haaaqaai aaiodaaaaacaGLBbGaayzxaaaabaaabaGaeyypa0dabaGaciyzaiaa cIhacaGGWbWaamWabeaadaWcgaqaamaacmaabaGaeyOeI0YaaSGbae aadaqadeqaaiaadAhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG LbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaai abeo8aZnaaBaaaleaacaWGLbaabeaaaaGccqGHRaWkdaWcgaqaaiab es7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaaI1aaaaaGaay 5Eaiaaw2haaaqaaiaaiodaaaaacaGLBbGaayzxaaGaaiilaaaacaaM f8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacI cacaaI0aGaaiOlaiaaikdacaGGPaaaaa@871F@

δ i j iid N ( 0,1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaamyAaiaadQgaaeqaaOWaaCbiaeaacqWI8iIoaSqabeaa caqGPbGaaeyAaiaabsgaaaGccaWGobWaaeWaaeaacaqGWaGaaeilai aabgdaaiaawIcacaGLPaaacaGGUaaaaa@457C@ Les mesures de taille (4.2) sont équivalentes à celles utilisées par Pfeffermann et Sverchkov (2007) dans leur étude en simulation et satisfont la relation (1.2) sur les poids w j | i = π j | i 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaGccqGH9aqp cqaHapaCdaqhaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaaba GaeyOeI0IaaGymaaaakiaac6caaaa@45D1@ À l’instar de l’approche PS, nous avons tronqué les effets de domaine v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMgaaeqaaaaa@3A7A@ et les erreurs au niveau de l’unité e i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B58@ à ± 2,5 σ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHXcqSca qGYaGaaeilaiaabwdacqaHdpWCdaWgaaWcbaGaamODaaqabaaaaa@3F59@ et ± 2,5 σ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHXcqSca qGYaGaaeilaiaabwdacqaHdpWCdaWgaaWcbaGaamyzaaqabaaaaa@3F48@ pour éviter des probabilités de sélection extrêmes.

Le deuxième choix de mesures de taille, à l’exemple d’Asparouhov (2006), comprend deux types distincts de mesure de taille, à savoir une mesure invariante (I) et une mesure non invariante (NI). Dans le cas invariant, b i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B55@ est indépendante de v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMgaaeqaaaaa@3A7A@ sachant x i j ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadMgacaWGQbaabeaakiaacUdaaaa@3C38@ sinon, la mesure est dite non invariante. Les mesures de taille invariantes sont données par

b i j = [ 1 + exp { τ ( 1 α e i j + 1 1 α 2 e i j * ) } ] 1 . ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maadmaabaGaaGymaiab gUcaRiGacwgacaGG4bGaaiiCamaacmaabaGaeyOeI0IaeqiXdq3aae WaaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaGaamyzamaaBaaaleaa caWGPbGaamOAaaqabaGccqGHRaWkdaGcaaqaaiaaigdacqGHsislda WcaaqaaiaaigdaaeaacqaHXoqydaahaaWcbeqaaiaaikdaaaaaaaqa baGccaaMe8UaamyzamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaa aakiaawIcacaGLPaaaaiaawUhacaGL9baaaiaawUfacaGLDbaadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaGGUaGaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaIZaGaaiykaaaa@67AE@

Les mesures de taille non invariantes sont telles que

b i j = [ 1 + exp { τ ( 1 α ( v i + e i j ) + 1 1 α 2 ( v i * + e i j * ) ) } ] 1 . ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maadmaabaGaaGymaiab gUcaRiGacwgacaGG4bGaaiiCamaacmaabaGaeyOeI0IaeqiXdq3aae WaaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaWaaeWaaeaacaWG2bWa aSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyzamaaBaaaleaacaWGPb GaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaGcaaqaaiaaigda cqGHsisldaWcaaqaaiaaigdaaeaacqaHXoqydaahaaWcbeqaaiaaik daaaaaaaqabaGcdaqadaqaaiaadAhadaqhaaWcbaGaamyAaaqaaiaa cQcaaaGccqGHRaWkcaWGLbWaa0baaSqaaiaadMgacaWGQbaabaGaai OkaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2ha aaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaac6 cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOl aiaaisdacaGGPaaaaa@6FE5@

Le coefficient τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHepaDaa a@3A2A@ dans (4.3) et (4.4), qui est choisi égal à 0,5, fait en sorte que la variation des poids w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ ne soit pas trop grande dans une exécution de la simulation. La paire aléatoire ( v i * , e i j * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadAhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaGGSaGaamyzamaa DaaaleaacaWGPbGaamOAaaqaaiaacQcaaaaakiaawIcacaGLPaaaaa a@4118@ a été générée indépendamment de ( v i , e i j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadAhadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamyzamaaBaaaleaa caWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@3FBA@ à partir des mêmes lois que celle de v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMgaaeqaaaaa@3A7A@ et e i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B58@ pour s’assurer que la variation des poids soit comparable entre les divers niveaux de α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyca GGUaaaaa@3AB6@ Les probabilités π j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAamaaeeaabaGaamyAaaGaay5bSdaabeaaaaa@3DBF@ qui étaient supérieures à un ont été fixées à un, et les probabilités des unités restantes ont été recalculées. Les valeurs de α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39F4@ dans (4.3) et (4.4), choisies égales à 1, 2, 3 ou , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHEisPca GGSaaaaa@3A86@ contrôlent le niveau d’informativité (caractère informatif). L’accroissement de la valeur de α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ réduit l’informativité, α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcqGHEisPaaa@3C7B@ correspondant à un échantillonnage non informatif. Diverses dépendances ont été introduites dans les simulations comme il suit, afin d’accroître la précision des comparaisons entre les différents estimateurs : les quatre composantes de l’erreur ( v i , e i j , v i * , e i j * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadAhadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamyzamaaBaaaleaa caWGPbGaamOAaaqabaGccaGGSaGaamODamaaDaaaleaacaWGPbaaba GaaiOkaaaakiaacYcacaWGLbWaa0baaSqaaiaadMgacaWGQbaabaGa aiOkaaaaaOGaayjkaiaawMcaaaaa@4794@ ont toutes été générées pour commencer. Les valeurs de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3953@ dans la population, ainsi que les probabilités de sélection invariantes et non invariantes, ont ensuite été générées à partir de ces erreurs. Pour une population générée donnée, huit échantillons ont été sélectionnés : un échantillon invariant et un échantillon non invariant pour chaque valeur de α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ prise en considération.

Il convient de souligner que les poids w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ obtenus au moyen des mesures de taille (4.3) et (4.4) peuvent ne pas satisfaire la condition (1.2) de l’approche PS. Nous avons néanmoins ajusté (1.2) à ces poids pour calculer b ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGIbGbaK aacaGGSaaaaa@3A0C@ qui est nécessaire afin de calculer l’estimateur corrigé du biais Y ¯ ^ i PS . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaOGaaiOlaaaa @3CEA@

En utilisant l’approche plan de sondage-modèle (pm), nous avons généré R = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbGaey ypa0JaaeymaiaaykW7caqGWaGaaeimaiaabcdaaaa@3E9A@ échantillons sous les mesures de taille (4.2) et sous les mesures de taille (4.3) et (4.4). Pour chaque échantillon simulé r ( r = 1 , , R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaae WaaeaacaWGYbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSaGaamOu aaGaayjkaiaawMcaaiaacYcaaaa@41A6@ nous avons calculé les estimations Y ¯ ^ i H ( r ) , Y ¯ ^ i ( a ) H ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaGccaGGSaGabmywayaaryaajaWaa0baaSqaaiaadM gadaqadaqaaiaadggaaiaawIcacaGLPaaaaeaacaWGibWaaeWaaeaa caWGYbaacaGLOaGaayzkaaaaaaaa@4668@ et Y ¯ ^ i PS ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbWaaeWaaeaacaWG YbaacaGLOaGaayzkaaaaaaaa@3EAE@ pour chaque petit domaine i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai 4oaaaa@3A12@ pour la méthode YR, nous avons calculé μ ^ i YR ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfadaqadaqaaiaadkha aiaawIcacaGLPaaaaaaaaa@3F77@ et μ ^ i ( a ) YR ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaaeywaiaabkfadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaaaaa@41E6@ seulement. En outre, nous avons calculé les estimations de l’EQM, eqm ( μ ^ i H ) ( r ) , eqm ( μ ^ i ( a ) H ) ( r ) , eqm ( μ ^ i YR ) ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgaaeaa caWGibaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaqadaqaaiaadk haaiaawIcacaGLPaaaaaGccaGGSaGaaeyzaiaabghacaqGTbWaaeWa aeaacuaH8oqBgaqcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaaca GLOaGaayzkaaaabaGaamisaaaaaOGaayjkaiaawMcaamaaCaaaleqa baWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaOGaaiilaiaabwgaca qGXbGaaeyBamaabmaabaGafqiVd0MbaKaadaqhaaWcbaGaamyAaaqa aiaabMfacaqGsbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaqada qaaiaadkhaaiaawIcacaGLPaaaaaaaaa@5D5A@ et eqm ( μ ^ i ( a ) YR ) ( r ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgadaqa daqaaiaadggaaiaawIcacaGLPaaaaeaacaqGzbGaaeOuaaaaaOGaay jkaiaawMcaamaaCaaaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaOGaaiilaaaa@472C@ associées à μ ^ i H , μ ^ i ( a ) H , μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaamisaaaakiaacYcacuaH8oqBgaqc amaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaaba GaamisaaaakiaacYcacuaH8oqBgaqcamaaDaaaleaacaWGPbaabaGa aeywaiaabkfaaaaaaa@4836@ et μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaaeywaiaabkfaaaaaaa@3F66@ . Comme nous l’avons mentionné plus haut, nous n’avons pas inclus l’estimateur bootstrap de l’EQM de Y ¯ ^ i PS , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaOGaaiilaaaa @3CE8@ proposé par Pfeffermann et Sverchkov (2007), dans l’étude en simulation. En outre, pour simplifier, nous n’avons pas inclus les estimateurs de l’EQM de Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeaaaaaaa@3B52@ et Y ¯ ^ i ( a ) H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyyaaGaayjkaiaawMca aaqaaiaadIeaaaGccaGGSaaaaa@3E7B@ parce que ces estimateurs donnent des résultats comparables à μ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaamisaaaaaaa@3C13@ et μ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaamisaaaaaaa@3E82@ en ce qui concerne l’EQM.

Nous avons considéré les mesures de performance qui suivent pour un estimateur donné, disons de la moyenne de petit domaine Y ¯ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae badaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@3B31@ Le biais absolu moyen ( BA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabgeaaaaacaGLOaGaayzkaaaaaa@3B88@ est mesuré par

BA ¯ = 1 M i = 1 M BA i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaiabg2da9maalaaabaGaaGymaaqaaiaad2eaaaWa aabCaeaacaqGcbGaaeyqamaaBaaaleaacaWGPbaabeaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIuoaaaa@44FC@

avec

BA i = | 1 R r = 1 R ( Y ¯ ^ i ( r ) Y ¯ i ( r ) ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGcbGaae yqamaaBaaaleaacaWGPbaabeaakiabg2da9maaemaabaGaaGPaVpaa laaabaGaaGymaaqaaiaadkfaaaWaaabCaeaadaqadaqaaiqadMfaga qegaqcamaaDaaaleaacaWGPbaabaWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaaaaOGaeyOeI0IabmywayaaraWaa0baaSqaaiaadMgaaeaada qadaqaaiaadkhaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaaM c8oaleaacaWGYbGaeyypa0JaaGymaaqaaiaadkfaa0GaeyyeIuoaaO Gaay5bSlaawIa7aaaa@5587@

Y ¯ ^ i ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOCaaGaayjkaiaa wMcaaaaaaaa@3D05@ et Y ¯ i ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae badaqhaaWcbaGaamyAaaqaamaabmaabaGaamOCaaGaayjkaiaawMca aaaaaaa@3CF6@ sont les valeurs de Y ¯ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaaqabaaaaa@3A84@ et Y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae badaWgaaWcbaGaamyAaaqabaaaaa@3A75@ pour les r e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaW baaSqabeaacaqGLbaaaaaa@3A71@ échantillon et population simulés. L’efficacité d’un estimateur Y ¯ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaaqabaaaaa@3A84@ est mesurée par la racine carrée moyenne de l’EQM

REQM ¯ = 1 M i = 1 M 1 R r = 1 R ( Y ¯ ^ i ( r ) Y ¯ i ( r ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaGaeyypa0ZaaSaaaeaacaaIXaaa baGaamytaaaadaaeWbqaamaakaaabaWaaSaaaeaacaaIXaaabaGaam OuaaaadaaeWbqaamaabmaabaGabmywayaaryaajaWaa0baaSqaaiaa dMgaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGccqGHsislce WGzbGbaebadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOCaaGaayjk aiaawMcaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaae aacaWGYbGaeyypa0JaaGymaaqaaiaadkfaa0GaeyyeIuoaaSqabaaa baGaamyAaiabg2da9iaaigdaaeaacaWGnbaaniabggHiLdGccaGGUa aaaa@58F4@

En ce qui concerne la performance des estimateurs de l’EQM, eqm ( μ ^ i H ) , eqm ( μ ^ i ( a ) H ) , eqm ( μ ^ i YR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgaaeaa caWGibaaaaGccaGLOaGaayzkaaGaaiilaiaabwgacaqGXbGaaeyBam aabmaabaGafqiVd0MbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyy aaGaayjkaiaawMcaaaqaaiaadIeaaaaakiaawIcacaGLPaaacaGGSa GaaeyzaiaabghacaqGTbWaaeWaaeaacuaH8oqBgaqcamaaDaaaleaa caWGPbaabaGaaeywaiaabkfaaaaakiaawIcacaGLPaaaaaa@553F@ et eqm ( μ ^ i ( a ) YR ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgadaqa daqaaiaadggaaiaawIcacaGLPaaaaeaacaqGzbGaaeOuaaaaaOGaay jkaiaawMcaaiaacYcaaaa@4475@ nous avons d’abord calculé des mesures fiables des EQM en passant de R = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbGaey ypa0JaaeymaiaaykW7caqGWaGaaeimaiaabcdaaaa@3E9A@ à T = 10 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGubGaey ypa0JaaeymaiaabcdacaaMc8UaaeimaiaabcdacaqGWaaaaa@3F4F@ échantillons simulés. L’EQM d’un estimateur μ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWGPbaabeaaaaa@3B45@ est alors calculée comme il suit

EQM ( μ ^ i ) = 1 T t = 1 T ( μ ^ i ( t ) Y ¯ i ( t ) ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbGaae yuaiaab2eadaqadaqaaiqbeY7aTzaajaWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamivaa aadaaeWbqaamaabmaabaGafqiVd0MbaKaadaqhaaWcbaGaamyAaaqa amaabmaabaGaamiDaaGaayjkaiaawMcaaaaakiabgkHiTiqadMfaga qeamaaDaaaleaacaWGPbaabaWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaads hacqGH9aqpcaaIXaaabaGaamivaaqdcqGHris5aOGaaiilaaaa@55DA@

μ ^ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaaaa@3DC8@ Y ¯ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae badaqhaaWcbaGaamyAaaqaamaabmaabaGaamiDaaGaayjkaiaawMca aaaaaaa@3CF8@ désignent les valeurs de μ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWGPbaabeaaaaa@3B45@ et Y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae badaWgaaWcbaGaamyAaaqabaaaaa@3A75@ pour les t e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaW baaSqabeaacaqGLbaaaaaa@3A73@ échantillon et population simulés. Pour l’estimation de l’EQM, nous avons gardé les R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbaaaa@393C@ échantillons simulés originaux et calculé les valeurs prévues E [ eqm ( μ ^ i ) ] = R 1 r = 1 R eqm ( μ ^ i ) ( r ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaam WaaeaacaqGLbGaaeyCaiaab2gadaqadaqaaiqbeY7aTzaajaWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaey ypa0JaamOuamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqadabaGa aeyzaiaabghacaqGTbWaaeWaaeaacuaH8oqBgaqcamaaBaaaleaaca WGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaeWaaeaacaWG YbaacaGLOaGaayzkaaaaaaqaaiaadkhacqGH9aqpcaaIXaaabaGaam OuaaqdcqGHris5aOGaaiilaaaa@5648@ eqm ( μ ^ i ) ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaadaqadaqaaiaadkhaaiaawI cacaGLPaaaaaaaaa@4251@ désigne la valeur de l’estimation de l’EQM pour le r e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaW baaSqabeaacaqGLbaaaaaa@3A71@ échantillon simulé. Le biais relatif absolu moyen ( BRA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabkfacaqGbbaaaaGaayjkaiaawMcaaaaa@3C5D@ d’un estimateur de l’EQM eqm ( μ ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaaaa@3FA4@ est alors calculé selon

BRA ¯ [ eqm ( μ ^ i ) ] = M 1 i = 1 M | E [ eqm ( μ ^ i ) ] EQM ( μ ^ i ) 1 | . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaadaWadaqaaiaabwgacaqGXbGaaeyBamaa bmaabaGafqiVd0MbaKaadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaiaawUfacaGLDbaacqGH9aqpcaWGnbWaaWbaaSqabeaacqGH sislcaaIXaaaaOWaaabCaeaadaabdaqaaiaaykW7daWcaaqaaiaadw eadaWadaqaaiaabwgacaqGXbGaaeyBamaabmaabaGafqiVd0MbaKaa daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDb aaaeaacaqGfbGaaeyuaiaab2eadaqadaqaaiqbeY7aTzaajaWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiabgkHiTiaaigdaca aMc8oacaGLhWUaayjcSdaaleaacaWGPbGaeyypa0JaaGymaaqaaiaa d2eaa0GaeyyeIuoakiaac6caaaa@6704@

4.2 Résultats sous les mesures de taille de Pfeffermann et Sverchkov

Le tableau 4.1 donne les résultats des simulations concernant le biais absolu moyen ( BA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabgeaaaaacaGLOaGaayzkaaaaaa@3B88@ et la racine carrée moyenne de l’erreur quadratique moyenne ( REQM ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOuaiaabweacaqGrbGaaeytaaaaaiaawIcacaGLPaaa aaa@3D40@ des estimateurs Y ¯ ^ i H , Y ¯ ^ i ( a ) H , μ ^ i YR , μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeaaaGccaGGSaGabmywayaa ryaajaWaa0baaSqaaiaadMgadaqadaqaaiaadggaaiaawIcacaGLPa aaaeaacaWGibaaaOGaaiilaiqbeY7aTzaajaWaa0baaSqaaiaadMga aeaacaqGzbGaaeOuaaaakiaacYcacuaH8oqBgaqcamaaDaaaleaaca WGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaabaGaaeywaiaabkfa aaaaaa@4E6F@ et Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaaaa@3C2E@ sous les mesures de taille (4.2) de l’approche PS. Le biais relatif absolu moyen ( BRA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabkfacaqGbbaaaaGaayjkaiaawMcaaaaa@3C5D@ des estimateurs de l’EQM, eqm ( μ ^ i H ) , eqm ( μ ^ i ( a ) H ) , eqm ( μ ^ i YR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgaaeaa caWGibaaaaGccaGLOaGaayzkaaGaaiilaiaabwgacaqGXbGaaeyBam aabmaabaGafqiVd0MbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyy aaGaayjkaiaawMcaaaqaaiaadIeaaaaakiaawIcacaGLPaaacaGGSa GaaeyzaiaabghacaqGTbWaaeWaaeaacuaH8oqBgaqcamaaDaaaleaa caWGPbaabaGaaeywaiaabkfaaaaakiaawIcacaGLPaaaaaa@553F@ et eqm ( μ ^ i ( a ) YR ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgadaqa daqaaiaadggaaiaawIcacaGLPaaaaeaacaqGzbGaaeOuaaaaaOGaay jkaiaawMcaaiaacYcaaaa@4475@ est également présenté. Quatre choix différents de la variable d’augmentation g i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B5A@ ont été étudiés : p j | i , w j | i , n i w j | i = p j | i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaGccaGGSaGa am4DamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaO Gaaiilaiaad6gadaWgaaWcbaGaamyAaaqabaGccaWG3bWaaSbaaSqa amaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaGccqGH9aqpcaWGWb Waa0baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqaaiabgkHi Tiaaigdaaaaaaa@5107@ et log p j | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaGccaGGUaaaaa@4085@ L’estimateur bootstrap de EQM ( Y ¯ ^ i PS ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbGaae yuaiaab2eadaqadaqaaiqadMfagaqegaqcamaaDaaaleaacaWGPbaa baGaaeiuaiaabofaaaaakiaawIcacaGLPaaaaaa@402D@ proposé par Pfeffermann et Sverchkov (2007) n’est pas inclus dans notre étude, parce que la simulation bootstrap est très gourmande en ressources informatiques.

Le tableau 4.1 montre que le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ de l’estimateur EBLUP Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeaaaaaaa@3B52@ est grand (= 0,456) comparativement à l’EBLUP avec modèle augmenté correspondant, Y ¯ ^ i ( a ) H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyyaaGaayjkaiaawMca aaqaaiaadIeaaaGccaGGSaaaaa@3E7B@ pour les quatre choix de g i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaac6caaaa@3C16@ En outre, le choix g i j = w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadEhadaWgaaWcbaWa aqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaaa@4105@ donne un BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ plus grand que les trois autres choix (0,131 comparativement à 0,042 ou moins). Le pseudo-EBLUP habituel, μ ^ i YR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaGccaGGSaaaaa@3DB1@ donne des résultats étonnamment bons ( BA ¯ = 0,044 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabgeaaaGaeyypa0JaaeimaiaabYcacaqGWaGa aeinaiaabsdaaiaawIcacaGLPaaacaGGSaaaaa@40C1@ même s’il a été obtenu sous l’hypothèse d’un échantillonnage non informatif. Cette bonne performance est peut-être due à l’utilisation de poids dans μ ^ i YR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaGccaGGUaaaaa@3DB3@ Le pseudo-EBLUP augmenté, μ ^ i ( a ) YR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaaeywaiaabkfaaaGccaGGSaaaaa@4020@ entraîne une réduction supplémentaire du BA ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaiaac6caaaa@3AB1@ L’estimateur PS, Y ¯ ^ i PS , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaOGaaiilaaaa @3CE8@ donne de bons résultats comparativement à Y ¯ ^ i ( a ) H : BA ¯ = 0,033 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyyaaGaayjkaiaawMca aaqaaiaadIeaaaGccaGG6aWaa0aaaeaacaqGcbGaaeyqaaaacqGH9a qpcaqGWaGaaeilaiaabcdacaqGZaGaae4maiaac6caaaa@455C@

Si l’on examine la REQM ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaGaaiilaaaa@3C67@ le tableau 4.1 montre que Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeaaaaaaa@3B52@ possède la plus grande valeur (= 0,617) en raison de son grand BA ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaiaacYcaaaa@3AAF@ suivi par μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaaaaa@3CF7@ et Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaaaa@3C2E@ pour lesquels les valeurs sont 0,442 et 0,416, respectivement. Par ailleurs, les estimateurs avec modèle augmenté donnent des résultats significativement meilleurs que Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaabcfacaqGtbaaaaaa@3C2E@ et μ ^ i YR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaGccaGGUaaaaa@3DB3@ Par exemple, le choix g i j = p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadchadaWgaaWcbaWa aqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaaa@40FE@ donne REQM ¯ = 0,151 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaGaeyypa0JaaeimaiaabYcacaqG XaGaaeynaiaabgdacaGGUaaaaa@40F1@ Parmi les quatre choix de g i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C14@ le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ donne la plus grande REQM ¯ ( = 0,242 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaWaaeWaaeaacqGH9aqpcaqGWaGa aeilaiaabkdacaqG0aGaaeOmaaGaayjkaiaawMcaaiaac6caaaa@427B@ Nous avons également calculé le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ et la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ des estimateurs EBLUP approximatifs μ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaamisaaaaaaa@3C13@ et μ ^ i ( a ) H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaamisaaaakiaac6caaaa@3F3E@ Nous avons constaté que les valeurs sont presque les mêmes que les valeurs correspondantes pour Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAaaqaaiaadIeaaaaaaa@3B52@ et Y ¯ ^ i ( a ) H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaqhaaWcbaGaamyAamaabmaabaGaamyyaaGaayjkaiaawMca aaqaaiaadIeaaaGccaGGUaaaaa@3E7D@

Enfin, en ce qui concerne l’estimation de l’EQM, eqm ( μ ^ i H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgaaeaa caWGibaaaaGccaGLOaGaayzkaaaaaa@4072@ produit le BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD3@ le plus grand, soit 53,1 % comparativement à 3,8 % pour μ ^ i YR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaGccaGGSaaaaa@3DB1@ quoique la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ de μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbaabaGaaeywaiaabkfaaaaaaa@3CF7@ est plus grande que celle de μ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaamisaaaaaaa@3E82@ en se basant sur p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3CF9@ ou n i w j | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaam4DamaaBaaaleaadaabcaqaaiaadQga aiaawIa7aiaadMgaaeqaaOGaaiOlaaaa@3FD3@ Les estimateurs de l’EQM eqm ( μ ^ i ( a ) H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgadaqa daqaaiaadggaaiaawIcacaGLPaaaaeaacaWGibaaaaGccaGLOaGaay zkaaaaaa@42E1@ et eqm ( μ ^ i ( a ) YR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGLbGaae yCaiaab2gadaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadMgadaqa daqaaiaadggaaiaawIcacaGLPaaaaeaacaqGzbGaaeOuaaaaaOGaay jkaiaawMcaaaaa@43C5@ donnent un petit BRA ¯ ( < 7 % ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaadaqadaqaaabaaaaaaaaapeGaeyipaWJa aG4naiaaysW7caGGLaaapaGaayjkaiaawMcaaiaacYcaaaa@4137@ sauf pour le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ qui donne BRA ¯ = 62,6 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaacqGH9aqpcaqG2aGaaeOmaiaabYcacaqG 2aGaaGjbVlaacwcaaaa@40E6@ pour μ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaamisaaaaaaa@3E82@ et BRA ¯ = 39,6 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaacqGH9aqpcaqGZaGaaeyoaiaabYcacaqG 2aGaaGjbVlaacwcaaaa@40EA@ pour μ ^ i ( a ) YR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaDaaaleaacaWGPbWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaa baGaaeywaiaabkfaaaGccaGGUaaaaa@4022@

Tableau 4.1
Biais absolu moyen ( BA ¯ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaadaqadaqaam aanaaabaGaaeOqaiaabgeaaaaacaGLOaGaayzkaaGaaiilaaaa@3C32@ REQM moyenne ( REQM ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaadaqadaqaam aanaaabaGaaeOuaiaabweacaqGrbGaaeytaaaaaiaawIcacaGLPaaa aaa@3D3A@ des estimateurs et biais relatif absolu moyen en pourcentage ( BRA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaadaqadaqaam aanaaabaGaaeOqaiaabkfacaqGbbaaaaGaayjkaiaawMcaaaaa@3C57@ des estimateurs de l’EQM : mesures de taille de Pfeffermann et Sverchkov
Sommaire du tableau
Le tableau montre les résultats de Biais absolu moyen XXXX et REQM moyenne XXXX des estimateurs et biais relatif absolu moyen en pourcentage XXXX des estimateurs de l’EQM : mesures de taille de Pfeffermann et Sverchkov (4.2) . Les données sont présentées selon Mesure de performance (titres de rangée) et EBLUP, pseudo-EBLUP, PS et XXXX, calculées selon XXXX unités de mesure (figurant comme en-tête de colonne).
Mesure de performance EBLUP pseudo-EBLUP PS
Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGibaaaaaa@3C25@ Y ¯ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgadaqadaqaaiaacggaaiaawIcacaGLPaaa aeaacaWGibaaaaaa@3E93@ μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaabMfacaqGsbaaaaaa@3DCA@ μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAamaabmaabaGaaiyyaaGaayjkaiaawMcaaaqa aiaabMfacaqGsbaaaaaa@4038@ Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaqGqbGaae4uaaaaaaa@3D01@
p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCC@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FEA@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD3@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409C@ p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCC@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FEA@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD3@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409C@
BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@3C22@ 0,456 0,042 0,004 0,131 0,003 0,044 0,007 0,004 0,044 0,003 0,033
REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3DDA@ 0,617 0,151 0,147 0,242 0,101 0,442 0,157 0,156 0,207 0,106 0,416
BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3CF6@ en % (eqm) 53,1 3,7 6,7 62,6 6,9 3,8 4,1 5,2 39,6 6,7 Cette cellule ne contient aucune données

4.3 Sélection de la variable d’augmentation

À la présente section, nous illustrons la sélection de la variable d’augmentation en générant des données pour les N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3938@ unités de la population au moyen du modèle (4.1), puis en sélectionnant un échantillon dans la population de données selon la méthode de Rao-Sampford en utilisant les mesures de taille (4.2). En posant que u i j = v i + e i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadAhadaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgacaWGQbaabe aakiaacYcaaaa@4326@ nous avons ajusté le modèle y i j = β 0 + β 1 x i j + u i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iabek7aInaaBaaaleaa caaIWaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaaki aadIhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaamyDamaa BaaaleaacaWGPbGaamOAaaqabaaaaa@4976@ aux données d’échantillon par la méthode des moindres carrés ordinaires (MCO) et obtenu les résidus u ˜ i j = y i j β ˜ 0 β ˜ 1 x i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaG aadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamyEamaaBaaa leaacaWGPbGaamOAaaqabaGccqGHsislcuaHYoGygaacamaaBaaale aacaaIWaaabeaakiabgkHiTiqbek7aIzaaiaWaaSbaaSqaaiaaigda aeqaaOGaamiEamaaBaaaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@4A73@ β ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHYoGyga acamaaBaaaleaacaaIWaaabeaaaaa@3AFB@ et β ˜ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHYoGyga acamaaBaaaleaacaaIXaaabeaaaaa@3AFC@ sont les estimateurs par les MCO de β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHYoGyda WgaaWcbaGaaGimaaqabaaaaa@3AEC@ et β 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHYoGyda WgaaWcbaGaaGymaaqabaGccaGGSaaaaa@3BA7@ respectivement.

La figure 4.1 donne les graphiques des résidus de ( u ˜ i j , p j | i ) , ( u ˜ i j , log p j | i ) , ( u ˜ i j , n i w j | i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai qadwhagaacamaaBaaaleaacaWGPbGaamOAaaqabaGccaGGSaGaamiC amaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaGcca GLOaGaayzkaaGaaiilamaabmaabaGabmyDayaaiaWaaSbaaSqaaiaa dMgacaWGQbaabeaakiaacYcaciGGSbGaai4BaiaacEgacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaakiaawIca caGLPaaacaGGSaWaaeWaaeaaceWG1bGbaGaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaiilaiaad6gadaWgaaWcbaGaamyAaaqabaGccaWG 3bWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaki aawIcacaGLPaaaaaa@5C8C@ et ( u ˜ i j , w j | i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai qadwhagaacamaaBaaaleaacaWGPbGaamOAaaqabaGccaGGSaGaam4D amaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaGcca GLOaGaayzkaaGaaiOlaaaa@4311@ Les quatre graphiques indiquent clairement que l’échantillonnage est informatif. Les relations linéaires entre u i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3B68@ et les deux choix p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3CF9@ et log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaaaaa@3FC9@ donnent à penser que n’importe lequel de ces choix devrait donner de bons résultats. Le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ indique une certaine non-linéarité et une plus grande dispersion du diagramme des résidus, et ce choix est, parmi les quatre, celui qui a produit la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ la plus grande, comme le montre le tableau 4.1. Le choix n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaam4DamaaBaaaleaadaabcaqaaiaadQga aiaawIa7aiaadMgaaeqaaaaa@3F17@ révèle aussi une certaine non-linéarité, mais une dispersion moins importante du graphique des résidus.

Figure 4.1 de la section 4 article 14248

Description de la figure 4.1

La figure 4.1 présente quatre nuages de points donnant la relation entre u ˜ ij = y ij β ˜ 0 β ˜ 1 x ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaia WaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadMhadaWgaaWc baGaamyAaiaadQgaaeqaaOGaeyOeI0IafqOSdiMbaGaadaWgaaWcba GaaGimaaqabaGccqGHsislcuaHYoGygaacamaaBaaaleaacaaIXaaa beaakiaadIhadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@494D@ (en ordonnée) et quatre valeurs de g ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3AEE@ (en abscisse), soient p j|i , log p j|i ,  n i w j|i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaOGaaiilaiaa bccaciGGSbGaai4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaam OAaaGaayjcSdGaamyAaaqabaGccaGGSaGaaeiiaiaad6gadaWgaaWc baGaamyAaaqabaGccaWG3bWaaSbaaSqaamaaeiaabaGaamOAaaGaay jcSdGaamyAaaqabaaaaa@4D5D@ et w j|i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaOGaaiOlaaaa @3D50@ Une relation linéaire apparaît dans le nuage de points présentant les couples ( u ˜ ij , p j|i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WG1bGbaGaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaadcha daWgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaOGaay jkaiaawMcaaaaa@41EC@ et dans celui présentant les couples ( u ˜ ij ,log p j|i ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WG1bGbaGaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiGacYga caGGVbGaai4zaiaadchadaWgaaWcbaWaaqGaaeaacaWGQbaacaGLiW oacaWGPbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@456E@ Les deux autres nuages de points montrent une relation non-linéaire et une pente décroissante. La dispersion du graphe des ( u ˜ ij , w j|i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbba9=b0P0RWFb9fq0FXxbbf9Ff0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WG1bGbaGaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaadEha daWgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabeaaaOGaay jkaiaawMcaaaaa@41F3@ est particulièrement prononcée.

Nous avons également ajusté le modèle augmenté (1.4) avec g ( p j | i ) = p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaae WaaeaacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyA aaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGWbWaaSbaaSqaamaaei aabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@4512@ et calculé les résidus par les MCO u ˜ 0 i j = y i j β ˜ 00 β ˜ 01 x i j δ ˜ 0 p j | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaG aadaWgaaWcbaGaaGimaiaadMgacaWGQbaabeaakiabg2da9iaadMha daWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IafqOSdiMbaGaada WgaaWcbaGaaGimaiaaicdaaeqaaOGaeyOeI0IafqOSdiMbaGaadaWg aaWcbaGaaGimaiaaigdaaeqaaOGaamiEamaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsislcuaH0oazgaacamaaBaaaleaacaaIWaaabeaa kiaadchadaWgaaWcbaWaaqGaaeaacaWGQbaacaGLiWoacaWGPbaabe aakiaac6caaaa@54D2@ Tous les résidus u ˜ 0 i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaG aadaWgaaWcbaGaaGimaiaadMgacaWGQbaabeaaaaa@3C31@ sont inférieurs à 2,0 en valeur absolue, ce qui laisse entendre que le modèle augmenté est adéquat.

4.4 Résultats sous les mesures de taille d’Asparouhov

Le tableau 4.2 donne les résultats des simulations pour le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ sous les mesures de taille (4.3) et (4.4) d’Asparouhov. Il montre, comme le tableau 4.1 pour les mesures de taille de Pfeffermann et Sverchkov, que le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ de l’EBLUP est grand (0,437 pour la mesure de taille invariante (I) et 0,440 pour la mesure de taille non invariante (NI)) quand la variable d’augmentation, g i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C14@ n’est pas incluse dans le modèle et que l’échantillonnage est très informatif ( α = 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iaaigdaaiaawIcacaGLPaaacaGGUaaaaa@3E00@ De plus, le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ diminue à mesure que α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ augmente. Par ailleurs, sous le même modèle, le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ associé au pseudo-EBLUP est beaucoup plus faible : 0,048 pour I et 0,047 pour NI quand α = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaGaaiilaaaa@3C75@ et le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ diminue quand α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ augmente. L’estimateur de Pfeffermann et Sverchkov sous le même modèle présente aussi un BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ plus faible (environ 0,01), quel que soit le choix de la valeur de α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyca GGUaaaaa@3AB6@ L’inclusion de p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3CF9@ ou n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaam4DamaaBaaaleaadaabcaqaaiaadQga aiaawIa7aiaadMgaaeqaaaaa@3F17@ ou log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaaaaa@3FC9@ comme variable d’augmentation dans le modèle donne aussi lieu à un petit BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ pour l’EBLUP (0,02 ou moins), quelle que soit la valeur de α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyca GGUaaaaa@3AB6@ Par ailleurs, le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ comme variable d’augmentation entraîne un plus grand BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ (0,14 pour α = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaaaaa@3BC5@ et 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aaikdaaiaawMcaaiaacYcaaaa@3A99@ sauf en cas d’échantillonnage non informatif ( α = ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iabg6HiLcGaayjkaiaawMcaaiaac6caaaa@3EB6@ Ces résultats médiocres pour le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ sont probablement dus au fait que w j | i = ( n i p j | i ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaGccqGH9aqp daqadaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccaWGWbWaaSbaaS qaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@4823@ dépend des tailles d’échantillon de domaine, n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B2C@ quand celles-ci ne sont pas égales, contrairement aux autres choix de g i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaac6caaaa@3C16@ Le pseudo-EBLUP donne des résultats comparables à l’EBLUP sous le modèle augmenté en ce qui concerne le BA ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaiaac6caaaa@3AB1@

Tableau 4.2
Biais absolu moyen ( BA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaadaqadaqaam aanaaabaGaaeOqaiaabgeaaaaacaGLOaGaayzkaaaaaa@3B82@ des estimateurs sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI)
Sommaire du tableau
Le tableau montre les résultats de Biais absolu moyen XXXX des estimateurs sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI). Les données sont présentées selon XXXX (titres de rangée) et Mesure de taille, EBLUP, pseudo-EBLUP, PS et XXXX, calculées selon XXXX unités de mesure (figurant comme en-tête de colonne).
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqySdegaaa@3AD6@ Mesure de taille EBLUP pseudo-EBLUP PS
Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGibaaaaaa@3C24@ Y ¯ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgadaqadaqaaiaacggaaiaawIcacaGLPaaa aeaacaWGibaaaaaa@3E92@ μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaabMfacaqGsbaaaaaa@3DC9@ μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAamaabmaabaGaaiyyaaGaayjkaiaawMcaaaqa aiaabMfacaqGsbaaaaaa@4037@ Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaqGqbGaae4uaaaaaaa@3D00@
p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@ p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@
1 I 0,437 0,001 0,005 0,140 0,022 0,048 0,001 0,006 0,057 0,005 0,012
NI 0,440 0,007 0,007 0,145 0,021 0,047 0,003 0,007 0,064 0,005 0,013
2 I 0,217 0,009 0,010 0,137 0,014 0,024 0,010 0,010 0,098 0,010 0,012
NI 0,217 0,011 0,009 0,136 0,011 0,024 0,009 0,010 0,098 0,010 0,012
3 I 0,145 0,010 0,010 0,101 0,011 0,017 0,010 0,010 0,075 0,010 0,011
NI 0,144 0,011 0,011 0,099 0,012 0,016 0,010 0,011 0,074 0,011 0,011
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3A9E@ I 0,011 0,011 0,011 0,011 0,011 0,012 0,011 0,011 0,012 0,011 0,011
NI 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010

 

Le tableau 4.3 présente les résultats des simulations concernant la racine carrée moyenne de l’erreur quadratique moyenne ( REQM ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOuaiaabweacaqGrbGaaeytaaaaaiaawIcacaGLPaaa aaa@3D40@ lorsque l’on utilise les mesures de taille (4.3) et (4.4) d’Asparouhov. Les résultats montrent que l’EBLUP, fondé sur le modèle (1.4) sans la variable d’augmentation g i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C14@ est celui dont la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ est la plus grande (0,596 pour I et 0,619 pour NI) quand l’échantillonnage est très informatif ( α = 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iaaigdaaiaawIcacaGLPaaacaGGUaaaaa@3E00@ La REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ diminue progressivement jusqu’à environ 0,42 au fur et à mesure que l’échantillonnage devient non informatif ( α = ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iabg6HiLcGaayjkaiaawMcaaiaac6caaaa@3EB6@ Par ailleurs, la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ du pseudo-EBLUP (sans le terme g i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3B4A@ dans le modèle) et de l’estimateur PS ne dépend pas de α , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyca GGSaaaaa@3AB4@ et est considérablement réduite : la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ du pseudo-EBLUP est de l’ordre de 0,44 et la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ de l’estimateur PS est un peu plus petite, de l’ordre de 0,42. L’augmentation de la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ des estimateurs pseudo-EBLUP et PS par rapport à l’estimateur EBLUP sous échantillonnage non informatif ( α = ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iabg6HiLcGaayjkaiaawMcaaaaa@3E04@ est également faible. Par ailleurs, l’utilisation de l’EBLUP et du pseudo-EBLUP sous le modèle augmenté donne lieu à une réduction importante de l’EQM quand l’échantillonnage est très informatif ( α = 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iaaigdaaiaawIcacaGLPaaacaGGSaaaaa@3DFE@ particulièrement pour les choix p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3CF9@ et log p j | i : REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaGccaGG6aWaa0aaaeaacaqGsbGaaeyraiaabgfacaqGnb aaaaaa@43E3@ inférieure à 0,15. Le choix w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ donne une plus grande REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ (autour de 0,29) quand α = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaGaaiilaaaa@3C75@ mais elle demeure néanmoins nettement plus petite que la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ pour le pseudo-EBLUP sans le terme g i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3B4A@ et l’estimateur PS. À mesure que α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ augmente, la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ devient à peu près la même pour les estimateurs EBLUP (sous le modèle augmenté), pseudo-EBLUP et PS.

Tableau 4.3
Racine carrée moyenne de l’erreur quadratique moyenne ( REQM ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiqaceGabeqabeWabeqaeeaakeaadaqadaqaam aanaaabaGaaeOuaiaabweacaqGrbGaaeytaaaaaiaawIcacaGLPaaa aaa@3D3A@ des estimateurs sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI)
Sommaire du tableau
Le tableau montre les résultats de Racine carrée moyenne de l’erreur quadratique moyenne XXXX des estimateurs sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI). Les données sont présentées selon XXXX (titres de rangée) et Mesure de taille, EBLUP, pseudo-EBLUP, PS et XXXX, calculées selon XXXX unités de mesure (figurant comme en-tête de colonne).
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqySdegaaa@3AD6@ Mesure de taille EBLUP pseudo-EBLUP PS
Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGibaaaaaa@3C24@ Y ¯ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgadaqadaqaaiaacggaaiaawIcacaGLPaaa aeaacaWGibaaaaaa@3E92@ μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaabMfacaqGsbaaaaaa@3DC9@ μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAamaabmaabaGaaiyyaaGaayjkaiaawMcaaaqa aiaabMfacaqGsbaaaaaa@4037@ Y ¯ ^ i PS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaqGqbGaae4uaaaaaaa@3D00@
p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@ p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@
1 I 0,596 0,039 0,203 0,281 0,108 0,454 0,040 0,223 0,258 0,112 0,406
NI 0,619 0,110 0,205 0,295 0,135 0,457 0,092 0,235 0,273 0,136 0,435
2 I 0,468 0,377 0,385 0,418 0,379 0,436 0,391 0,398 0,415 0,392 0,416
NI 0,474 0,375 0,378 0,414 0,374 0,438 0,392 0,396 0,413 0,391 0,423
3 I 0,439 0,400 0,403 0,420 0,401 0,432 0,414 0,417 0,425 0,415 0,415
NI 0,443 0,400 0,401 0,418 0,399 0,435 0,416 0,416 0,425 0,415 0,420
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3A9E@ I 0,417 0,418 0,418 0,418 0,418 0,431 0,431 0,431 0,432 0,431 0,418
NI 0,418 0,418 0,418 0,419 0,418 0,432 0,432 0,432 0,433 0,432 0,418

 

Le tableau 4.4 donne les résultats des simulations concernant le biais relatif absolu moyen ( BRA ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaam aanaaabaGaaeOqaiaabkfacaqGbbaaaaGaayjkaiaawMcaaaaa@3C5D@ des estimateurs de l’EQM sous les mesures de taille (4.3) et (4.4) d’Asparouhov. Il montre que le BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ de l’estimateur de l’EQM de l’EBLUP, basé sur le modèle sans la variable d’augmentation g i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacYcaaaa@3C14@ est très grand quand l’échantillonnage est très informatif ( α = 1 ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iaaigdaaiaawIcacaGLPaaacaGG6aaaaa@3E0C@ 52,8 % pour I et 59,1 % pour NI. Le BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ diminue progressivement jusqu’à environ 5 % sous échantillonnage non informatif ( α = ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abeg7aHjabg2da9iabg6HiLcGaayjkaiaawMcaaiaac6caaaa@3EB6@ L’utilisation de log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaaaaa@3FC9@ comme variable d’augmentation donne lieu à une grande réduction du BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ ( < 9 % ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai abgYda8iaaiMdacaaMe8UaaiyjaaGaayjkaiaawMcaaaaa@3DEB@ et les choix p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3CF9@ et n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaaiaadMgaaeqaaOGaam4DamaaBaaaleaadaabcaqaaiaadQga aiaawIa7aiaadMgaaeqaaaaa@3F17@ donnent aussi de bons résultats en ce qui concerne le BRA ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaacaGGSaaaaa@3B84@ sauf dans le cas de NI et α = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaaaaa@3BC5@ où le BRA vaut 18,5 % et 12,9 %, respectivement. De nouveau, w j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaamaaeiaabaGaamOAaaGaayjcSdGaamyAaaqabaaaaa@3D00@ n’est pas un bon choix parce qu’il donne un BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ aussi grand que 40 % quand α = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaGaaiOlaaaa@3C77@ L’estimateur de l’EQM associé au pseudo-EBLUP (sans g i j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadMgacaWGQbaabeaakiaacMcaaaa@3C11@ donne aussi de bons résultats, sauf pour NI et α = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaaIXaGaaiilaaaa@3C75@ qui mènent à un BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ de 19,5 %. L’utilisation de log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai 4BaiaacEgacaWGWbWaaSbaaSqaamaaeiaabaGaamOAaaGaayjcSdGa amyAaaqabaaaaa@3FC9@ comme variable auxiliaire produit un BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ inférieur à 8 % pour l’estimateur de l’EQM associé au pseudo-EBLUP. Nous n’avons pas inclus l’estimateur bootstrap de l’EQM de Pfeffermann et Sverchkov dans notre étude.

Dans l’ensemble, notre étude en simulation indique que l’utilisation de modèles augmentés sous échantillonnage informatif produit des estimateurs EBLUP qui donnent de bons résultats en ce qui concerne le BA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGbbaaaaaa@39FF@ et la REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ des estimateurs, et le BRA ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkeacaqGsbGaaeyqaaaaaaa@3AD4@ des estimateurs de l’EQM, à condition que la variable d’augmentation soit choisie convenablement. Les estimateurs corrigés du biais de Pfeffermann et Sverchkov donnent aussi de bons résultats, quoiqu’ils produisent une plus grande REQM ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai aabkfacaqGfbGaaeyuaiaab2eaaaaaaa@3BB7@ sous les mesures de taille (4.2) de Pfeffermann et Sverchkov. Les estimateurs pseudo-EBLUP (sans la variable d’augmentation) sont également bons et une amélioration supplémentaire peut être obtenue sous les modèles augmentés.

Tableau 4.4
Biais relatif moyen (%) des estimateurs de l’EQM sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI)
Sommaire du tableau
Le tableau montre les résultats de Biais relatif moyen (%) des estimateurs de l’EQM sous les mesures de taille d’Asparouhov : invariante (I) et non invariante (NI). Les données sont présentées selon XXXX (titres de rangée) et Mesure de taille, EBLUP, pseudo-EBLUP et XXXX(figurant comme en-tête de colonne).
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqySdegaaa@3AD6@ Mesure de taille EBLUP pseudo-EBLUP
Y ¯ ^ i H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGibaaaaaa@3C24@ Y ¯ ^ i ( a ) H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgadaqadaqaaiaacggaaiaawIcacaGLPaaa aeaacaWGibaaaaaa@3E92@ μ ^ i YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaabMfacaqGsbaaaaaa@3DC9@ μ ^ i ( a ) YR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAamaabmaabaGaaiyyaaGaayjkaiaawMcaaaqa aiaabMfacaqGsbaaaaaa@4037@
p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@ p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiCamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DCB@ n i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGaaeaacaWGQbaa caGLiWoacaWGPbaabeaaaaa@3FE9@ w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaam4DamaaBa aaleaadaabcaqaaiaadQgaaiaawIa7aiaadMgaaeqaaaaa@3DD2@ log p j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaciiBaiaac+ gacaGGNbGaamiCamaaBaaaleaadaabcaqaaiaadQgaaiaawIa7aiaa dMgaaeqaaaaa@409B@
1 I 52,8 6,5 4,8 39,8 3,3 11,7 6,6 7,8 19,2 6,2
NI 59,1 18,5 12,9 39,4 7,8 19,5 26,0 10,2 16,6 6,0
2 I 19,4 6,0 5,5 10,7 5,9 3,9 6,3 6,0 7,3 6,4
NI 22,6 8,8 8,0 11,3 8,6 4,2 6,7 6,0 7,4 6,7
3 I 7,1 5,5 5,5 5,3 5,5 4,4 6,0 6,3 7,2 6,3
NI 8,9 7,3 7,0 5,9 7,2 4,0 7,1 7,0 7,3 7,2
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3A9E@ I 5,1 5,1 5,0 5,0 5,1 5,1 5,2 5,3 5,3 5,2
NI 5,0 4,9 4,9 4,9 4,9 4,9 5,0 5,1 5,1 5,0
Date de modification :