Appariement statistique par imputation fractionnaire 5. Modèles d’erreur de mesure

Examinons maintenant l’application d’un appariement statistique au problème des modèles d’erreur de mesure. Supposons que l’on s’intéresse au paramètre  θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaa a@395F@ de la distribution conditionnelle f ( y 2 | y 1 ; θ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaMc8oa caGLiWoacaaMc8UaamyEamaaBaaaleaacaaIXaaabeaakiaaiUdacq aH4oqCaiaawIcacaGLPaaacaGGUaaaaa@45D5@ Dans l’échantillon initial, au lieu d’observer ( y 1 i , y 2 i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadMhadaWgaaWcbaGaaGymaiaadMgaaeqaaOGaaGilaiaadMhadaWg aaWcbaGaaGOmaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@4053@ on observe ( x i , y 2 i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaa caaIYaGaamyAaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3F97@ x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@39C0@ est une version contaminée de y 1 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaigdacaWGPbaabeaakiaac6caaaa@3B38@ Comme il est possible que l’inférence pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaa a@395F@ fondée sur ( x i , y 2 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaa caaIYaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@3EE7@ soit biaisée, d’autres renseignements sont nécessaires. L’une des façons courantes d’obtenir ces renseignements supplémentaires est de recueillir ( x i , y 1 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaa caaIXaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@3EE6@ dans le cadre d’une étude de calage externe. Dans ce cas, on observe ( x i , y 1 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaa caaIXaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@3EE6@ dans l’échantillon A et ( x i , y 2 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaa caaIYaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@3EE7@ dans l’échantillon B, l’échantillon A étant l’échantillon de calage et l’échantillon B, l’échantillon principal. Guo et Little (2011) présentent une application d’un calage externe.

Le cadre de calage externe peut s’exprimer sous forme de problème d’appariement statistique. Le tableau 5.1 établit de façon explicite le lien entre l’appariement statistique et le calage externe. Une hypothèse de variable instrumentale permet l’inférence pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaa a@395F@ en fonction de données selon la structure présentée dans le tableau 1.1. Dans la notation du modèle d’erreur de mesure, l’hypothèse de variable instrumentale est

f ( y 2 i | y 1 i , x i ) = f ( y 2 i | y 1 i ) et f ( y 1 i | x i = a ) f ( y 1 i | x i = b ) , ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGOmaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlaadMhadaWgaaWcbaGaaGymaiaadMgaae qaaOGaaGilaiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaacaaI9aGaamOzamaabmaabaWaaqGaaeaacaWG5bWaaSbaaSqaai aaikdacaWGPbaabeaakiaaykW7aiaawIa7aiaaykW7caWG5bWaaSba aSqaaiaaigdacaWGPbaabeaaaOGaayjkaiaawMcaaiaaysW7caaMe8 UaaGjbVlaabwgacaqG0bGaaGjbVlaaysW7caaMe8UaamOzamaabmaa baWaaqGaaeaacaWG5bWaaSbaaSqaaiaaigdacaWGPbaabeaakiaayk W7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGyp aiaadggaaiaawIcacaGLPaaacqGHGjsUcaWGMbWaaeWaaeaadaabca qaaiaadMhadaWgaaWcbaGaaGymaiaadMgaaeqaaOGaaGPaVdGaayjc SdGaaGPaVlaadIhadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamOyaa GaayjkaiaawMcaaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8Uaaiik aiaaiwdacaGGUaGaaGymaiaacMcaaaa@87FA@

pour certains a b . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaey iyIKRaamOyaiaac6caaaa@3BEF@ L’hypothèse de variable instrumentale peut être considérée raisonnable dans les applications relatives à l’erreur dans les covariables parce que le modèle d’intérêt en question est f ( y 2 i | y 1 i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGOmaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlaadMhadaWgaaWcbaGaaGymaiaadMgaae qaaaGccaGLOaGaayzkaaGaaGilaaaa@453A@ et x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@39C0@ est une version contaminée de y 1 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaigdacaWGPbaabeaaaaa@3A7C@ ne contenant aucun renseignement supplémentaire à propos de y 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaikdacaWGPbaabeaaaaa@3A7D@ sachant y 1 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaigdacaWGPbaabeaakiaac6caaaa@3B38@

Tableau 5.1
Structure de données pour le modèle d’erreur de mesure
Sommaire du tableau
Le tableau montre les résultats de Structure de données pour le modèle d’erreur de mesure . Les données sont présentées selon (titres de rangée) et XXXX(figurant comme en-tête de colonne).
  x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFjFfea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@3BC4@ y 1i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFjFfea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyEamaaBa aaleaacaaIXaGaamyAaaqabaaaaa@3C80@ y 2i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFjFfea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyEamaaBa aaleaacaaIYaGaamyAaaqabaaaaa@3C81@
Enquête A (étude de calage) o o Cette cellule ne contient aucune données
Enquête B (étude principale) o Cette cellule ne contient aucune données o

Dans le cas où f ( y 2 i | y 1 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGOmaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlaadMhadaWgaaWcbaGaaGymaiaadMgaae qaaaGccaGLOaGaayzkaaaaaa@4484@ et f ( y 1 i | x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaaa@43C7@ sont entièrement paramétriques, on peut utiliser l’imputation fractionnaire paramétrique pour exécuter l’algorithme EM. Cette méthode exige une évaluation de l’espérance conditionnelle de la fonction de score des données complètes sachant les valeurs observées. Pour évaluer l’espérance conditionnelle par imputation fractionnaire, on écrit d’abord la distribution conditionnelle de y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaigdaaeqaaaaa@398E@ sachant ( x , y 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadIhacaaISaGaamyEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaaa@3CD5@ comme suit :

f ( y 1 | x , y 2 ) f ( y 1 | x ) f ( y 2 | y 1 ) . ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oa caGLiWoacaaMc8UaamiEaiaaiYcacaWG5bWaaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaGaeyyhIuRaamOzamaabmaabaWaaqGaaeaa caWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVdGaayjcSdGaaGPaVl aadIhaaiaawIcacaGLPaaacaWGMbWaaeWaaeaadaabcaqaaiaadMha daWgaaWcbaGaaGOmaaqabaGccaaMc8oacaGLiWoacaaMc8UaamyEam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaai6cacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI1aGaaiOlaiaaikdaca GGPaaaaa@66E9@

Soit un estimateur f ^ a ( y 1 i | x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGMbGbaK aadaWgaaWcbaGaamyyaaqabaGcdaqadaqaamaaeiaabaGaamyEamaa BaaaleaacaaIXaGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8Uaam iEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@44F3@ de f ( y 1 i | x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaaa@43C7@ provenant de l’échantillon de calage (échantillon A). La mise en œuvre de l’algorithme EM par imputation fractionnaire se déroule comme suit :

  1. Pour chaque i B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey icI4SaamOqaiaacYcaaaa@3B92@ générer y 1 i * ( j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaa0 baaSqaaiaaigdacaWGPbaabaGaaGOkamaabmaabaGaamOAaaGaayjk aiaawMcaaaaaaaa@3DA9@ à partir de f ^ a ( y 1 | x i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGMbGbaK aadaWgaaWcbaGaamyyaaqabaGcdaqadaqaamaaeiaabaGaamyEamaa BaaaleaacaaIXaaabeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@44B5@ pour j = 1, , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaaG ypaiaaigdacaaISaGaeSOjGSKaaGilaiaad2gacaGGUaaaaa@3E4C@
  2. Calculer les poids fractionnaires

w i j ( t ) * f ( y 2 i | y 1 i * ( j ) ; θ ^ t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaa0 baaSqaaiaadMgacaWGQbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa baGaaGOkaaaakiabg2Hi1kaadAgadaqadaqaamaaeiaabaGaamyEam aaBaaaleaacaaIYaGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8Ua amyEamaaDaaaleaacaaIXaGaamyAaaqaaiaaiQcadaqadaqaaiaadQ gaaiaawIcacaGLPaaaaaGccaaI7aGafqiUdeNbaKaadaWgaaWcbaGa amiDaaqabaaakiaawIcacaGLPaaaaaa@5330@

  1. Mettre à jour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaa a@395F@ en résolvant

i B w i b j = 1 m w i j ( t ) * S ( θ ; y 1 i * ( j ) , y 2 i ) = 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGcbaabeqdcqGHris5aOGaaGPaVlaadEha daWgaaWcbaGaamyAaiaadkgaaeqaaOWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGTbaaniabggHiLdGccaaMc8Uaam4DamaaDaaa leaacaWGPbGaamOAamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaai aaiQcaaaGccaWGtbWaaeWaaeaacqaH4oqCcaaI7aGaamyEamaaDaaa leaacaaIXaGaamyAaaqaaiaaiQcadaqadaqaaiaadQgaaiaawIcaca GLPaaaaaGccaaISaGaamyEamaaBaaaleaacaaIYaGaamyAaaqabaaa kiaawIcacaGLPaaacaaI9aGaaGimaiaaiYcaaaa@5FD3@

  1. Reprendre à l’étape 2 jusqu’à la convergence.

Cette méthode exige que l’on génère des données à partir de f ( y 1 | x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oa caGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaiaac6caaaa@4267@ Dans le cas de certains modèles non linéaires ou de modèles assortis de variances non constantes, la simulation à partir de la distribution conditionnelle de y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaaigdaaeqaaaaa@398E@ sachant x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@38A6@ peut exiger le recours à des méthodes Monte Carlo comme l’acceptation-rejet ou l’algorithme de Metropolis-Hastings. La simulation présentée à la section 6.2 est un bon exemple d’une simulation dans laquelle la distribution conditionnelle de y 1 | x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabcaqaai aadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oacaGLiWoacaaMc8Ua amiEaaaa@3F41@ n’a pas d’expression de forme explicite. Dans ce cas, on peut envisager une autre solution plus simple à calculer. Pour décrire cette solution, posons h ( y 1 | x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oa caGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaaaa@41B7@ comme distribution conditionnelle « de travail », par exemple la distribution normale, à partir de laquelle les échantillons peuvent être facilement générés. On présume que les estimations f ^ a ( y 1 | x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGMbGbaK aadaWgaaWcbaGaamyyaaqabaGcdaqadaqaamaaeiaabaGaamyEamaa BaaaleaacaaIXaaabeaakiaaykW7aiaawIa7aiaaykW7caWG4baaca GLOaGaayzkaaaaaa@42E1@ et h ^ a ( y 1 | x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGObGbaK aadaWgaaWcbaGaamyyaaqabaGcdaqadaqaamaaeiaabaGaamyEamaa BaaaleaacaaIXaaabeaakiaaykW7aiaawIa7aiaaykW7caWG4baaca GLOaGaayzkaaaaaa@42E3@ de f ( y 1 | x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oa caGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaaaa@41B5@ et h ( y 1 | x ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaadaabcaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaMc8oa caGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaiaacYcaaaa@4267@ respectivement, peuvent être obtenues à partir de l’échantillon A. La mise en œuvre de l’algorithme EM par imputation fractionnaire s’effectue ensuite comme suit :

  1. Pour chaque i B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey icI4SaamOqaiaacYcaaaa@3B92@ générer x i * ( j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaa0 baaSqaaiaadMgaaeaacaaIQaWaaeWaaeaacaWGQbaacaGLOaGaayzk aaaaaaaa@3CED@ à partir de h ^ a ( y 1 | x i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGObGbaK aadaWgaaWcbaGaamyyaaqabaGcdaqadaqaamaaeiaabaGaamyEamaa BaaaleaacaaIXaaabeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@44B7@ pour j = 1, , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaaG ypaiaaigdacaaISaGaeSOjGSKaaGilaiaad2gacaGGUaaaaa@3E4C@
  2. Calculer les poids fractionnaires

w i j ( t ) * f ( y 2 i | y 1 i * ( j ) ; θ ^ t ) f ^ a ( y 1 i * ( j ) | x i ) h ^ a ( y 1 i * ( j ) | x i ) ( 5.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaa0 baaSqaaiaadMgacaWGQbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa baGaaGOkaaaakiabg2Hi1oaalyaabaGaamOzamaabmaabaWaaqGaae aacaWG5bWaaSbaaSqaaiaaikdacaWGPbaabeaakiaaykW7aiaawIa7 aiaaykW7caWG5bWaa0baaSqaaiaaigdacaWGPbaabaGaaGOkamaabm aabaGaamOAaaGaayjkaiaawMcaaaaakiaaiUdacuaH4oqCgaqcamaa BaaaleaacaWG0baabeaaaOGaayjkaiaawMcaaiqadAgagaqcamaaBa aaleaacaWGHbaabeaakmaabmaabaWaaqGaaeaacaWG5bWaa0baaSqa aiaaigdacaWGPbaabaGaaGOkamaabmaabaGaamOAaaGaayjkaiaawM caaaaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaabaGabmiAayaajaWaaSbaaSqaaiaadg gaaeqaaOWaaeWaaeaadaabcaqaaiaadMhadaqhaaWcbaGaaGymaiaa dMgaaeaacaaIQaWaaeWaaeaacaWGQbaacaGLOaGaayzkaaaaaOGaaG PaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGynaiaac6cacaaIZaGaaiykaaaa@7F83@

  1. Mettre à jour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaa a@395F@ en résolvant

i B w i b j = 1 m w i j ( t ) * S ( θ ; y 1 i * ( j ) , y 2 i ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdHiVc=bYP0xH8peuj0lXxdrpe0=1qpeeaY=rrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqbqabS qaaiaadMgacqGHiiIZcaWGcbaabeqdcqGHris5aOGaaGPaVlaadEha daWgaaWcbaGaamyAaiaadkgaaeqaaOWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGTbaaniabggHiLdGccaaMc8Uaam4DamaaDaaa leaacaWGPbGaamOAamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaai aaiQcaaaGccaWGtbWaaeWaaeaacqaH4oqCcaaI7aGaamyEamaaDaaa leaacaaIXaGaamyAaaqaaiaaiQcadaqadaqaaiaadQgaaiaawIcaca GLPaaaaaGccaaISaGaamyEamaaBaaaleaacaaIYaGaamyAaaqabaaa kiaawIcacaGLPaaacaaI9aGaaGimaiaai6caaaa@5FD5@

  1. Reprendre à l’étape 2 jusqu’à la convergence.

L’estimation de la variance est une application directe de la méthode de linéarisation présentée à la section 3. La méthode d’imputation fractionnaire hot deck décrite à la section 3 assortie des poids fractionnaires définis en (3.3) s’applique aussi directement au contexte de l’erreur de mesure.

Date de modification :