A comparison between nonparametric estimators for finite population distribution functions 5. Simulation study

In this section we analyze some simulation results. Our goal is to compare efficiency with respect to the sample design of the distribution function estimators introduced in Section 2 and of the variance estimators of Section 4. The simulation results refer to simple random without replacement sampling and to Poisson sampling with unequal inclusion probabilities. As a benchmark, we included also the Horvitz-Thompson distribution function estimator

F ^ π ( t ) : = 1 N j s π j 1 I ( y j t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL PaaacaaI6aGaaGypamaalaaabaGaaGymaaqaaiaad6eaaaWaaabuae aacqaHapaCdaqhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGccaWG jbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaeyizImQaam iDaaGaayjkaiaawMcaaaWcbaGaamOAaiabgIGiolaadohaaeqaniab ggHiLdaaaa@4EB8@

and the corresponding variance estimator

V ˜ ( F ^ π ( t ) ) := 1 N 2 i , j s π i , j π i π j π i , j π i π j I ( y i t ) I ( y j t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWaaeaaceWGgbGbaKaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiQdacaaI9a WaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGc daaeqbqabSqaaiaadMgacaaISaGaamOAaiabgIGiolaadohaaeqani abggHiLdGcdaWcaaqaaiabec8aWnaaBaaaleaacaWGPbGaaGilaiaa dQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqaaiaadMgaaeqaaOGaeq iWda3aaSbaaSqaaiaadQgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaGccqaHapaCdaWgaaWcbaGaamyAaaqaba GccqaHapaCdaWgaaWcbaGaamOAaaqabaaaaOGaamysamaabmaabaGa amyEamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshaaiaawIcaca GLPaaacaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGa eyizImQaamiDaaGaayjkaiaawMcaaaaa@6BF8@

in the simulation study.

We considered both artificial and real populations. The former were obtained by generating N = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaqGXaGaaeilaiaabcdacaqGWaGaaeimaaaa@3A15@ values x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@3716@ from i.i.d. uniform random variables with support on the interval ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIWaGaaGilaiaaigdaaiaawIcacaGLPaaaaaa@38B3@ and by combining them with three types of regression function m ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3877@ and two types of error components ε i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@387C@ The regression functions are (i) m ( x ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dacaaIWaaaaa@39F8@ (flat), (ii) m ( x ) = 10 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dacaaIXaGaaGimaiaadIha aaa@3BB0@ (linear) and (iii) m ( x ) = 10 x 1 / 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dacaaIXaGaaGimaiaadIha daahaaWcbeqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaaaa@3D6C@ (concave), while the error components ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaaaa@37C0@ are either independent realizations from a unique Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@35F8@ distribution with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@383D@ d.o.f., or independent realizations from N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@35D2@ different shifted noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@35F8@ distributions with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@383D@ d.o.f. and with noncentrality parameters given by μ = 15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaakiaac6ca aaa@3BC9@ The shifts applied to the error components in the latter case make sure that the means of the noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@35F8@ distributions from which they were generated are zero. The artificial populations are shown in Figure 5.1 to 5.3. As for the real populations, we took the M U 2 8 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadw faieGacaWFYaGaa8hoaiaa=rdaaaa@38D7@ Population of Sweden Municipalities of Särndal et al. (1992) (population size N = 284 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaaaaa@399D@ and considered the natural logarithm of R M T 8 5 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaad2 eacaWGubacbiGaa8hoaiaa=vdacqGH9aqpaaa@3A01@ Revenues from the 1985 municipal taxation (in millions of kronor) as study variable Y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaacY caaaa@368D@ and the natural logarithm of either P 8 5 = 1 9 8 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaGqaci aa=HdacaWF1aGaeyypa0Jaa8xmaiaa=LdacaWF4aGaa8xnaaaa@3B2F@ population (in thousands) or R E V 8 4 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw eacaWGwbacbiGaa8hoaiaa=rdacqGH9aqpaaa@39FA@ Real estate values according to 1984 assessment (in millions of kronor) as auxiliary variable X . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaac6 caaaa@368E@ The real populations are shown in Figure 5.4.

Figure 5.1 of article 14541

Description of Figure 5.1

Figure made of two scatter plots ( y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqabaqaai aadMhaaiaawIcaaaaa@3813@  versus x ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aadIhaaiaawMcaaiaacYcaaaa@38C4@  each one illustrating an artificial population. The first graph is the population generated from y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaOGaaiilaaaa@3CF2@  where ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  The y-axis goes from -4 to 8 and the x-axis goes from 0.0 to 1.0. The scatter plot is centered around y=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaey ypa0JaaGimaiaac6caaaa@3BBF@  The second graph is the population generated from y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  and ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  and μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  The y-axis goes from -10 to 40 and the x-axis goes from 0.0 to 1.0. The scatter plot is concentrated around y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaey ypa0JaaGimaaaa@3B0D@  for small values of x. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai Olaaaa@39FE@  The variation increases when x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  increases.

Figure 5.2 of article 14541

Description of Figure 5.2

Figure made of two scatter plots ( y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqabaqaai aadMhaaiaawIcaaaaa@3813@  versus x ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aadIhaaiaawMcaaiaacYcaaaa@38C4@  each one illustrating an artificial population. The first graph is the population generated from y i =10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaaicdacaWG4bWaaSba aSqaaiaadMgaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaadMgaae qaaOGaaiilaaaa@416A@  where ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  The y-axis goes from 0 to 10 and the x-axis goes from 0.0 to 1.0. The scatter plot is showing an increasing linear relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  The second graph is the population generated from y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  and ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  and μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  The y-axis goes from 0 to 50 and the x-axis goes from 0.0 to 1.0. The scatter plot is showing an increasing linear relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  The variation increases when x increases.

Figure 5.3 of article 14541

Description of Figure 5.3

Figure made of two scatter plots ( y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqabaqaai aadMhaaiaawIcaaaaa@3813@  versus x ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aadIhaaiaawMcaaiaacYcaaaa@38C4@  each one illustrating an artificial population. The first graph is the population generated from y i =10 x i 1/4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaaicdacaWG4bWaa0ba aSqaaiaadMgaaeaadaWcgaqaaiaaigdaaeaacaaI0aaaaaaakiabgU caRiabew7aLnaaBaaaleaacaWGPbaabeaakiaacYcaaaa@42FA@  where ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  The y-axis goes from 0 to 15 and the x-axis goes from 0.0 to 1.0. The scatter plot is showing an increasing concave relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  The second graph is the population generated from y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  and ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  with ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  and μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  The y-axis goes from 0 to 50 and the x-axis goes from 0.0 to 1.0. The scatter plot is showing an increasing concave relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  The variation increases when x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  increases.

Figure 5.4 of article 14541

Description of Figure 5.4

Figure made of two scatter plots ( y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqabaqaai aadMhaaiaawIcaaaaa@3813@  versus x ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aadIhaaiaawMcaaiaacYcaaaa@38C4@  each one illustrating a real population, MU284 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam yvaiaaikdacaaI4aGaaGinaaaa@3A37@  Population of Sweden Municipalities of Särndal et al (1992). On the first graph, y i =lnRMT 85 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyt aiaadsfacaaI4aGaaGynamaaBaaaleaacaWGPbaabeaaaaa@4078@  for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaacaqG0bGaaeiAaaaaaaa@394C@  municipality and x i =lnP 85 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGqbGaaGio aiaaiwdadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@3F86@  The y-axis goes from 3 to 9 and the x-axis goes from 1 to 6. The scatter plot is showing an increasing linear relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  On the second graph, y i =lnRMT 85 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyt aiaadsfacaaI4aGaaGynamaaBaaaleaacaWGPbaabeaaaaa@4078@  for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaacaqG0bGaaeiAaaaaaaa@394C@  municipality and x i =lnREV 84 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyr aiaadAfacaaI4aGaaGinamaaBaaaleaacaWGPbaabeaakiaac6caaa a@412C@  The y-axis goes from 3 to 9 and the x-axis goes from 6 to 11. The scatter plot is showing a more variable increasing linear relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  and y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@

From each population we selected independently B = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaqGXaGaaeilaiaabcdacaqGWaGaaeimaaaa@3A09@ samples. When sampling from the artificial populations we set the sample size equal to n = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGimaiaaicdaaaa@38E8@ in case of simple random without replacement sampling and, in case of Poisson sampling, we set the expected sample size equal to n * = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIXaGaaGimaiaaicdaaaa@39D3@ and made the sample inclusion probabilities proportional to the standard deviations of the shifted noncentral Student  t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@35F8@ distributions of above. When sampling from the real populations, we set the sample size equal to n = 30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIZaGaaGimaaaa@3830@ in case of simple random without replacement sampling. In case of Poisson sampling, we set the expected sample size equal to n * = 30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIZaGaaGimaaaa@391B@ and made the sample inclusion probabilities proportional to the absolute values of the residuals from the linear least squares regressions of the population y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaaaaa@3717@ values on the population x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@3716@ values.

As for the definition of the nonparametric estimators, we used the Epanechnikov kernel function K ( u ) := 0.75 ( 1 u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaabm aabaGaamyDaaGaayjkaiaawMcaaiaaiQdacaaI9aGaaGimaiaai6ca caaI3aGaaGynamaabmaabaGaaGymaiabgkHiTiaadwhadaahaaWcbe qaaiaaikdaaaaakiaawIcacaGLPaaaaaa@41ED@ with λ = 0.15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaicdacaaIUaGaaGymaiaaiwdaaaa@3A66@ or λ = 0.3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaicdacaaIUaGaaG4maaaa@39A9@ for the samples taken from the artificial populations, and the Gaussian kernel function K ( u ) := 1 / 2 π e ( 1 / 2 ) u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaabm aabaGaamyDaaGaayjkaiaawMcaaiaaiQdacaaI9aWaaSGbaeaacaaI XaaabaWaaOaaaeaacaaIYaGaeqiWdahaleqaaaaakiaadwgadaahaa WcbeqaaiabgkHiTmaabmaabaWaaSGbaeaacaaIXaaabaGaaGOmaaaa aiaawIcacaGLPaaacaWG1bWaaWbaaWqabeaacaaIYaaaaaaaaaa@444A@ with λ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaigdaaaa@3835@ or λ = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaikdaaaa@3836@ for the samples taken from the real populations. In the tables with the simulation results the nonparametric estimators corresponding to the small and large bandwidth values are identified with an s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@35F7@ (small) or an l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@35F0@ (large) in the subscript. We resorted to the Gaussian kernel function for the samples taken from the real populations to avoid singularity problems that occur in case of holes in the sampled set of x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@380D@ values. Such holes are much more likely to occur with the real populations than with the artificial ones, because the distributions of the auxiliary variables are asymmetric in the former. In fact, in the artificial populations the nonparametric estimators were well-defined for all the B = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaqGXaGaaeilaiaabcdacaqGWaGaaeimaaaa@3A09@ samples selected according to the simple random without replacement sampling design. For the Poisson sampling design, on the other hand, 47 among the B = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaqGXaGaaeilaiaabcdacaqGWaGaaeimaaaa@3A09@ simulated samples were such that the nonparametric estimators with the small bandwidth value could not be computed and just one of these samples was such that the nonparametric estimators with the large bandwidth value were undefined. The simulation results referring to the nonparametric estimators in Tables 5.2 and 5.5 account only for the samples where they were well-defined and thus they are based on a little less than B = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaqGXaGaaeilaiaabcdacaqGWaGaaeimaaaa@3A09@ realizations.

Tables 5.1 to 5.4 report the simulated bias (BIAS) and the simulated root mean square error (RMSE) for each distribution function estimator at different levels of t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@35F8@ at which F N ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaaa @3955@ has been estimated: based, for example, on the values F ˜ b ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadkgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaGaaiilaaaa@3A28@ b = 1,2, , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaadkeacaGG Saaaaa@3CDF@ taken on by the estimator F ˜ ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaaaa@390B@

BIAS  := 1 B b = 1 B ( F ˜ b ( t ) F N ( t ) ) × 10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM eacaqGbbGaae4uaiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGaamOq aaaadaaeWbqabSqaaiaadkgacaaI9aGaaGymaaqaaiaadkeaa0Gaey yeIuoakmaabmaabaGabmOrayaaiaWaaSbaaSqaaiaadkgaaeqaaOWa aeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaale aacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaiabgEna0kaabgdacaqGWaGaaeilaiaabcdacaqGWaGaae imaaaa@524E@

and

RMSE  : = 1 B b = 1 B ( F ˜ b ( t ) F N ( t ) ) 2 × 10,000 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaab2 eacaqGtbGaaeyraiaaiQdacaaI9aWaaOaaaeaadaWcaaqaaiaaigda aeaacaWGcbaaamaaqahabeWcbaGaamOyaiaai2dacaaIXaaabaGaam OqaaqdcqGHris5aOWaaeWaaeaaceWGgbGbaGaadaWgaaWcbaGaamOy aaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGgb WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHxd aTcaqGXaGaaeimaiaabYcacaqGWaGaaeimaiaabcdacaqGUaaaaa@541A@

The RMSE’s show that the estimators based on the modified fitted values are usually more efficient. In sampling from the real populations the gain in RMSE is sometimes quite large. As expected, the model-based estimators tend to be more efficient than the generalized difference estimators in case of simple random without replacement sampling when both types of estimator are approximately unbiased. Under the Poisson sampling scheme the BIAS of the model-based estimators increases, but nonetheless they remain competitive. More variability in the sample inclusion probabilities would certainly change this outcome, because it would increase the BIAS of the model-based estimators. The simulation results should therefore not be seen to be in contrast with Johnson, Breidt and Opsomer (2008) who argue in favor of generalized difference estimators (called model-assisted estimators in their paper) as “a good overall choice for distribution function estimators”.

Table 5.1
Artificial populations (population size N = 1,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ BIAS and RMSE of distribution function estimators under simple random without replacement sampling. Sample size n = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaqGXaGaaeimaiaabcdaaaa@38CC@
Table summary
This table displays the results of Artificial populations (population size XXXX BIAS and RMSE of distribution function estimators under simple random without replacement sampling. Sample size XXXX XXXX , XXXX, BIAS , RMSE and RMSE, calculated using XXXX with XXXX i.i.d. central Student XXXX with XXXX, XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX, XXXX with XXXX i.i.d. Student XXXX with XXXX, XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX, XXXX with XXXX i.i.d. Student XXXX with XXXX and XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. central Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 6 216 -3 433 31 512 23 434 12 207
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 15 219 10 430 0 502 -10 429 3 213
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 6 209 -30 411 22 484 22 414 3 200
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 15 214 -9 409 10 477 1 407 -10 207
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 6 213 8 425 24 504 -4 430 8 207
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 6 210 10 417 22 494 -8 422 6 206
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 8 213 9 426 25 503 -5 432 5 206
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 7 210 10 417 23 494 -6 424 4 206
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 7 208 11 411 19 489 -5 417 6 200
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 26 225 33 376 8 477 26 419 33 209
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 52 236 23 374 -5 475 38 421 29 213
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 20 195 -29 351 -89 471 11 407 30 202
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 36 201 -11 357 -94 473 28 410 21 204
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 8 211 11 370 -7 473 4 415 16 211
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 5 208 8 367 -5 468 5 411 16 212
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 11 210 11 372 -11 475 4 416 15 210
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 7 208 11 368 -7 468 8 412 15 211
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 1 211 1 391 -6 477 8 399 18 210
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 32 201 25 275 13 250 -14 264 -36 217
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 114 250 152 304 12 236 -180 312 -86 242
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -50 165 12 226 51 216 26 230 13 172
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -46 155 -14 199 69 195 23 211 17 156
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -5 186 4 275 15 248 11 269 -2 201
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -5 184 7 274 17 250 5 269 -2 196
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -10 180 5 275 16 245 14 266 -1 200
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -9 176 3 272 15 242 13 262 -1 194
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -7 203 14 413 37 472 17 405 1 206
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 24 204 23 351 27 403 26 382 29 208
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 94 242 135 372 51 392 13 380 15 212
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 55 182 -9 301 -18 368 -23 359 37 202
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 124 210 -31 278 -63 363 -8 356 48 200
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -2 194 -4 349 11 401 18 377 13 208
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 190 -5 345 12 398 17 374 11 209
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 0 191 -5 352 14 401 20 376 13 207
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -1 189 -6 344 13 397 18 375 12 209
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -4 205 -5 401 21 470 24 401 14 207
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 81 207 44 316 17 384 -2 376 23 203
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 138 258 183 356 35 367 -50 374 8 208
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 7 146 -14 274 16 352 -8 358 15 197
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 9 144 10 246 -2 323 -18 339 24 186
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 3 175 3 319 10 383 17 374 10 203
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 0 178 5 316 11 380 17 370 8 202
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 1 167 5 320 12 383 17 374 9 203
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -1 164 6 316 13 379 20 368 8 201
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 4 209 11 412 25 477 27 422 10 200
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 59 234 95 402 66 455 51 395 26 208
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 94 259 190 441 147 467 98 400 16 212
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 30 184 33 343 -123 435 -34 385 40 203
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 57 201 58 331 -148 437 2 382 34 203
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 1 205 7 386 12 449 17 392 13 208
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -1 204 0 385 9 445 20 389 11 209
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 3 201 8 389 7 449 13 392 14 207
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 0 198 6 383 9 446 19 390 13 208
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 0 205 -2 399 9 463 25 398 14 208
Table 5.2
Artificial populations (population size N = 1,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ BIAS and RMSE of distribution function estimators under Poisson sampling with sample inclusion probabilities π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaaaa@37CF@ proportional to the standard deviations of the noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaaaa@35F1@ distributions with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3836@ d.o.f. and with noncentrality parameters μ = 15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaakiaac6ca aaa@3BC2@ Expected sample size n * = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIXaGaaGimaiaaicdaaaa@39CC@
Table summary
This table displays the results of Artificial populations (population size XXXX BIAS and RMSE of distribution function estimators under Poisson sampling with sample inclusion probabilities XXXX proportional to the standard deviations of the noncentral Student XXXX distributions with XXXX d.o.f. and with noncentrality parameters XXXX Expected sample size XXXX XXXX, BIAS , RMSE and RMSE, calculated using XXXX with XXXX i.i.d. central Student XXXX with XXXX, XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX, XXXX with XXXX i.i.d. Student XXXX with XXXX, XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX, XXXX with XXXX i.i.d. Student XXXX with XXXX and XXXX with XXXX indep. noncentral Student XXXX with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. central Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ -10 252 -11 593 -22 738 -20 743 6 357
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ -1 237 9 543 -15 621 -5 590 11 302
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 22 244 -29 485 -3 555 9 515 -17 297
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 14 238 -10 492 -5 564 14 524 -1 283
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -6 247 0 579 -27 724 -40 736 3 349
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 231 11 526 -1 598 -10 566 7 285
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 23 248 23 505 -4 562 -27 531 -20 304
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 12 240 20 504 1 573 -13 538 -6 287
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -6 220 -7 543 -37 741 -44 929 -48 1,058
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 17 164 30 411 4 749 14 590 15 190
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 47 173 19 383 -1 602 57 498 15 187
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 21 175 -7 378 -89 554 -11 473 3 192
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 29 152 -3 367 -99 555 27 481 3 184
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 1 159 10 406 -11 737 -5 579 -2 194
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 1 158 9 388 -5 586 14 482 -1 192
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 14 186 27 409 -3 562 -17 487 -10 200
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 3 160 22 399 -11 566 -5 482 -2 193
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -3 162 -7 451 -31 738 -29 980 -55 1,067
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 8 461 21 561 -12 259 -18 218 -30 164
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 78 429 183 451 2 248 -161 261 -79 189
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -69 306 12 340 10 267 15 199 6 143
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -59 294 4 302 56 205 15 172 17 124
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -25 441 4 560 -10 257 9 219 5 153
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -14 372 35 410 -10 262 4 219 5 151
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -31 333 -2 386 -29 294 4 227 -1 161
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -20 339 15 372 -10 259 11 215 4 151
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -15 385 3 746 -37 917 -35 1,004 -48 1,070
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ -4 516 30 671 7 453 11 344 6 182
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 63 409 129 539 61 421 9 341 1 180
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 44 300 -29 433 -45 422 -47 345 12 180
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 107 314 -41 420 -60 397 -22 323 31 171
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -27 502 8 667 -8 450 0 344 -8 185
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -10 364 16 510 11 425 -2 345 -7 182
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -6 325 -9 479 -25 447 -14 356 -10 187
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -7 332 -9 489 -5 426 -3 344 -6 182
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -16 349 -2 705 -21 886 -42 1,013 -61 1,069
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 36 497 47 629 9 418 -11 320 15 191
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 56 393 186 490 43 383 -48 308 13 184
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -29 276 -19 383 -18 380 -43 335 -1 204
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -29 274 10 355 7 336 -29 290 23 179
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -30 475 12 630 4 421 7 317 6 191
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -42 336 31 452 11 390 8 312 8 186
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -31 306 5 429 -18 406 -14 344 -8 210
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -28 308 14 424 7 387 5 315 7 191
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -15 380 10 739 -23 891 -37 993 -47 1,064
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 24 308 69 687 53 690 38 406 2 188
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 47 301 131 553 139 561 91 393 -2 186
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 15 237 2 435 -135 513 -59 411 12 186
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 27 235 18 435 -149 506 -5 374 13 179
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -28 274 -8 673 4 688 3 403 -10 191
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -29 251 -12 512 17 541 7 395 -9 188
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -3 255 -12 481 -7 536 -20 422 -12 196
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -12 251 -16 489 2 538 -4 399 -9 189
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -10 267 -8 608 -4 860 -38 1,009 -63 1,066
Table 5.3
Real populations (population size N = 284 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ BIAS and RMSE of distribution function estimators under simple random without replacement sampling. Sample size n = 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaaIZaGaaGimaaaa@3829@
Table summary
This table displays the results of Real populations (population size XXXX BIAS and RMSE of distribution function estimators under simple random without replacement sampling. Sample size XXXX XXXX, BIAS , RMSE , RMSE and RBIAS , calculated using MU284 population with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAS RMSE BIAS RMSE RBIAS RMSE BIAS RMSE BIAS RMSE
MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 133 421 339 625 180 529 -265 490 -187 439
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 52 380 67 588 45 555 -63 469 -87 370
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 8 81 -154 203 90 130 62 123 6 54
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 28 66 -170 212 69 112 57 109 2 50
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -28 300 -24 497 8 483 -48 421 -38 319
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -28 326 -96 569 -52 544 3 466 1 319
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 26 177 -11 302 0 244 1 308 -18 102
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 29 179 -10 302 -2 243 -1 308 -21 104
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 22 388 -10 771 9 864 5 731 -43 394
  MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 143 449 303 643 138 554 -217 543 -166 446
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 62 395 62 611 36 582 -49 519 -71 376
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -11 204 -32 300 -101 328 42 285 31 155
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 36 183 -40 288 -149 345 6 261 34 122
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 5 340 -22 548 4 557 -30 498 -23 332
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 349 -78 599 -36 588 10 522 8 331
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 24 303 7 446 -6 494 2 439 -13 209
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 29 304 4 443 -6 495 -1 432 -18 192
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 34 395 1 766 16 880 9 744 -37 398
Table 5.4
Real populations (population size N = 284 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ BIAS and RMSE of distribution function estimators under Poisson sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression of the population y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3807@ values on the population x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3806@ values. Expected size n * = 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIZaGaaGimaaaa@3914@
Table summary
This table displays the results of Real populations (population size XXXX BIAS and RMSE of distribution function estimators under Poisson sampling with inclusion probabilities proportional to the absolute value of the residuals of the population XXXX values on the population XXXX values. Expected size XXXX. The information is grouped by (appearing as row headers), XXXX, BIAS , RMSE , RMSE and RBIAS , calculated using MU284 population with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAS RMSE BIAS RMSE RBIAS RMSE BIAS RMSE BIAS RMSE
MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 204 420 485 668 239 519 -412 626 -90 317
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 180 424 417 684 319 614 -239 548 -148 348
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -41 97 -118 199 132 178 40 140 -71 104
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 11 70 -147 211 63 128 -25 122 -85 106
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 24 360 30 649 0 675 -68 614 58 368
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 9 390 -63 737 -64 774 -7 682 75 414
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 16 184 -14 307 36 283 16 323 -11 103
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 25 187 -15 312 30 286 14 328 -11 112
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 40 445 73 1,983 12 2,498 -43 3,094 -49 3,341
  MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 349 660 1,185 1,373 890 1,059 458 654 -32 270
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 287 601 1,003 1,236 771 989 484 695 42 263
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 317 453 739 866 761 879 624 701 159 207
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 364 471 720 842 718 824 572 647 96 158
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 35 488 82 818 -31 772 7 634 -8 326
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 22 500 3 878 -98 852 40 704 27 354
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 37 317 32 498 -13 513 32 412 7 157
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 51 313 30 498 -30 518 12 411 -10 149
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 32 671 19 1,658 -172 2,354 -173 2,787 -191 2,935

Consider finally the simulation results referring to the variance estimators of Section 4. Tables 5.5 to 5.8 report the relative bias (RBIAS) and the relative root mean square error (RRMSE) for each of them. For example, based on the variance estimates V ˜ b ( F ˜ ( t ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaSbaaSqaaiaadkgaaeqaaOWaaeWaaeaaceWGgbGbaGaadaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@3C9B@ b = 1,2, , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaadkeacaGG Saaaaa@3CDF@ obtained from the estimator V ˜ ( F ˜ ( t ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWaaeaaceWGgbGbaGaadaqadaqaaiaadshaaiaawIcacaGLPaaa aiaawIcacaGLPaaacaGGSaaaaa@3B7E@

RBIAS  := 1 B b = 1 B V ˜ b ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) × 10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabk eacaqGjbGaaeyqaiaabofacaaI6aGaaGypamaalaaabaGaaGymaaqa aiaadkeaaaWaaabCaeqaleaacaWGIbGaaGypaiaaigdaaeaacaWGcb aaniabggHiLdGcdaWcaaqaaiqadAfagaacamaaBaaaleaacaWGIbaa beaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOaGaay zkaaaacaGLOaGaayzkaaGaeyOeI0IaamOvamaaBaaaleaacaWGcbaa beaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOaGaay zkaaaacaGLOaGaayzkaaaabaGaamOvamaaBaaaleaacaWGcbaabeaa kmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOaGaayzkaa aacaGLOaGaayzkaaaaaiabgEna0kaabgdacaqGWaGaaeilaiaabcda caqGWaGaaeimaaaa@5D41@

and

RRMSE  := 1 B b = 1 B ( V ˜ b ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) ) 2 V B ( F ˜ ( t ) ) × 10,000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabk facaqGnbGaae4uaiaabweacaaI6aGaaGypamaalaaabaWaaOaaaeaa daWcaaqaaiaaigdaaeaacaWGcbaaamaaqahabeWcbaGaamOyaiaai2 dacaaIXaaabaGaamOqaaqdcqGHris5aOWaaeWaaeaaceWGwbGbaGaa daWgaaWcbaGaamOyaaqabaGcdaqadaqaaiqadAeagaacamaabmaaba GaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTiaadAfa daWgaaWcbaGaamOqaaqabaGcdaqadaqaaiqadAeagaacamaabmaaba GaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaeqaaaGcbaGaamOvamaaBaaaleaaca WGcbaabeaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGL OaGaayzkaaaacaGLOaGaayzkaaaaaiabgEna0kaabgdacaqGWaGaae ilaiaabcdacaqGWaGaaeimaaaa@5FE5@

where

V B ( F ˜ ( t ) ) := 1 B b = 1 B ( F ˜ b ( t ) F N ( t ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGcbaabeaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG 0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGOoaiaai2dadaWcaa qaaiaaigdaaeaacaWGcbaaamaaqahabeWcbaGaamOyaiaai2dacaaI XaaabaGaamOqaaqdcqGHris5aOWaaeWaaeaaceWGgbGbaGaadaWgaa WcbaGaamOyaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGH sislcaWGgbWaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baaca GLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa aGOlaaaa@5145@

As a benchmark, we report also the RBIAS and RRMSE of the estimator

V ˜ ( F ˜ π ( t ) ) := 1 N 2 i , j s π i , j π i π j π i , j π i π j I ( y i t ) I ( y j t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWaaeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiQdacaaI9a WaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGc daaeqbqabSqaaiaadMgacaaISaGaamOAaiabgIGiolaadohaaeqani abggHiLdGcdaWcaaqaaiabec8aWnaaBaaaleaacaWGPbGaaGilaiaa dQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqaaiaadMgaaeqaaOGaeq iWda3aaSbaaSqaaiaadQgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaGccqaHapaCdaWgaaWcbaGaamyAaaqaba GccqaHapaCdaWgaaWcbaGaamOAaaqabaaaaOGaamysamaabmaabaGa amyEamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshaaiaawIcaca GLPaaacaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGa eyizImQaamiDaaGaayjkaiaawMcaaiaai6caaaa@6CAF@

for the variance of the Horvitz-Thompson estimator.

Table 5.5
Artificial populations (population size N = 1,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ RBIAS and RRMSE of variance estimators under simple random without replacement sampling. Sample size n = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaaIXaGaaGimaiaaicdaaaa@38E1@
Table summary
This table displays the results of Artificial populations (population size XXXX RBIAS and RRMSE of variance estimators under simple random without replacement sampling. Sample size XXXX. The information is grouped by (appearing as row headers), XXXX, RBIAS , RRMSE and RRMSE, calculated using XXXX with XXXX i.i.d. central Student XXXX with XXXX and XXXX with XXXX i.i.d. Student XXXX with XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. central Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1,092 32,442 -1,249 3,895 -1,714 3,077 -1,536 3,828 -824 34,601
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -576 31,726 -603 3,838 -1,122 3,374 -951 3,758 -441 33,055
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,091 32,579 -1,292 3,914 -1,708 3,085 -1,640 3,828 -802 34,809
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -556 31,881 -622 3,857 -1,148 3,361 -1,025 3,749 -425 33,184
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 42 30,952 57 3,928 -592 3,776 -287 3,825 551 33,462
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1,900 29,622 50 4,707 -917 3,557 -998 3,695 -1,480 29,417
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,359 29,623 535 4,572 -395 3,881 -527 3,736 -1,277 28,267
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,832 30,119 -101 4,710 -991 3,530 -1,077 3,704 -1,398 29,927
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1,362 29,713 465 4,559 -420 3,865 -591 3,718 -1,236 28,489
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -351 29,132 1,096 4,215 -78 4,074 574 4,067 -638 29,507
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2,170 11,624 -1,027 2,480 -816 3,274 -1,424 2,583 -1,946 8,681
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,534 11,605 -529 2,632 -148 2,975 -859 2,590 -1,151 9,015
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,765 12,107 -1,108 2,529 -714 3,366 -1,318 2,660 -1,905 8,658
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1,062 11,948 -671 2,735 -212 3,291 -762 2,785 -1,048 8,590
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 254 31,545 -52 3,726 136 4,152 267 3,992 35 30,264
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1,642 25,809 -855 3,541 -1,076 3,038 -1,081 3,030 -1,361 21,157
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -950 25,692 -323 3,509 -597 3,312 -617 3,164 -1,124 20,231
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,385 26,406 -997 3,505 -1,089 3,045 -1,096 3,033 -1,310 21,393
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -832 26,212 -292 3,556 -614 3,317 -716 3,154 -1,135 20,286
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 105 29,621 507 3,857 209 4,244 425 3,910 -337 29,082
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2,465 30,612 -1,121 4,594 -1,512 3,183 -1,958 3,076 -863 19,720
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,780 28,103 -663 4,420 -1,092 3,319 -1,491 3,140 -439 18,985
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -2,052 33,980 -1,150 4,619 -1,537 3,217 -1,948 3,127 -954 19,637
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1,194 33,573 -691 4,472 -1,124 3,368 -1,438 3,228 -357 19,245
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -81 30,001 9 3,756 -110 3,996 -598 3,661 440 32,455
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1,873 29,437 -758 3,759 -621 3,476 -709 3,599 -1,298 27,679
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,267 28,511 -284 3,661 -131 3,758 -321 3,552 -1,075 26,790
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,710 30,670 -928 3,741 -628 3,510 -777 3,603 -1,245 27,972
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -939 30,486 -270 3,764 -171 3,803 -375 3,581 -1,014 26,926
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 178 29,640 599 3,816 533 4,324 590 3,874 -404 28,917
Table 5.6
Artificial populations (population size N = 1,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ RBIAS and RRMSE of variance estimators under Poisson sampling with sample inclusion probabilities π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaaaa@37CF@ proportional to standard deviation of noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaaaa@35F1@ distribution with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3836@ d.f. and with noncentrality parameter μ = 15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaakiaac6ca aaa@3BC2@ Expected sample size n * = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIXaGaaGimaiaaicdaaaa@39CC@
Table summary
This table displays the results of Artificial populations (population size XXXX RBIAS and RRMSE of variance estimators under Poisson sampling with sample inclusion probabilities XXXX proportional to standard deviation of noncentral Student XXXX distribution with XXXX d.f. and with noncentrality parameter XXXX Expected sample size XXXX XXXX, RBIAS , RRMSE and RRMSE, calculated using XXXX with XXXX i.i.d. central Student XXXX with XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. central Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -3,306 65,777 -4,248 8,032 -5,093 4,242 -6,258 4,844 -5,652 32,037
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -2,048 47,035 -2,656 4,705 -2,434 3,116 -3,310 3,939 -3,092 29,380
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3,362 36,855 -2,488 4,409 -1,910 3,147 -2,869 3,910 -4,329 23,247
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -2,696 39,509 -2,076 4,450 -1,768 3,163 -2,648 3,811 -3,244 26,343
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 113 129,637 259 15,120 618 6,327 193 5,429 273 6,097
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -740 125,975 -2,522 14,864 -5,466 3,658 -4,896 6,691 -1,551 83,262
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -391 83,047 -1,503 8,946 -2,428 4,099 -2,228 5,526 -1,154 54,680
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3,260 58,072 -2,649 7,661 -2,260 3,936 -2,795 5,011 -2,116 48,739
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -716 77,935 -2,000 7,979 -1,934 4,235 -2,279 5,243 -1,243 52,531
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 666 251,134 -564 26,553 -87 7,344 -2 6,029 407 6,610
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -6,801 7,898 -6,470 4,281 -1,059 22,596 -398 32,401 -1,650 72,632
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4,978 5,826 -2,898 4,473 -603 9,530 206 15,226 -1,157 40,466
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4,520 6,691 -2,710 4,213 -3,245 6,723 -1,156 12,681 -2,458 32,907
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -4,226 6,206 -1,674 5,062 -978 7,874 55 12,781 -1,283 33,737
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -707 47,550 118 7,214 609 4,409 743 4,628 435 4,800
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -7,398 8,847 -6,235 3,667 -2,493 8,171 -1,051 16,299 -1,440 71,943
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4,548 9,463 -3,136 3,282 -1,187 4,246 -832 7,638 -982 45,182
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3,902 11,727 -2,808 3,409 -2,411 3,501 -1,721 6,737 -1,671 41,389
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -3,598 10,771 -2,610 3,462 -1,284 3,988 -852 7,008 -972 43,017
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 146 57,044 -42 8,708 520 4,784 214 4,686 390 5,085
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -7,731 8,568 -6,597 3,484 -2,442 7,775 -903 16,067 -1,967 56,480
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4,611 9,378 -2,990 3,252 -874 4,119 -347 7,420 -1,310 35,051
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4,747 11,909 -2,679 3,298 -1,896 3,272 -2,248 5,747 -3,382 27,222
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -4,223 10,380 -2,100 3,494 -788 3,731 -550 5,975 -1,795 29,856
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -428 47,038 -206 7,350 641 4,504 738 4,708 487 4,943
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ with ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indep. noncentral Student t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ with ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ and μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -4,936 40,696 -6,111 4,579 -5,549 4,035 -1,864 14,381 -1,509 84,892
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -3,004 29,404 -2,764 3,962 -2,436 3,606 -1,234 7,357 -1,103 53,875
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4,328 27,704 -2,516 4,235 -2,671 3,332 -2,586 5,955 -1,939 47,601
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -3,454 28,267 -2,263 4,160 -2,329 3,574 -1,433 6,682 -1,171 50,985
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 152 98,607 663 12,879 15 5,376 20 5,080 429 5,619
Table 5.7
Real populations (population size N = 284 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ RBIAS and RRMSE of variance estimators under simple random without replacement sampling. Sample size n = 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaaIZaGaaGimaaaa@3829@
Table summary
This table displays the results of Real populations (population size XXXX RBIAS and RRMSE of variance estimators under simple random without replacement sampling. Sample size XXXX XXXX, RBIAS , RRMSE and RRMSE, calculated using MU284 population with XXXX and XXXX and MU284 population with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2,853 16,809 -1,700 3,037 -1,554 2,984 -1,100 4,633 -5,503 16,257
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,110 16,374 -1,827 2,760 -1,683 2,847 -927 4,387 -3,016 18,685
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,043 19,081 -91 7,728 -448 9,120 -484 7,715 -1,877 65,298
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -424 18,971 104 7,819 -382 9,110 -301 7,799 -1,058 62,968
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -186 29,720 -603 3,901 31 3,971 500 4,383 -74 28,418
  MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2,283 16,303 -1,450 3,538 -945 3,526 -1,071 4,300 -4,832 19,401
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1,095 16,755 -1,427 3,181 -938 3,390 -780 4,051 -2,753 20,551
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1,737 14,642 -298 5,648 -546 5,282 -736 5,679 -3,564 38,344
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1,174 14,111 -27 5,856 -422 5,452 -228 5,974 -1,433 43,923
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -307 28,421 -460 3,963 -344 3,850 112 4,235 -401 27,987
Table 5.8
Real populations (population size N = 284 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ RBIAS and RRMSE of variance estimators under Poisson sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression of the population y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3807@ values on the population x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3806@ values. Expected size n * = 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIZaGaaGimaaaa@3914@
Table summary
This table displays the results of Real populations (population size XXXX RBIAS and RRMSE of variance estimators under Poisson sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression of the population XXXX values on the population XXXX values. Expected size XXXX XXXX, RBIAS , RRMSE and RRMSE, calculated using MU284 population with XXXX and XXXX and MU284 population with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0.05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0.50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0.75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -3,502 26,342 -1,841 14,037 -2,691 12,087 -3,415 9,674 -5,932 26,823
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -2,159 27,610 -1,782 14,010 -2,840 12,002 -3,186 10,177 -4,455 26,802
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -434 22,455 515 15,503 -506 31,296 -1,460 23,496 -2,649 78,527
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -80 22,921 677 15,575 -280 33,294 -1,283 26,612 -1,597 72,166
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -294 361,991 522 75,891 43 48,764 -241 36,354 90 32,354
  MU284 population with Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ and X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -5,220 18,699 -3,667 8,749 -3,222 7,537 -3,018 9,279 -4,955 44,597
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4,254 20,765 -3,100 9,180 -3,435 7,231 -3,196 8,540 -3,461 43,206
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -2,938 18,922 -1,110 11,828 -1,265 8,726 -1,040 10,963 -3,682 89,262
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1,938 19,997 -699 12,641 -1,003 9,305 -599 11,545 -1,558 98,798
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -143 128,401 493 33,934 -255 18,473 -91 17,904 327 16,463

As can be seen from the simulation results, the variance estimators suffer from large variability. This problem is shared by the variance estimator for the Horvitz-Thompson estimator, which occasionally exhibits extremely large RRMSE’s. It is further interesting to note that while the RBIAS of the variance estimators for the generalized difference estimators is almost always negative and at times rather large in absolute value, the RBIAS of the variance estimator for the Horvitz-Thompson estimator is in most of the considered cases positive.

Acknowledgements

This research was partially supported by the FAR 2014-ATE-0200 grant from University of Milano-Bicocca.

Appendix

Let β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@36A0@ denote a sequence of real numbers. Throughout this appendix we shall indicate by O i 1 , i 2 , , i k ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaeSOjGSKaaGilaiaadMgadaWgaa adbaGaam4AaaqabaaaleqaaOWaaeWaaeaacqaHYoGyaiaawIcacaGL Paaaaaa@4250@ rest terms that may depend on x i 1 , x i 2 , , x i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaaiYcacaWG 4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaG ilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGa am4Aaaqabaaaleqaaaaa@41AB@ and that are of the same order as the sequence β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@36A0@ uniformly for i 1 , i 2 , , i k U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGPbWaaSbaaSqaaiaaikdaaeqa aOGaaGilaiablAciljaaiYcacaWGPbWaaSbaaSqaaiaadUgaaeqaaO GaeyicI4Saamyvaiaac6caaaa@4126@ Formally, R ( x i 1 , x i 2 , , x i k ) = O i 1 , i 2 , , i k ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiaaiYcacaWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaa qabaaaleqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaa dMgadaWgaaadbaGaam4AaaqabaaaleqaaaGccaGLOaGaayzkaaGaaG ypaiaad+eadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiablAciljaaiY cacaWGPbWaaSbaaWqaaiaadUgaaeqaaaWcbeaakmaabmaabaGaeqOS digacaGLOaGaayzkaaaaaa@522D@ if

sup i 1 , i 2 , , i k U | R ( x i 1 , x i 2 , , x i k ) | = O ( β ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgadaWgaaad baGaaGOmaaqabaWccaaISaGaeSOjGSKaaGilaiaadMgadaWgaaadba Gaam4AaaqabaWccqGHiiIZcaaMc8UaamyvaaqabOqaaiGacohacaGG 1bGaaiiCaaaadaabdaqaaiaaykW7caWGsbWaaeWaaeaacaWG4bWaaS baaSqaaiaadMgadaWgaaqaaiaaigdaaeqaaaqabaGccaaISaGaamiE amaaBaaaleaacaWGPbWaaSbaaeaacaaIYaaabeaaaeqaaOGaaGilai ablAciljaaiYcacaWG4bWaaSbaaSqaaiaadMgadaWgaaqaaiaadUga aeqaaaqabaaakiaawIcacaGLPaaacaaMc8oacaGLhWUaayjcSdGaaG ypaiaad+eadaqadaqaaiabek7aIbGaayjkaiaawMcaaiaai6caaaa@5FF4@

Moreover, to simplify the notation, we shall write m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGPbaabeaaaaa@370B@ in place of m ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa @399B@ and σ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadMgaaeaacaaIYaaaaaaa@3899@ in place of σ 2 ( x i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaaIYaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3C11@

Bias of the model-based Kuo estimator

E ( F ^ ( t ) F N ( t ) ) = E ( 1 N i s j s w i , j [ I ( ε j t m j ) I ( ε i t m i ) ] ) = 1 N i s j s w i , j [ G ( t m j | x j ) G ( t m i | x i ) ] = 1 2 N i s [ G ( 2,0 ) ( t m i | x i ) ( m i ) 2 G ( 1,0 ) ( t m i | x i ) m i ′′ 2 G ( 1,1 ) ( t m i | x i ) m i + G ( 0 , 2 ) ( t m i | x i ) ] j s w i , j ( x j x i ) 2 + o ( λ 2 ) = λ 2 N n N μ 2 2 μ 0 a b [ G ( 2,0 ) ( t m ( x ) | x ) ( m ( x ) ) 2 G ( 1,0 ) ( t m ( x ) | x ) m ′′ ( x ) 2 G ( 1,1 ) ( t m ( x ) | x ) m ( x ) + G ( 0 , 2 ) ( t m ( x ) | x ) ] h s ¯ ( x ) d x + o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaa aabaGaamyramaabmaabaGabmOrayaajaWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaai2da caWGfbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabe WcbaGaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaa dEhadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaeaacaWGQbGaey icI4Saam4Caaqab0GaeyyeIuoakmaadmaabaGaamysamaabmaabaGa eqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTi aad2gadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsisl caWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaaqabaGccqGHKj YOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaaGaay5waiaaw2faaaGaayjkaiaawMcaaaqaaaqaaiaai2 dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcbaGaamyAaiab gMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcba GaamyAaiaaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqa b0GaeyyeIuoakmaadmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadE eadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGa amyAaaqabaaakiaawIa7aiaadIhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacaaI9aWaaSaaaeaa caaIXaaabaGaaGOmaiaad6eaaaWaaabuaeqaleaacaWGPbGaeyycI8 Saam4Caaqab0GaeyyeIuoakmaadeaabaGaam4ramaaCaaaleqabaWa aeWaaeaacaaIYaGaaGilaiaaicdaaiaawIcacaGLPaaaaaGcdaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqa baaakiaawIa7aiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaadaqadaqaaiqad2gagaqbamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadEeada ahaaWcbeqaamaabmaabaGaaGymaiaaiYcacaaIWaaacaGLOaGaayzk aaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaS qaaiaadMgaaeqaaaGccaGLiWoacaWG4bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaGabmyBayaagaWaaSbaaSqaaiaadMgaaeqaaa GccaGLBbaaaeaaaeaacaaMe8UaaGjbVpaadiaabaGaeyOeI0IaaGOm aiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaaiYcacaaIXaaaca GLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWG TbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaWG4bWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaGabmyBayaafaWaaSbaaSqaaiaa dMgaaeqaaOGaey4kaSIaam4ramaaCaaaleqabaWaaeWaaeaacaaIWa GaaiilaiaaikdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGa amiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7ai aadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaiaaw2fa amaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiab gUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaaqaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaaiaa ikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaada WcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdacqaH 8oqBdaWgaaWcbaGaaGimaaqabaaaaOWaa8qmaeqaleaacaWGHbaaba GaamOyaaqdcqGHRiI8aOWaamqaaeaacaWGhbWaaWbaaSqabeaadaqa daqaaiaaikdacaaISaGaaGimaaGaayjkaiaawMcaaaaakmaabmaaba WaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjk aiaawMcaaiaaykW7aiaawIa7aiaadIhaaiaawIcacaGLPaaadaqada qaaiqad2gagaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadEeadaahaa WcbeqaamaabmaabaGaaGymaiaaiYcacaaIWaaacaGLOaGaayzkaaaa aOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaaca WG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiEaaGaayjkaiaa wMcaaiqad2gagaqbgaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaa Gaay5waaaabaaabaGaaGjbVlaaysW7daWacaqaaiabgkHiTiaaikda caWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaaISaGaaGymaaGaay jkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyB amaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaadI haaiaawIcacaGLPaaaceWGTbGbauaadaqadaqaaiaadIhaaiaawIca caGLPaaacqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqaaiaaicdaca GGSaGaaGOmaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaadIhaaiaawIcacaGLPaaaaiaaw2faaiaadIgadaWg aaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawI cacaGLPaaacaWGKbGaamiEaiabgUcaRiaad+gadaqadaqaaiabeU7a SnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai6caaaaaaa@71E0@

Bias of the generalized difference Kuo estimator

Write

F ˜ ( t ) F N ( t ) = 1 N { i s j s w ˜ i , j [ I ( ε j t m j ) I ( ε i t m i ) ] + i s ( 1 1 π i ) j s w ˜ i , j [ I ( ε j t m j ) I ( ε i t m i ) ] } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVeFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOe I0IaamOramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaay jkaiaawMcaaaqaaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaa ceaabaWaaabuaeqaleaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIu oakmaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadMgacaaISaGaamOA aaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaWada qaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiab gsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaGaeyOeI0IaamysamaabmaabaGaeqyTdu2aaSbaaSqa aiaadMgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUha aaqaaaqaaiaaysW7caaMe8+aaiGaaeaacaaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7cqGHRaWkdaaeqbqabSqaaiaadMgacqGHiiIZ caWGZbaabeqdcqGHris5aOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaae aacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjk aiaawMcaaiaaysW7daaeqbqaaiqadEhagaacamaaBaaaleaacaWGPb GaaGilaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGH ris5aOWaamWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaam OAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWG QbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadMeadaqadaqaaiabew 7aLnaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshacqGHsislcaWG TbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaaacaGL9baacaaIUaaaaaaa@AADE@

Similar steps as those seen for F ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@385C@ show that

E ( F ˜ ( t ) F N ( t ) ) = λ 2 N n N μ 2 2 μ 0 a b [ G ( 2,0 ) ( t m ( x ) | x ) ( m ( x ) ) 2 G ( 1,0 ) ( t m ( x ) | x ) m ′′ ( x ) 2 G ( 1,1 ) ( t m ( x ) | x ) m ( x ) + G ( 0 , 2 ) ( t m ( x ) | x ) ] h ( x ) d x + o ( λ 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaamyramaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaai2da cqaH7oaBdaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaad6eacqGHsi slcaWGUbaabaGaamOtaaaadaWcaaqaaiabeY7aTnaaBaaaleaacaaI YaaabeaaaOqaaiaaikdacqaH8oqBdaWgaaWcbaGaaGimaaqabaaaaO Waa8qmaeaadaWabaqaaiaadEeadaahaaWcbeqaamaabmaabaGaaGOm aiaaiYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaai aadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGPaVdGaayjcSdGaamiEaaGaayjkaiaawMcaamaabmaabaGabmyBay aafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaam4ramaaCaaaleqabaWaae WaaeaacaaIXaGaaGilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawI cacaGLPaaacaaMc8oacaGLiWoacaWG4baacaGLOaGaayzkaaGabmyB ayaafyaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbaaaS qaaiaadggaaeaacaWGIbaaniabgUIiYdaakeaaaeaadaWacaqaaiaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaeyOeI0IaaGOmaiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaaiYcacaaIXaaacaGLOaGaayzkaaaaaOWa aeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiEaaGaayjkaiaawMca aiqad2gagaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgUcaRi aadEeadaahaaWcbeqaamaabmaabaGaaGimaiaacYcacaaIYaaacaGL OaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiE aaGaayjkaiaawMcaaaGaayzxaaGaamiAamaabmaabaGaamiEaaGaay jkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam4BamaabmaabaGaeq4U dW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaiilaaaaaa a@D090@

where

h ( x ) := h s ¯ ( x ) + ( 1 π 1 ( x ) ) h s ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaiQdacaaI9aGaamiAamaaBaaa leaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaamiEaaGaayjkai aawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabec8aWnaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaadIgadaWgaaWcbaGaam4CaaqabaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaacaaIUaaaaa@4FCE@

Variance of the model-based Kuo estimator

var ( F ^ ( t ) F N ( t ) ) = var ( 1 N i s j s w i , j I ( ε j t m j ) 1 N i s I ( y i t ) ) = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m j | x j ) G 2 ( t m j | x j ) ] + 1 N 2 i s [ G ( t m i | x i ) G 2 ( t m i | x i ) ] = A 1 + A 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaaeODaiaabggacaqGYbWaaeWaaeaaceWGgbGbaKaadaqadaqa aiaadshaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6 eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzk aaaabaGaaGypaiaabAhacaqGHbGaaeOCamaabmaabaWaaSaaaeaaca aIXaaabaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHjiYZcaWGZbaa beqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaISa GaamOAaaqabaGccaWGjbaaleaacaWGQbGaeyicI4Saam4Caaqab0Ga eyyeIuoakmaabmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaey izImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaa wIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaWGobaaamaaqa fabaGaamysamaabmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiab gsMiJkaadshaaiaawIcacaGLPaaaaSqaaiaadMgacqGHjiYZcaWGZb aabeqdcqGHris5aaGccaGLOaGaayzkaaaabaaabaGaaGypamaalaaa baGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaabuae aadaaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadQgaaeqaaOGaam4DamaaBaaaleaaca WGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqaaaqaaiaa dQgacqGHiiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaame aacaaIYaaabeaaliabgMGiplaadohaaeqaniabggHiLdaaleaacaWG PbWaaSbaaWqaaiaaigdaaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIu oakmaadmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGaaGPaVlaadIhada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWa aWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsi slcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiWoacaaMc8UaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaqaaaqaaiaaysW7caaMe8Uaey4kaSYaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqabSqaaiaadMgacq GHjiYZcaWGZbaabeqdcqGHris5aOWaamWaaeaacaWGhbWaaeWaaeaa daabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaa GccaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaiabgkHiTiaadEeadaahaaWcbeqaaiaaikdaaaGcdaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqa baaakiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaaacaGLBbGaayzxaaaabaaabaGaaGypaiaadgeadaWg aaWcbaGaaGymaaqabaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaikdaae qaaOGaaGilaaaaaaa@D979@

where

A 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m j | x j ) G 2 ( t m j | x j ) ] = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] ( i s w i , j ) 2 = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaamyqamaaBaaaleaacaaIXaaabeaaaOqaaiaaiQdacaaI9aWa aSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcda aeqbqaamaaqafabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgadaWg aaadbaGaaGymaaqabaWccaaISaGaamOAaaqabaGccaWG3bWaaSbaaS qaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaaa baGaamOAaiabgIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaS baaWqaaiaaikdaaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoaaSqa aiaadMgadaWgaaadbaGaaGymaaqabaWccqGHjiYZcaWGZbaabeqdcq GHris5aOWaamWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGH sislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiWoacaaMc8Uaam iEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaa dEeadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaawIa7aiaaykW7 caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBb GaayzxaaaabaaabaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaah aaWcbeqaaiaaikdaaaaaaOWaaabuaeqaleaacaWGQbGaeyicI4Saam 4Caaqab0GaeyyeIuoakmaadmaabaGaam4ramaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSd GaaGPaVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaa cqGHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGL iWoacaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaaGaay5waiaaw2faamaabmaabaWaaabuaeqaleaacaWGPbGaeyyc I8Saam4Caaqab0GaeyyeIuoakiaadEhadaWgaaWcbaGaamyAaiaaiY cacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa aOqaaaqaaiaai2dadaWcaaqaaiaaigdaaeaacaWGUbaaamaabmaaba WaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaaiaad6eaaaaacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOWaa8qmaeqaleaacaWGHbaaba GaamOyaaqdcqGHRiI8aOWaamWaaeaacaWGhbWaaeWaaeaadaabcaqa aiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaa GaaGPaVdGaayjcSdGaaGPaVlaadIhaaiaawIcacaGLPaaacqGHsisl caWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqaaiaads hacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPa VdGaayjcSdGaaGPaVlaadIhaaiaawIcacaGLPaaaaiaawUfacaGLDb aadaWadaqaamaalyaabaGaamiAamaaBaaaleaacaaMc8Uabm4Cayaa raaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaaqaaiaadIgada WgaaWcbaGaam4CaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaGaamiAamaaBaaaleaacaaMc8Uabm4Cayaara aabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baa baaabaGaaGjbVlaaysW7cqGHRaWkcaWGpbWaaeWaaeaadaqadaqaai aad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaa igdaaaGccqaHXoqyaiaawIcacaGLPaaaaaaaaa@F03D@

and

A 2 := 1 N 2 i s [ G ( t m i | x i ) G 2 ( t m i | x i ) ] = 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + O ( n 1 α ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadgeadaWgaaWcbaGaaGOmaaqabaaakeaacaaI6aGaaGypamaa laaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaa buaeqaleaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakmaadmaa baGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBa aaleaacaWGPbaabeaaaOGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWaaWbaaSqabe aacaaIYaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWa aSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMc8UaamiEamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqaaaqa aiaai2dadaWcaaqaaiaaigdaaeaacaWGobGaeyOeI0IaamOBaaaada qadaqaamaalaaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcbaGaam yyaaqaaiaadkgaa0Gaey4kIipakmaadmaabaGaam4ramaabmaabaWa aqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkai aawMcaaiaaykW7aiaawIa7aiaaykW7caWG4baacaGLOaGaayzkaaGa eyOeI0Iaam4ramaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMca aiaaykW7aiaawIa7aiaaykW7caWG4baacaGLOaGaayzkaaaacaGLBb GaayzxaaGaamiAamaaBaaaleaacaaMc8Uabm4Cayaaraaabeaakmaa bmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam 4tamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiab eg7aHbGaayjkaiaawMcaaiaai6caaaaaaa@9941@

Thus,

var ( F ^ ( t ) F N ( t ) ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaabmaabaGabmOrayaajaWaaeWaaeaa caWG0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGob aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMca aaqaaiabg2da9maalaaabaGaaGymaaqaaiaad6gaaaWaaeWaaeaada Wcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaaeaaca WGIbaaniabgUIiYdGcdaWadaqaaiaadEeadaqadaqaamaaeiaabaGa amiDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaaca aMc8oacaGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaiabgkHiTiaa dEeadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8oa caGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faam aadmaabaWaaSGbaeaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGbaeba aeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaamiAamaaBa aaleaacaWGZbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaaaa aiaawUfacaGLDbaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGbaebaae qaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaeaa aeaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGobGaeyOeI0IaamOBaa aadaqadaqaamaalaaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaa aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcba Gaamyyaaqaaiaadkgaa0Gaey4kIipakmaadmaabaGaam4ramaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaay jkaiaawMcaaiaaykW7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzk aaGaeyOeI0Iaam4ramaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaq GaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaa wMcaaiaaykW7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaaaca GLBbGaayzxaaGaamiAamaaBaaaleaacaaMc8Uabm4Cayaaraaabeaa kmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4bGaey4kaS Iaam4tamaabmaabaWaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzk aaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeqySdegacaGLOaGaay zkaaGaaGOlaaaaaaa@C354@

Variance of the generalized difference Kuo estimator

Note that

F ˜ ( t ) F N ( t ) = 1 N { j s I ( y j t ) [ i s w ˜ i , j i s w ˜ i , j ( π i 1 1 ) + ( π j 1 1 ) ] i s I ( y i t ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaa leaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaai2 dadaWcaaqaaiaaigdaaeaacaWGobaaamaacmaabaWaaabuaeaacaWG jbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaeyizImQaam iDaaGaayjkaiaawMcaaaWcbaGaamOAaiabgIGiolaadohaaeqaniab ggHiLdGcdaWadaqaamaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadM gacaaISaGaamOAaaqabaaabaGaamyAaiabgMGiplaadohaaeqaniab ggHiLdGccqGHsisldaaeqbqaaiqadEhagaacamaaBaaaleaacaWGPb GaaGilaiaadQgaaeqaaaqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGH ris5aOWaaeWaaeaacqaHapaCdaqhaaWcbaGaamyAaaqaaiabgkHiTi aaigdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaGaey4kaSYaaeWa aeaacqaHapaCdaqhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGccq GHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyOeI0Ya aabuaeaacaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaO GaeyizImQaamiDaaGaayjkaiaawMcaaaWcbaGaamyAaiabgMGiplaa dohaaeqaniabggHiLdaakiaawUhacaGL9baaaaa@8286@

so that

var ( F ˜ ( t ) F N ( t ) ) = var ( 1 N j s I ( y j t ) [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] ) + var ( 1 N i s I ( y i t ) ) = B 1 + A 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaabAhacaqGHbGaaeOCamaabmaabaGabmOrayaaiaWaaeWaaeaa caWG0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGob aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMca aaqaaiaai2dacaqG2bGaaeyyaiaabkhadaqadaqaamaalaaabaGaaG ymaaqaaiaad6eaaaWaaabuaeaacaWGjbWaaeWaaeaacaWG5bWaaSba aSqaaiaadQgaaeqaaOGaeyizImQaamiDaaGaayjkaiaawMcaaaWcba GaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaWadaqaamaaqafa baGabm4DayaaiaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGccqGHRaWkdaqadaqa aiabec8aWnaaDaaaleaacaWGQbaabaGaeyOeI0IaaGymaaaakiabgk HiTiaaigdaaiaawIcacaGLPaaacqGHsisldaaeqbqaaiqadEhagaac amaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaqaaiaadMgacqGHii IZcaWGZbaabeqdcqGHris5aOWaaeWaaeaacqaHapaCdaqhaaWcbaGa amyAaaqaaiabgkHiTiaaigdaaaGccqGHsislcaaIXaaacaGLOaGaay zkaaaacaGLBbGaayzxaaaacaGLOaGaayzkaaaabaaabaGaaGjbVlaa ysW7cqGHRaWkcaqG2bGaaeyyaiaabkhadaqadaqaamaalaaabaGaaG ymaaqaaiaad6eaaaWaaabuaeaacaWGjbWaaeWaaeaacaWG5bWaaSba aSqaaiaadMgaaeqaaOGaeyizImQaamiDaaGaayjkaiaawMcaaaWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdaakiaawIcacaGLPaaa aeaaaeaacaaI9aGaamOqamaaBaaaleaacaaIXaaabeaakiabgUcaRi aadgeadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaaaa@97F4@

where A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaaaaa@36AD@ is the same as in the variance of F ^ ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaaaa@390C@ and where

B 1 := var ( 1 N j s I ( y j t ) [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] ) = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] 2 = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] [ i s w ˜ i , j + ( π j 1 1 ) ( 1 i s w ˜ i , j ) ] 2 + O ( λ n 1 ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α + λ n 1 ) = A 1 + O ( ( n λ ) 1 α + λ n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaa aabaGaamOqamaaBaaaleaacaaIXaaabeaaaOqaaiaaiQdacaaI9aGa aeODaiaabggacaqGYbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGob aaamaaqafabaGaamysamaabmaabaGaamyEamaaBaaaleaacaWGQbaa beaakiabgsMiJkaadshaaiaawIcacaGLPaaaaSqaaiaadQgacqGHii IZcaWGZbaabeqdcqGHris5aOWaamWaaeaadaaeqbqaaiqadEhagaac amaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaqaaiaadMgacqGHji YZcaWGZbaabeqdcqGHris5aOGaey4kaSYaaeWaaeaacqaHapaCdaqh aaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaGaeyOeI0YaaabuaeaaceWG3bGbaGaadaWgaaWcbaGa amyAaiaaiYcacaWGQbaabeaaaeaacaWGPbGaeyicI4Saam4Caaqab0 GaeyyeIuoakmaabmaabaGaeqiWda3aa0baaSqaaiaadMgaaeaacqGH sislcaaIXaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaay5wai aaw2faaaGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigda aeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabeWcbaGaam OAaiabgIGiolaadohaaeqaniabggHiLdGcdaWadaqaaiaadEeadaqa daqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamOAaa qabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGc caGLOaGaayzkaaGaeyOeI0Iaam4ramaaCaaaleqabaGaaGOmaaaakm aabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWG QbaabeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqaba aakiaawIcacaGLPaaaaiaawUfacaGLDbaadaWadaqaamaaqafabaGa bm4DayaaiaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaam yAaiabgMGiplaadohaaeqaniabggHiLdGccqGHRaWkdaqadaqaaiab ec8aWnaaDaaaleaacaWGQbaabaGaeyOeI0IaaGymaaaakiabgkHiTi aaigdaaiaawIcacaGLPaaacqGHsisldaaeqbqaaiqadEhagaacamaa BaaaleaacaWGPbGaaGilaiaadQgaaeqaaaqaaiaadMgacqGHiiIZca WGZbaabeqdcqGHris5aOWaaeWaaeaacqaHapaCdaqhaaWcbaGaamyA aaqaaiabgkHiTiaaigdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaa aacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaGcbaaabaGaaGyp amaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaO WaaabuaeqaleaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaa dmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBam aaBaaaleaacaWGQbaabeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWc baGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWaaWbaaS qabeaacaaIYaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWG TbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiWoacaaMe8UaamiEamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaa dmaabaWaaabuaeaaceWG3bGbaGaadaWgaaWcbaGaamyAaiaaiYcaca WGQbaabeaaaeaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakiab gUcaRmaabmaabaGaeqiWda3aa0baaSqaaiaadQgaaeaacqGHsislca aIXaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaabaGaaGym aiabgkHiTmaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadMgacaaISa GaamOAaaqabaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaa kiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaWGpbWaaeWaaeaacqaH7oaBcaWGUbWaaWbaaSqabeaa cqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaabaaabaGaaGypamaala aabaGaaGymaaqaaiaad6gaaaWaaeWaaeaadaWcaaqaaiaad6eacqGH sislcaWGUbaabaGaamOtaaaaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaGcdaWdXaqabSqaaiaadggaaeaacaWGIbaaniabgUIiYdGc daWadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2 gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8oacaGLiWoacaaM e8UaamiEaaGaayjkaiaawMcaaiabgkHiTiaadEeadaahaaWcbeqaai aaikdaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaqa daqaaiaadIhaaiaawIcacaGLPaaacaaMc8oacaGLiWoacaaMe8Uaam iEaaGaayjkaiaawMcaaaGaay5waiaaw2faamaadmaabaWaaSGbaeaa caWGObWaaSbaaSqaaiaaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaaca WG4baacaGLOaGaayzkaaaabaGaamiAamaaBaaaleaacaWGZbaabeaa kmaabmaabaGaamiEaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaca WGObWaaSbaaSqaaiaaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG 4baacaGLOaGaayzkaaGaamizaiaadIhaaeaaaeaacaaMe8UaaGjbVl abgUcaRiaad+eadaqadaqaamaabmaabaGaamOBaiabeU7aSbGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeg7aHjabgU caRiabeU7aSjaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaaaeaaaeaacaaI9aGaamyqamaaBaaaleaacaaIXaaabe aakiabgUcaRiaad+eadaqadaqaamaabmaabaGaamOBaiabeU7aSbGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeg7aHj abgUcaRiabeU7aSjaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaacaaIUaaaaaaa@7014@

Thus,

var ( F ˜ ( t ) F N ( t ) ) = var ( F ^ ( t ) F N ( t ) ) + O ( ( n λ ) 1 α + λ n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaeWaaeaaceWGgbGbaGaadaqadaqaaiaadshaaiaawIca caGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6eaaeqaaOWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGypaiaabAha caqGHbGaaeOCamaabmaabaGabmOrayaajaWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaa bmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRi aad+eadaqadaqaamaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeg7aHjabgUcaRiabeU 7aSjaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGL PaaacaaIUaaaaa@60C7@

Bias of the model-based estimator with modified fitted values

Let m ^ ^ i := k s w i , k m k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyBayaajy aajaWaaSbaaSqaaiaadMgaaeqaaOGaaGOoaiaai2dadaaeqaqabSqa aiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaam4DamaaBaaale aacaWGPbGaaGilaiaadUgaaeqaaOGaamyBamaaBaaaleaacaWGRbaa beaakiaacYcaaaa@44A7@ c i , j := 1 w j , j + w i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaOGaaGOoaiaai2dacaaIXaGa eyOeI0Iaam4DamaaBaaaleaacaWGQbGaaGilaiaadQgaaeqaaOGaey 4kaSIaam4DamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaaa@4446@ and

d i , j := 1 c i , j [ ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + k s , k j ( w j , k w i , k ) ε k ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaOGaaGOoaiaai2dadaWcaaqa aiaaigdaaeaacaWGJbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqaba aaaOWaamWaaeaadaqadaqaaiaaigdacqGHsislcaWGJbWaaSbaaSqa aiaadMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaai aadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaGaey4kaSYaaeWaaeaaceWGTbGbaKGbaKaadaWgaaWcbaGaam OAaaqabaGccqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaGaeyOeI0YaaeWaaeaaceWGTbGbaKGbaKaadaWgaaWcba GaamyAaaqabaGccqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaGaey4kaSYaaabuaeqaleaacaWGRbGaeyicI4Saam 4CaiaaiYcacaWGRbGaeyiyIKRaamOAaaqab0GaeyyeIuoakmaabmaa baGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaOGaeyOeI0 Iaam4DamaaBaaaleaacaWGPbGaaGilaiaadUgaaeqaaaGccaGLOaGa ayzkaaGaeqyTdu2aaSbaaSqaaiaadUgaaeqaaaGccaGLBbGaayzxaa GaaGOlaaaa@74C3@

Observe that w i , j = O i , j ( ( n λ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaOGaaGypaiaad+eadaWgaaWc baGaamyAaiaaiYcacaWGQbaabeaakmaabmaabaWaaeWaaeaacaWGUb Gaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaa aaGccaGLOaGaayzkaaaaaa@44C0@ so that

y j m ^ j t m ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGQbaabeaakiabgkHiTiqad2gagaqcamaaBaaaleaacaWG QbaabeaakiabgsMiJkaadshacqGHsislceWGTbGbaKaadaWgaaWcba GaamyAaaqabaaaaa@3FEC@

is (asymptotically, as soon as c i , j > 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaaca WGJbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI+aGaaGim aaGaayzkaaaaaa@3AFA@ equivalent to

ε j t m i + d i , j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWg aaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgaca aISaGaamOAaaqabaGccaaIUaaaaa@42C7@

Since d i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaaaa@38A7@ does not depend on ε j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQgaaeqaaOGaaiilaaaa@387B@ it follows that

E ( I ( y j m ^ j t m ^ i ) ) = E ( I ( ε j t m i + d i , j ) ) = E ( E ( I ( ε j t m i + d i , j ) | ε k , k j ) ) = E ( G ( t m i + d i , j | x j ) ) . ( A .1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadweadaqadaqaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGa amOAaaqabaGccqGHsislceWGTbGbaKaadaWgaaWcbaGaamOAaaqaba GccqGHKjYOcaWG0bGaeyOeI0IabmyBayaajaWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGypaiaadw eadaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaacaWGQbaa beaakiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSIaamizamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqa aaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaaabaGaaGypaiaadw eadaqadaqaaiaadweadaqadaqaamaaeiaabaGaamysamaabmaabaGa eqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTi aad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqa aiaadMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaMc8oaca GLiWoacaaMc8UaeqyTdu2aaSbaaSqaaiaadUgaaeqaaOGaaGilaiaa dUgacqGHGjsUcaWGQbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaba aabaGaaGypaiaadweadaqadaqaaiaadEeadaqadaqaamaaeiaabaGa amiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkca WGKbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawIa7aiaa ysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaGaaGOlaaaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaacIcacaGGbbGaaiOlaiaaigdacaGGPaaaaa@972B@

Now, using the fact that

d i , j = ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + k s , k j ( w j , k w i , k ) ε k + R ( d i , j ) , ( A .2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaOGaaGypamaabmaabaGaaGym aiabgkHiTiaadogadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaO GaayjkaiaawMcaamaabmaabaGaamiDaiabgkHiTiaad2gadaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiqad2 gagaqcgaqcamaaBaaaleaacaWGQbaabeaakiabgkHiTiaad2gadaWg aaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsisldaqadaqaai qad2gagaqcgaqcamaaBaaaleaacaWGPbaabeaakiabgkHiTiaad2ga daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaaeqb qabSqaaiaadUgacqGHiiIZcaWGZbGaaGilaiaadUgacqGHGjsUcaWG QbaabeqdcqGHris5aOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgaca aISaGaam4AaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaI SaGaam4AaaqabaaakiaawIcacaGLPaaacqaH1oqzdaWgaaWcbaGaam 4AaaqabaGccqGHRaWkcaWGsbWaaeWaaeaacaWGKbWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaaGzbVl aaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGOmaiaacMcaaaa@7CB9@

where

E 1 / 4 ( | R ( d i , j ) | 4 ) = O i , j ( λ n 1 + ( n λ ) 3 / 2 ) , ( A .3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaWaaSGbaeaacaaIXaaabaGaaGinaaaaaaGcdaqadaqaaiaa ykW7daabdaqaaiaadkfadaqadaqaaiaadsgadaWgaaWcbaGaamyAai aaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7aiaawEa7caGL iWoadaahaaWcbeqaaiaaykW7caaI0aaaaaGccaGLOaGaayzkaaGaaG ypaiaad+eadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaa baGaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgU caRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqa baGaeyOeI0YaaSGbaeaacaaIZaaabaGaaGOmaaaaaaaakiaawIcaca GLPaaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aiyqaiaac6cacaaIZaGaaiykaaaa@6622@

it is seen from (A.1) that

E ( I ( y j m ^ j t m ^ i ) ) = E ( G ( t m i + d i , j ) | x j ) = G ( t m i | x j ) + G ( 1,0 ) ( t m i | x j ) E ( d i , j ) + 1 2 G ( 2,0 ) ( t m i | x j ) E ( d i , j 2 ) + o i , j ( λ 4 + ( n λ ) 1 ) . ( A .4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadweadaqadaqaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGa amOAaaqabaGccqGHsislceWGTbGbaKaadaWgaaWcbaGaamOAaaqaba GccqGHKjYOcaWG0bGaeyOeI0IabmyBayaajaWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGypaiaadw eadaqadaqaamaaeiaabaGaam4ramaabmaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaai aadMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaMc8oacaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaaqaaaqaaiaai2dacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGH sislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMe8Uaam iEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaa dEeadaahaaWcbeqaamaabmaabaGaaGymaiaaiYcacaaIWaaacaGLOa GaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWa aSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMe8UaamiEamaaBaaale aacaWGQbaabeaaaOGaayjkaiaawMcaaiaadweadaqadaqaaiaadsga daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaa qaaaqaaiaaysW7caaMe8Uaey4kaSYaaSaaaeaacaaIXaaabaGaaGOm aaaacaWGhbWaaWbaaSqabeaadaqadaqaaiaaikdacaaISaGaaGimaa GaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbaabeaaaOGaayjcSdGaaGjbVlaadIhada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaWGfbWaaeWaaeaa caWGKbWaa0baaSqaaiaadMgacaaISaGaamOAaaqaaiaaikdaaaaaki aawIcacaGLPaaacqGHRaWkcaWGVbWaaSbaaSqaaiaadMgacaaISaGa amOAaaqabaGcdaqadaqaaiabeU7aSnaaCaaaleqabaGaaGinaaaaki abgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaai6caaaGaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaisdacaGG Paaaaa@B24D@

Thus,

E ( F ^ * ( t ) F N ( t ) ) = E ( 1 N i s j s w i , j ( I ( y j m ^ j t m ^ i ) I ( y i t ) ) ) = 1 N i s j s w i , j [ G ( t m i | x j ) G ( t m i | x i ) ] + 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) E ( d i , j ) + 1 2 N i s j s w i , j G ( 2 , 0 ) ( t m i | x j ) E ( d i , j 2 ) + o ( λ 4 + ( n λ ) 1 ) := C 1 + C 2 + C 3 + o ( λ 4 + ( n λ ) 1 ) . ( A .5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaamyramaabmaabaGabmOrayaajaWaaWbaaSqabeaacaaIQaaa aOGaaGzaVpaabmaabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiaadA eadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaadshaaiaawIcacaGL PaaaaiaawIcacaGLPaaaaeaacaaI9aGaamyramaabmaabaWaaSaaae aacaaIXaaabaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHjiYZcaWG ZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgaca aISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHi LdGcdaqadaqaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGaamOAaa qabaGccqGHsislceWGTbGbaKaadaWgaaWcbaGaamOAaaqabaGccqGH KjYOcaWG0bGaeyOeI0IabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaGaeyOeI0IaamysamaabmaabaGaamyEamaaBaaa leaacaWGPbaabeaakiabgsMiJkaadshaaiaawIcacaGLPaaaaiaawI cacaGLPaaaaiaawIcacaGLPaaaaeaaaeaacaaI9aWaaSaaaeaacaaI XaaabaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHjiYZcaWGZbaabe qdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaISaGa amOAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcda WadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2ga daWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Iaam4ramaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabe aaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacaaMe8UaaGjbVlabgU caRmaalaaabaGaaGymaaqaaiaad6eaaaWaaabuaeqaleaacaWGPbGa eyycI8Saam4Caaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaale aacaWGPbGaaGilaiaadQgaaeqaaOGaam4ramaaCaaaleqabaWaaeWa aeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamOAai abgIGiolaadohaaeqaniabggHiLdGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaays W7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamyr amaabmaabaGaamizamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaaGjbVlaaysW7cqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHji YZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaGccaWGhbWaaWbaaSqabeaadaqadaqaai aaikdacaGGSaGaaGimaaGaayjkaiaawMcaaaaaaeaacaWGQbGaeyic I4Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaaeaacaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjcSdGaaGjbVlaa dIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaWGfbWaae WaaeaacaWGKbWaa0baaSqaaiaadMgacaaISaGaamOAaaqaaiaaikda aaaakiaawIcacaGLPaaacqGHRaWkcaWGVbWaaeWaaeaacqaH7oaBda ahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaaiaad6gacqaH7oaB aiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawI cacaGLPaaaaeaaaeaacaaI6aGaaGypaiaadoeadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS Iaam4qamaaBaaaleaacaaIZaaabeaakiabgUcaRiaad+gadaqadaqa aiabeU7aSnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaam OBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaaaOGaayjkaiaawMcaaiaai6caaaGaaGzbVlaaywW7caaMf8Uaai ikaiaacgeacaGGUaGaaGynaiaacMcaaaa@1927@

Consider first C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaaaaa@36AE@ and note that

C 1 := 1 N i s j s w i , j [ G ( t m i | x j ) G ( t m i | x i ) ] = 1 2 N i s G ( 0 , 2 ) ( t m i | x i ) j s w i , j ( x j x i ) 2 + o ( λ 2 ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h s ¯ ( x ) d x + o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadoeadaWgaaWcbaGaaGymaaqabaaakeaacaaI6aGaaGypamaa laaabaGaaGymaaqaaiaad6eaaaWaaabuaeqaleaacaWGPbGaeyycI8 Saam4Caaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaaleaacaWG PbGaaGilaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaabeqdcq GHris5aOWaamWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGH sislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMe8Uaam iEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaa dEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaabaaabaGaaGypam aalaaabaGaaGymaaqaaiaaikdacaWGobaaamaaqafabaGaam4ramaa CaaaleqabaWaaeWaaeaacaaIWaGaaiilaiaaikdaaiaawIcacaGLPa aaaaaabaGaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqaba aakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGL OaGaayzkaaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaISaGaam OAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaqa daqaaiaadIhadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaaca aIYaaaaaGccaGLOaGaayzkaaaabaaabaGaaGypaiabeU7aSnaaCaaa leqabaGaaGOmaaaakmaalaaabaGaamOtaiabgkHiTiaad6gaaeaaca WGobaaamaalaaabaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGa eqiVd02aaSbaaSqaaiaaicdaaeqaaaaakmaapedabaGaam4ramaaCa aaleqabaWaaeWaaeaacaaIWaGaaiilaiaaikdaaiaawIcacaGLPaaa aaaabaGaamyyaaqaaiaadkgaa0Gaey4kIipakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMca aiaaykW7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaGaamiAam aaBaaaleaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaamiEaaGa ayjkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam4BamaabmaabaGaeq 4UdW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaGOlaaaa aaa@C271@

Consider next C 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIYaaabeaakiaac6caaaa@376B@ (A.2) and (A.3) imply that

E ( d i , j ) = ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) = ( w j , j w i , j ) ( t m i ) + m j ′′ k s w j , k ( x k x j ) 2 m i ′′ k s w i , k ( x k x i ) 2 + o i , j ( λ 2 ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) = ( w j , j w i , j ) ( t m i ) + ( m j ′′ m i ′′ ) k s w j , k ( x k x j ) 2 + m i ′′ ( k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) + o i , j ( λ 2 ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGbca aaaeaacaWGfbWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgacaaISaGa amOAaaqabaaakiaawIcacaGLPaaaaeaacaaI9aWaaeWaaeaacaaIXa GaeyOeI0Iaam4yamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaGc caGLOaGaayzkaaWaaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGabmyB ayaajyaajaWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamyBamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGa bmyBayaajyaajaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamyBam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaad+ea daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaabaGaeq4UdW MaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRmaabmaa baGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 YaaSGbaeaacaaIZaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaa aeaacaaI9aWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaam OAaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaISaGaamOA aaqabaaakiaawIcacaGLPaaadaqadaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIabmyB ayaagaWaaSbaaSqaaiaadQgaaeqaaOGaaGjbVpaaqafabaGaam4Dam aaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaOWaaeWaaeaacaWG4bWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGQb aabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWG RbGaeyicI4Saam4Caaqab0GaeyyeIuoakiabgkHiTiqad2gagaGbam aaBaaaleaacaWGPbaabeaakiaaysW7daaeqbqaaiaadEhadaWgaaWc baGaamyAaiaaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaale aacaWGRbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgI GiolaadohaaeqaniabggHiLdaakeaaaeaacaaMe8UaaGjbVlabgUca Riaad+gadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaaba Gaeq4UdW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4k aSIaam4tamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaOWaaeWaae aacqaH7oaBcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey4k aSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabe aacqGHsisldaWcgaqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaa wMcaaaqaaaqaaiaai2dadaqadaqaaiaadEhadaWgaaWcbaGaamOAai aaiYcacaWGQbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAaiaa iYcacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH RaWkdaqadaqaaiqad2gagaGbamaaBaaaleaacaWGQbaabeaakiabgk HiTiqad2gagaGbamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca amaaqafabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoaaOqa aaqaaiaaysW7caaMe8Uaey4kaSIabmyBayaagaWaaSbaaSqaaiaadM gaaeqaaOGaaGjbVpaabmaabaWaaabuaeaacaWG3bWaaSbaaSqaaiaa dQgacaaISaGaam4AaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaam 4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZca WGZbaabeqdcqGHris5aOGaeyOeI0YaaabuaeaacaWG3bWaaSbaaSqa aiaadMgacaaISaGaam4AaaqabaGcdaqadaqaaiaadIhadaWgaaWcba Gaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHii IZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaabaaabaGaaGjb VlaaysW7cqGHRaWkcaWGVbWaaSbaaSqaaiaadMgacaaISaGaamOAaa qabaGcdaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgUcaRiaad+eadaWgaaWcbaGaamyAaiaaiYcacaWGQb aabeaakmaabmaabaGaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0YaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaakiaawIcacaGLPaaaaaaaaa@39BD@

so that

C 2 = C 2, a + C 2, b + C 2, c + o ( λ 2 ) + O ( λ n 1 + ( n λ ) 3 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIYaaabeaakiaai2dacaWGdbWaaSbaaSqaaiaaikdacaaI SaGaamyyaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaikdacaaISa GaamOyaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaikdacaaISaGa am4yaaqabaGccqGHRaWkcaWGVbWaaeWaaeaacqaH7oaBdaahaaWcbe qaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWGpbWaaeWaaeaa cqaH7oaBcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey4kaS YaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsisldaWcgaqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawM caaiaaiYcaaaa@598E@

where

C 2, a := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) ( w j , j w i , j ) ( t m i ) = 1 N i s G ( 1 , 0 ) ( t m i | x i ) ( t m i ) j s w i , j ( w j , j w i , j ) + O ( n 1 ) = 1 n λ N n N K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) [ h s ¯ ( x ) / h s ( x ) ] d x + O ( ( n λ ) 1 λ 1 α + n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaam4qamaaBaaaleaacaaIYaGaaGilaiaadggaaeqaaaGcbaGa aGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqa aiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caamaabmaabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadQgaaeqa aOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaa GccaGLOaGaayzkaaWaaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaa qaaiaaigdaaeaacaWGobaaamaaqafabaGaam4ramaaCaaaleqabaWa aeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaam yAaiabgMGiplaadohaaeqaniabggHiLdGcdaqadaqaamaaeiaabaGa amiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7ai aaysW7caWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWa aeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaamaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGil aiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aO WaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaamOAaaqabaGc cqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaki aawIcacaGLPaaacqGHRaWkcaWGpbWaaeWaaeaacaWGUbWaaWbaaSqa beaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaabaaabaGaaGypam aalaaabaGaaGymaaqaaiaad6gacqaH7oaBaaWaaSaaaeaacaWGobGa eyOeI0IaamOBaaqaaiaad6eaaaWaaSaaaeaacaWGlbWaaeWaaeaaca aIWaaacaGLOaGaayzkaaGaeyOeI0IaeqOUdSgabaGaeqiVd02aaSba aSqaaiaaicdaaeqaaaaakmaapedabeWcbaGaamyyaaqaaiaadkgaa0 Gaey4kIipakiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYca caaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacq GHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGa ayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaadaqadaqaaiaadshacq GHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGa ayzkaaWaamWaaeaadaWcgaqaaiaadIgadaWgaaWcbaGaaGPaVlqado hagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWG ObWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaay zkaaaaaaGaay5waiaaw2faaiaadsgacaWG4baabaaabaGaaGjbVlaa ysW7cqGHRaWkcaWGpbWaaeWaaeaadaqadaqaaiaad6gacqaH7oaBai aawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH7oaB daahaaWcbeqaaiabgkHiTiaaigdaaaGccqaHXoqycqGHRaWkcaWGUb WaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaaaa @F03A@

with κ := 1 1 K 2 ( u ) d u , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSMaaG Ooaiaai2dadaWdXaqaaiaadUeadaahaaWcbeqaaiaaikdaaaaabaGa eyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipakmaabmaabaGaamyDaa GaayjkaiaawMcaaiaadsgacaWG1bGaaiilaaaa@4396@

C 2, b := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) ( m j ′′ m i ′′ ) k s w j , k ( x k x j ) 2 = o ( λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaam4qamaaBaaaleaacaaIYaGaaGilaiaadkgaaeqaaaGcbaGa aGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqa aiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caamaabmaabaGabmyBayaagaWaaSbaaSqaaiaadQgaaeqaaOGaeyOe I0IabmyBayaagaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa WaaabuaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaam4AaaqabaGc daqadaqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4b WaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aaGcba aabaGaaGypaiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaaaaaa@7A7D@

and

C 2, c := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) m i ′′ ( k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) = 1 N i s G ( 1 , 0 ) ( t m i | x i ) m i ′′ ( j s w i , j k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) + o ( λ 2 ) = o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaam4qamaaBaaaleaacaaIYaGaaGilaiaadogaaeqaaaGcbaGa aGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqa aiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaiqad2gagaGbamaaBaaaleaacaWGPbaabeaakiaaysW7daqadaqa amaaqafabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakiab gkHiTmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGilaiaadUgaae qaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoa aOGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigdaaeaaca WGobaaamaaqafabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGa aiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamyAaiabgMGiplaado haaeqaniabggHiLdGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGabmyBayaagaWaaSba aSqaaiaadMgaaeqaaOGaaGjbVpaabmaabaWaaabuaeaacaWG3bWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaa dohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamOAai aaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaaleaacaWGRbaa beaakiabgkHiTiaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgIGiolaadoha aeqaniabggHiLdGccqGHsisldaaeqbqaaiaadEhadaWgaaWcbaGaam yAaiaaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaaleaacaWG RbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgIGiolaa dohaaeqaniabggHiLdaakiaawIcacaGLPaaacqGHRaWkcaWGVbWaae WaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa aeaaaeaacaaI9aGaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaaca aIYaaaaaGccaGLOaGaayzkaaGaaGOlaaaaaaa@DA60@

Consider finally C 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIZaaabeaakiaac6caaaa@376C@ Note that from (A.2) and (A.3)

E ( d i , j 2 ) = k s ( w j , k w i , k ) 2 σ k 2 + O i , j ( λ 4 + ( n λ ) 2 ) ( A .6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaamizamaaDaaaleaacaWGPbGaaGilaiaadQgaaeaacaaIYaaa aaGccaGLOaGaayzkaaGaaGypamaaqafabaWaaeWaaeaacaWG3bWaaS baaSqaaiaadQgacaaISaGaam4AaaqabaGccqGHsislcaWG3bWaaSba aSqaaiaadMgacaaISaGaam4AaaqabaaakiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaam4Aaaqaaiaaikda aaaabaGaam4AaiabgIGiolaadohaaeqaniabggHiLdGccqGHRaWkca WGpbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaGcdaqadaqaaiab eU7aSnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaamOBai abeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGOmaaaa aOGaayjkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaacgeacaGGUaGaaGOnaiaacMcaaaa@6BA0@

so that

C 3 = 1 2 N i s j s w i , j G ( 2 , 0 ) ( t m i | x j ) k s ( w j , k w i , k ) 2 σ k 2 + O ( λ 4 + ( n λ ) 2 ) = 1 2 N i s G ( 2 , 0 ) ( t m i | x i ) σ i 2 j s w i , j k s ( w j , k w i , k ) 2 + o ( ( n λ ) 1 ) + O ( λ 4 ) = 1 n λ N n N κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) [ h s ¯ ( x ) / h s ( x ) ] d x + o ( ( n λ ) 1 ) + O ( λ 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadoeadaWgaaWcbaGaaG4maaqabaaakeaacaaI9aWaaSaaaeaa caaIXaaabaGaaGOmaiaad6eaaaWaaabuaeqaleaacaWGPbGaeyycI8 Saam4Caaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaaleaacaWG PbGaaGilaiaadQgaaeqaaOGaam4ramaaCaaaleqabaWaaeWaaeaaca aIYaGaaiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamOAaiabgIGi olaadohaaeqaniabggHiLdGcdaqadaqaamaaeiaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7caWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaabuaeaada qadaqaaiaadEhadaWgaaWcbaGaamOAaiaaiYcacaWGRbaabeaakiab gkHiTiaadEhadaWgaaWcbaGaamyAaiaaiYcacaWGRbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaa caWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0Gaey yeIuoakiabgUcaRiaad+eadaqadaqaaiabeU7aSnaaCaaaleqabaGa aGinaaaakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaaqa aaqaaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamOtaaaadaaeqb qaaiaadEeadaahaaWcbeqaamaabmaabaGaaGOmaiaacYcacaaIWaaa caGLOaGaayzkaaaaaaqaaiaadMgacqGHjiYZcaWGZbaabeqdcqGHri s5aOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqa aiaadMgaaeqaaaGccaGLiWoacaaMe8UaamiEamaaBaaaleaacaWGPb aabeaaaOGaayjkaiaawMcaaiabeo8aZnaaDaaaleaacaWGPbaabaGa aGOmaaaakmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGilaiaadQ gaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaabu aeaadaqadaqaaiaadEhadaWgaaWcbaGaamOAaiaaiYcacaWGRbaabe aakiabgkHiTiaadEhadaWgaaWcbaGaamyAaiaaiYcacaWGRbaabeaa aOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGRbGaey icI4Saam4Caaqab0GaeyyeIuoakiabgUcaRiaad+gadaqadaqaamaa bmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaaaOGaayjkaiaawMcaaiabgUcaRiaad+eadaqadaqa aiabeU7aSnaaCaaaleqabaGaaGinaaaaaOGaayjkaiaawMcaaaqaaa qaaiaai2dadaWcaaqaaiaaigdaaeaacaWGUbGaeq4UdWgaamaalaaa baGaamOtaiabgkHiTiaad6gaaeaacaWGobaaamaalaaabaGaeqOUdS MaeyOeI0IaeqiUdehabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaI YaaaaaaakmaapedabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYa GaaiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamyyaaqaaiaadkga a0Gaey4kIipakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBam aabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaysW7 caWG4baacaGLOaGaayzkaaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaO WaaeWaaeaacaWG4baacaGLOaGaayzkaaWaamWaaeaadaWcgaqaaiaa dIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaaaeaacaWGObWaaSbaaSqaaiaadohaaeqaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaads gacaWG4bGaey4kaSIaam4BamaabmaabaWaaeWaaeaacaWGUbGaeq4U dWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaGaey4kaSIaam4tamaabmaabaGaeq4UdW2aaWbaaSqa beaacaaI0aaaaaGccaGLOaGaayzkaaaaaaaa@064B@

with θ := 1 1 K ( v ) 1 1 K ( u + v ) K ( u ) d u d v . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG Ooaiaai2dadaWdXaqaaiaadUeadaqadaqaaiaadAhaaiaawIcacaGL PaaaaSqaaiabgkHiTiaaigdaaeaacaaIXaaaniabgUIiYdGcdaWdXa qaaiaadUeadaqadaqaaiaadwhacqGHRaWkcaWG2baacaGLOaGaayzk aaGaam4samaabmaabaGaamyDaaGaayjkaiaawMcaaiaadsgacaWG1b GaamizaiaadAhaaSqaaiabgkHiTiaaigdaaeaacaaIXaaaniabgUIi YdGccaGGUaaaaa@51BC@

Substituting the above expansions for C 1 , C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaacYcacaWGdbWaaSbaaSqaaiaaikdaaeqa aaaa@3918@ and C 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIZaaabeaaaaa@36AF@ into (A.5) yields finally

E ( F ^ * ( t ) F N ( t ) ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h s ¯ ( x ) d x + 1 n λ N n N [ K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) h s 1 ( x ) h s ¯ ( x ) d x + κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) h s 1 ( x ) h s ¯ ( x ) d x ] + o ( λ 2 + ( n λ ) 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGfbWaaeWaaeaaceWGgbGbaKaadaahaaWcbeqaaiaaiQca aaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaai aaikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaa daWcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqaaiaadEeadaahaaWcbeqa amaabmaabaGaaGimaiaacYcacaaIYaaacaGLOaGaayzkaaaaaaqaai aadggaaeaacaWGIbaaniabgUIiYdGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8 oacaGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaiaadIgadaWgaaWc baGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcaca GLPaaacaWGKbGaamiEaaqaaaqaaiaaysW7caaMe8Uaey4kaSYaaSaa aeaacaaIXaaabaGaamOBaiabeU7aSbaadaWcaaqaaiaad6eacqGHsi slcaWGUbaabaGaamOtaaaadaWabaqaamaalaaabaGaam4samaabmaa baGaaGimaaGaayjkaiaawMcaaiabgkHiTiabeQ7aRbqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqabSqaaiaadggaaeaacaWG IbaaniabgUIiYdGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdaca GGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaWaaeWaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay jkaiaawMcaaiaadIgadaqhaaWcbaGaam4CaaqaaiabgkHiTiaaigda aaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGObWaaSbaaSqaai aaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzk aaGaamizaiaadIhaaiaawUfaaaqaaaqaaiaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7daWacaqaaiabgUcaRmaalaaabaGaeqOUdSMa eyOeI0IaeqiUdehabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaIYa aaaaaakmaapedabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYaGa aiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamyyaaqaaiaadkgaa0 Gaey4kIipakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaysW7ca WG4baacaGLOaGaayzkaaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamiAamaaDaaaleaacaWGZb aabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMca aiaadIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaai aadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaGaayzxaaaabaaabaGa aGzbVlabgUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaG OmaaaakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaai6 caaaaaaa@121D@

Bias of the generalized difference estimator with modified fitted values

Let d ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@38B6@ be the design-weighted counterpart of d i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaaaa@38A7@ and observe that

F ˜ * ( t ) F N ( t ) = 1 N [ i s j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) + i s ( 1 π i 1 ) j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) ] . ( A .7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGabmOrayaaiaWaaWbaaSqabeaacaaIQaaaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabe aakmaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobaaamaadeaabaWaaabuaeqaleaacaWGPbGaey ycI8Saam4Caaqab0GaeyyeIuoakmaaqafabaGabm4DayaaiaWaaSba aSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaado haaeqaniabggHiLdGcdaqadaqaaiaadMeadaqadaqaaiabew7aLnaa BaaaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaS baaSqaaiaadMgaaeqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGjb WaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waaaabaaabaGaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVpaadiaabaGa ey4kaSYaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oakmaabmaabaGaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbaa baGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaaqafabaGabm4Day aaiaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiab gIGiolaadohaaeqaniabggHiLdGcdaqadaqaaiaadMeadaqadaqaai abew7aLnaaBaaaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsisl caWGTbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIabmizayaaiaWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacqGH sislcaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaey izImQaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayzxaaGa aGOlaaaacaaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiEdacaGGPa aaaa@B0D9@

Adapting the proof that leads to (A.4), it is seen that the asymptotic expansion in (A.4) holds also with d ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@38B6@ in place of d i , j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaOGaaiOlaaaa@3963@ Adapting the remaining part of the proof finally leads to

E ( F ˜ * ( t ) F N ( t ) ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h ( x ) d x + 1 n λ N n N [ K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) h s 1 ( x ) h ( x ) d x + κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) h s 1 ( x ) h ( x ) d x ] + o ( λ 2 + ( n λ ) 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGfbWaaeWaaeaaceWGgbGbaGaadaahaaWcbeqaaiaaiQca aaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaai aaikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaa daWcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqabSqaaiaadggaaeaacaWG IbaaniabgUIiYdGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaicdaca GGSaGaaGOmaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaGaamiAamaabmaa baGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baabaaabaGaaGjbVl aaysW7cqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaeq4UdWgaamaa laaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaaamaadeaabaWaaS aaaeaacaWGlbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyOeI0Ia eqOUdSgabaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaaaakmaapedabe WcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaadEeadaahaaWcbeqa amaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaae WaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcaca GLPaaadaqadaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baa caGLOaGaayzkaaaacaGLOaGaayzkaaGaamiAamaaDaaaleaacaWGZb aabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMca aiaadIgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaa Gaay5waaaabaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVpaadiaabaGaey4kaSYa aSaaaeaacqaH6oWAcqGHsislcqaH4oqCaeaacqaH8oqBdaqhaaWcba GaaGimaaqaaiaaikdaaaaaaOWaa8qmaeqaleaacaWGHbaabaGaamOy aaqdcqGHRiI8aOGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYaGaai ilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8 oacaGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaiabeo8aZnaaCaaa leqabaGaaGOmaaaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadI gadaqhaaWcbaGaam4CaaqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaa dIhaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaamizaiaadIhaaiaaw2faaaqaaaqaaiaaysW7caaMe8Uaey4k aSIaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaaGilaaaaaaa@06B8@

where

h ( x ) := h s ¯ ( x ) + ( 1 π 1 ( x ) ) h s ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaiQdacaaI9aGaamiAamaaBaaa leaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaamiEaaGaayjkai aawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabec8aWnaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaadIgadaWgaaWcbaGaam4CaaqabaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaacaaIUaaaaa@4FCE@

Variance of the model-based estimator with modified fitted values

Write

F ^ * ( t ) F N ( t ) = 1 N ( i s j s w i , j I ( ε j t m i + d i , j ) i s I ( ε i t m i ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaWbaaSqabeaacaaIQaaaaOGaaGzaVpaabmaabaGaamiDaaGaayjk aiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGaamOtaaqabaGcdaqada qaaiaadshaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaaIXaaabaGa amOtaaaadaqadaqaamaaqafabeWcbaGaamyAaiabgMGiplaadohaae qaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiYca caWGQbaabeaakiaadMeaaSqaaiaadQgacqGHiiIZcaWGZbaabeqdcq GHris5aOWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamOAaaqabaGccqGH KjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaakiabgU caRiaadsgadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaOGaayjk aiaawMcaaiabgkHiTmaaqafabaGaamysamaabmaabaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGHji YZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaaaa@73B9@

and observe that

var ( F ^ * ( t ) F N ( t ) ) = D 1 + D 2 + D 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaeWaaeaaceWGgbGbaKaadaahaaWcbeqaaiaaiQcaaaGc caaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOram aaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaai2dacaWGebWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamiramaaBaaaleaacaaIYaaabeaakiabgUcaRiaadsea daWgaaWcbaGaaG4maaqabaGccaaISaaaaa@4CE0@

where

D 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaacaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWc caaISaGaamOAaaqabaGccaWG3bWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaa dohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaS GaeyycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOGaci4yaiaac+ gacaGG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGa amOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaaca WGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgUcaRiaadsgadaWg aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbaabe aaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacqaH1oqzdaWg aaWcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaa dsgadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcaca WGQbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiYcaaaa@7F36@

D 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s, j 2 j 1 w i 1 , j 1 w i 2 , j 2 ×cov( I( ε j 1 t m i 1 + d i 1 , j 1 ),I( ε j 2 t m i 2 + d i 2 , j 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaki aadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYca caWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaeaacaWGQbWaaSbaaW qaaiaaikdaaeqaaSGaeyicI4Saam4CaiaaiYcacaWGQbWaaSbaaWqa aiaaikdaaeqaaSGaeyiyIKRaamOAamaaBaaameaacaaIXaaabeaaaS qab0GaeyyeIuoaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGH iiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIYa aabeaaliabgMGiplaadohaaeqaniabggHiLdaaleaacaWGPbWaaSba aWqaaiaaigdaaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoakiabgE na0kaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey izImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaa beaaaSqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaabaGaeq yTdu2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa eyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMga daWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYa aabeaaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@93FF@

and where D 3 := A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIZaaabeaakiaaiQdacaaI9aGaamyqamaaBaaaleaacaaI Yaaabeaaaaa@39F4@ from the variance of the model-based Kuo estimator.

Consider D 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaac6caaaa@376B@ Observe that

cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) = E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) E ( G ( t m i 1 + d i 1 , j | x j ) ) E ( G ( t m i 2 + d i 2 , j | x j ) ) . ( A .8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0de9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0dXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2 gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccqGH RaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaa baGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaa qabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacaaI9aGaamyramaabmaabaGaam4ramaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaliaaiYcacaWGQbaabeaakiabgEIizlaadsha cqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaa ikdaaeqaaSGaaGilaiaadQgaaeqaaaGccaGLiWoacaaMc8UaamiEam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMca aaqaaaqaaiabgkHiTiaadweadaqadaqaaiaadEeadaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAaaqabaaakiaawIa7aiaa ykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaGaamyramaabmaabaGaam4ramaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaa meaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaOGaayjcSdGaaGPaVl aadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawIca caGLPaaacaaIUaaaaiaacIcacaGGbbGaaiOlaiaaiIdacaGGPaaaaa@AC01@

Since

| ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j ) ( t m i 1 t m i 2 ) | | d i 1 , j | + | d i 2 , j | , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8+aaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcba GaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbaabeaakiab gEIizlaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaaaleqaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqaaaGccaGLOaGaay zkaaGaeyOeI0YaaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaa caWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgEIizlaadshacq GHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaa leqaaaGccaGLOaGaayzkaaGaaGPaVdGaay5bSlaawIa7aiabgsMiJo aaemaabaGaaGPaVlaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbaabeaakiaaykW7aiaawEa7caGLiWoacq GHRaWkdaabdaqaaiaaykW7caWGKbWaaSbaaSqaaiaadMgadaWgaaad baGaaGOmaaqabaWccaaISaGaamOAaaqabaGccaaMc8oacaGLhWUaay jcSdGaaGilaaaa@7A66@

it follows from (A.6) that

E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) = G ( t m i 1 t m i 2 | x j ) + O i 1 , i 2 , j ( λ 2 + ( n λ ) 1 / 2 ) . ( A .9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaae WaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaS IaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGil aiaadQgaaeqaaOGaey4jIKTaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaa qabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGc caGLOaGaayzkaaaacaGLOaGaayzkaaGaaGypaiaadEeadaqadaqaam aaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaa meaacaaIXaaabeaaaSqabaGccqGHNis2caWG0bGaeyOeI0IaamyBam aaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjc SdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPa aacqGHRaWkcaWGpbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqa baWccaaISaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQb aabeaakmaabmaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4k aSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabe aacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaaaOGaayjkaiaa wMcaaiaai6cacaaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiMdaca GGPaaaaa@87CB@

Moreover, from (A.1), (A.4) and (A.6) it follows that

E( G( t m i + d i,j | x j ) )= G( t m i | x j )+ O i,j ( λ 2 + ( nλ ) 1/2 ). (A.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadweadaqadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiab gkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawIa7aiaaysW7caWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaay zkaaGaaGjbVlabg2da9aqaaiaadEeadaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaays W7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4k aSIaam4tamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaOWaaeWaae aacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaa d6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTmaaly aabaGaaGymaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaGOlaaaa caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlai aaigdacaaIWaGaaiykaaaa@72E5@

Using (A.9) and (A.10) to get an asymptotic expansion for the covariance in (A.8), and substituting the outcome into the definition of D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@36AF@ yields

D 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) E ( G ( t m i 1 + d i 1 , j | x j ) ) E ( G ( t m i 2 + d i 2 , j | x j ) ) ] = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m i 1 t m i 2 | x j ) G ( t m i 1 | x j ) G ( t m i 2 | x j ) ] + O ( λ 2 n 1 + ( n λ ) 1 / 2 n 1 ) = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] ( i s w i , j ) 2 + O ( λ n 1 + ( n λ ) 1 / 2 n 1 ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α + n 1 λ + n 1 ( n λ ) 1 / 2 ) . ( A .11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeacca aaaaqaaiaadseadaWgaaWcbaGaaGymaaqabaaakeaacaaI6aGaaGyp amaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaO WaaabuaeaadaaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgaaeqaaOGaam4DamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqa aaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAam aaBaaameaacaaIYaaabeaaliabgMGiplaadohaaeqaniabggHiLdaa leaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaeyycI8Saam4Caaqab0 GaeyyeIuoakiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaa baGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaamys amaabmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaam iDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaaaiaa wIcacaGLPaaaaeaaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaamOtam aaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAaaqabaGccaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOm aaqabaWccaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaae qaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaeyyc I8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOWaamqaaeaacaWGfbWa aeWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4k aSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaG ilaiaadQgaaeqaaOGaey4jIKTaamiDaiabgkHiTiaad2gadaWgaaWc baGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKb WaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOA aaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLBbaaaeaaaeaacaaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7daWacaqaaiabgkHiTiaadweadaqadaqaaiaadEea daqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaam yAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAaaqaba aakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaGaamyramaabmaabaGaam4ramaabm aabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaOGa ayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcaca GLPaaaaiaawIcacaGLPaaaaiaaw2faaaqaaaqaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafaba WaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaliaaiYcacaWGQbaabeaakiaadEhadaWgaaWcbaGaam yAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaeaacaWG QbGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aaWcbaGaamyA amaaBaaameaacaaIXaaabeaaliabgMGiplaadohaaeqaniabggHiLd GcdaWadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccq GHNis2caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcba GaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWaaeWaaeaa daabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaa adbaGaaGymaaqabaaaleqaaaGccaGLiWoacaaMe8UaamiEamaaBaaa leaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaaSqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaai aadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaabaaabaGa aGjbVlaaysW7cqGHRaWkcaWGpbWaaeWaaeaacqaH7oaBdaahaaWcbe qaaiaaikdaaaGccaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa ey4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaS qabeaacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaakiaad6ga daahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaeaaae aacaaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOm aaaaaaGcdaaeqbqaamaadmaabaGaam4ramaabmaabaWaaqGaaeaaca WG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGa aGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacq GHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqa aiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiW oacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMca aaGaay5waiaaw2faaaWcbaGaamOAaiabgIGiolaadohaaeqaniabgg HiLdGccaaMe8+aaeWaaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyA aiaaiYcacaWGQbaabeaaaeaacaWGPbGaeyycI8Saam4Caaqab0Gaey yeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUca Riaad+eadaqadaqaaiabeU7aSjaad6gadaahaaWcbeqaaiabgkHiTi aaigdaaaGccqGHRaWkdaqadaqaaiaad6gacqaH7oaBaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaa aaaOGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaa wMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigdaaeaacaWGUbaaamaabm aabaWaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaaiaad6eaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaa8qmaeqaleaacaWGHb aabaGaamOyaaqdcqGHRiI8aOWaamWaaeaacaWGhbWaaeWaaeaadaab caqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaacqGH sislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqaai aadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaaaiaawUfaca GLDbaacaaMe8+aamWaaeaadaWcgaqaaiaadIgadaWgaaWcbaGaaGPa VlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaae aacaWGObWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG4baacaGL OaGaayzkaaaaaaGaay5waiaaw2faaiaadIgadaWgaaWcbaGaaGPaVl qadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWG KbGaamiEaaqaaaqaaiaaysW7caaMe8Uaey4kaSIaam4tamaabmaaba WaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaeqySdeMaey4kaSIaamOBamaaCaaaleqaba GaeyOeI0IaaGymaaaakiabeU7aSjabgUcaRiaad6gadaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaaiaad6gacqaH7oaBaiaawIcaca GLPaaadaahaaWcbeqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikda aaaaaaGccaGLOaGaayzkaaGaaGOlaaaacaaMf8UaaGzbVlaacIcaca GGbbGaaiOlaiaaigdacaaIXaGaaiykaaaa@274A@

Consider next

D 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 × cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaki aadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYca caWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaeaacaWGQbWaaSbaaW qaaiaaikdaaeqaaSGaeyicI4Saam4CaiaaiYcacaWGQbWaaSbaaWqa aiaaikdaaeqaaSGaeyiyIKRaamOAamaaBaaameaacaaIXaaabeaaaS qab0GaeyyeIuoaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGH iiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIYa aabeaaliabgMGiplaadohaaeqaniabggHiLdaaleaacaWGPbWaaSba aWqaaiaaigdaaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoakiabgE na0kaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey izImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaa beaaaSqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaabaGaeq yTdu2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa eyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMga daWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYa aabeaaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaaIUaaa aa@94B7@

Since

cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGa amOAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHKjYOcaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIXa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGa ayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcba GaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHKjYOcaWG0bGa eyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaa WcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaI YaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaaaGaayjkaiaawMcaaiaai2dacaaIWaaaaa@61FB@

if | x i 1 x i 2 | > 2 λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8UaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiabgkHiTiaadIhadaWgaaWcbaGaamyAamaaBaaameaacaaIYa aabeaaaSqabaGccaaMc8oacaGLhWUaayjcSdGaaGOpaiaaikdacqaH 7oaBcaGGSaaaaa@4635@ it follows that rest terms R i 1 , j 1 , i 2 , j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGymaaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaacYca aaa@4066@ whose contribution to the above covariance is of order O i 1 , j 1 , i 2 , j 2 ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGymaaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaa baGaeqOSdigacaGLOaGaayzkaaaaaa@42DD@ for some sequence β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@36A0@ that goes to zero, contribute to D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaaaaa@36B0@ a term of order O ( λ β ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaGaeq4UdWMaeqOSdigacaGLOaGaayzkaaGaaiOlaaaa@3B63@ Now, let

b i , j 1 , j 2 := c i , j 1 1 ( w j 1 , j 2 w i , j 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaI SaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccaaI6aGaaGypai aadogadaqhaaWcbaGaamyAaiaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbaGaeyOeI0IaaGymaaaakmaabmaabaGaam4DamaaBaaale aacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaad baGaaGOmaaqabaaaleqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPb GaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGa ayzkaaGaaGilaaaa@51A4@

a i , j 1 , j 2 := t m i + d i , j 1 b i , j 1 , j 2 ε j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaI SaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccaaI6aGaaGypai aadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIa amizamaaBaaaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGymaa qabaaaleqaaOGaeyOeI0IaamOyamaaBaaaleaacaWGPbGaaGilaiaa dQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaaca aIYaaabeaaaSqabaGccqaH1oqzdaWgaaWcbaGaamOAamaaBaaameaa caaIYaaabeaaaSqabaaaaa@5326@

and note that

t m i + d i , j 1 = a i , j 1 , j 2 + b i , j 1 , j 2 ε j 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSba aSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqaba GccaaI9aGaamyyamaaBaaaleaacaWGPbGaaGilaiaadQgadaWgaaad baGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaS qabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgacaaISaGaamOAamaa BaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaae qaaaWcbeaakiabew7aLnaaBaaaleaacaWGQbWaaSbaaWqaaiaaikda aeqaaaWcbeaakiaai6caaaa@5319@

Since a i , j 1 , j 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaI SaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaaaa@3C30@ does not depend on ε j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaaa@38B4@ and ε j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaiilaaaa @396F@ it follows that

E ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = E ( E ( I ( ε j 1 a i 1 , j 1 , j 2 + b i 1 , j 1 , j 2 ε j 2 ) I ( ε j 2 a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε j 1 ) | ε k , k j 1 , j 2 ) ) = E ( ε i 1 , i 2 , j 1 , j 2 * G ( a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε | x j 2 ) d G ( ε | x j 1 ) ) + E ( ε i 2 , i 1 , j 2 , j 1 * G ( a i 1 , j 1 , j 2 + b i 1 , j 1 , j 2 ε | x j 1 ) d G ( ε | x j 2 ) ) E ( G ( ε i 1 , i 2 , j 1 , j 2 * | x j 1 ) G ( ε i 2 , i 1 , j 2 , j 1 * | x j 2 ) ) , ( A .12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuqaaa aabaGaamyramaabmaabaGaamysamaabmaabaGaeqyTdu2aaSbaaSqa aiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyizImQaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa aSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaG ymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaa kiaawIcacaGLPaaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaam OAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHKjYOcaWG0bGaeyOe I0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbe aakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaay jkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaI9aGaam yramaabmaabaGaamyramaabmaabaGaamysamaabmaabaGaeqyTdu2a aSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyizIm QaamyyamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaame aacaaIYaaabeaaaSqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMga daWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiab ew7aLnaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaamaaeiaabaGaamysamaabmaabaGaeqyTdu2aaSba aSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeyizImQaam yyamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaa dQgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaaca aIXaaabeaaaSqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabew7a LnaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaay jkaiaawMcaaiaaysW7aiaawIa7aiaaysW7cqaH1oqzdaWgaaWcbaGa am4AaaqabaGccaaISaGaam4AaiabgcMi5kaadQgadaWgaaWcbaGaaG ymaaqabaGccaaISaGaamOAamaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaI9aGaamyr amaabmaabaWaa8qmaeqaleaacqGHsislcqGHEisPaeaacqaH1oqzda qhaaqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleaacaaIQaaa aaqdcqGHRiI8aOGaam4ramaabmaabaWaaqGaaeaacaWGHbWaaSbaaS qaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaa meaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaa WcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaI YaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaSGaaGilai aadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeqyTduMaaGjbVdGa ayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIYa aabeaaaSqabaaakiaawIcacaGLPaaacaWGKbGaam4ramaabmaabaWa aqGaaeaacqaH1oqzcaaMe8oacaGLiWoacaaMe8UaamiEamaaBaaale aacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaSIaamyr amaabmaabaWaa8qmaeqaleaacqGHsislcqGHEisPaeaacqaH1oqzda qhaaqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamyAamaa BaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleaacaaIQaaa aaqdcqGHRiI8aOGaam4ramaabmaabaWaaqGaaeaacaWGHbWaaSbaaS qaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaa meaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaa WcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilai aadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeqyTduMaaGjbVdGa ayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIXa aabeaaaSqabaaakiaawIcacaGLPaaacaWGKbGaam4ramaabmaabaWa aqGaaeaacqaH1oqzcaaMe8oacaGLiWoacaaMe8UaamiEamaaBaaale aacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaeyOeI0Iaamyr amaabmaabaGaam4ramaabmaabaWaaqGaaeaacqaH1oqzdaqhaaWcba GaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWaaSbaaWqa aiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAamaaBaaameaacaaIYaaabeaaaSqaaiaaiQcaaaGccaaM e8oacaGLiWoacaaMe8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaai aaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaa eiaabaGaeqyTdu2aa0baaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba WccaaISaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaa qabaaaleaacaaIQaaaaOGaaGjbVdGaayjcSdGaaGjbVlaadIhadaWg aaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawIcaca GLPaaaaiaawIcacaGLPaaacaaISaaaaiaaywW7caGGOaGaaiyqaiaa c6cacaaIXaGaaGOmaiaacMcaaaa@9EE6@

where

ε i 1 , i 2 , j 1 , j 2 * := a i 1, j 1 , j 2 + a i 2 , j 2 , j 1 b i 1 , j 1 , j 2 1 b i 1 , j 1 , j 2 b i 2 , j 2 , j 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleaacaaIQaaa aOGaaGOoaiaai2dadaWcaaqaaiaadggadaWgaaWcbaGaamyAamaaBa aameaacaaIXaGaaGilaaqabaWccaWGQbWaaSbaaWqaaiaaigdaaeqa aSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaS IaamyyamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaame aacaaIXaaabeaaaSqabaGccaWGIbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOqaaiaaigda cqGHsislcaWGIbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqaba WccaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWa aSbaaWqaaiaaikdaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaamyAam aaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikda aeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaaaki aai6caaaa@6F02@

Note that the two expectations in the third and fourth lines in (A.12) are the same if i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaaIXaaabeaaaaa@36D4@ and j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa aaleaacaaIXaaabeaaaaa@36D5@ are interchanged with i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaaIYaaabeaaaaa@36D5@ and j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa aaleaacaaIYaaabeaakiaacYcaaaa@3790@ respectively. Thus it suffices to analyze the first expectation. Using the fact that

ε i 1 , i 2 , j 1 , j 2 * = t m i 1 + d i 1 , j 1 + b i 1 , j 1 , j 2 ( t m i 2 ε j 2 ) + R ( ε i 1 , i 2 , j 1 , j 2 * ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleaacaaIQaaa aOGaaGypaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaa adbaGaaGymaaqabaaaleqaaOGaey4kaSIaamizamaaBaaaleaacaWG PbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaG ymaaqabaaaleqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbWaaSba aWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqaba WccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGcdaqadaqa aiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaG OmaaqabaaaleqaaOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaey4kaSIaam OuamaabmaabaGaeqyTdu2aa0baaSqaaiaadMgadaWgaaadbaGaaGym aaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcaca WGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGa aGOmaaqabaaaleaacaaIQaaaaaGccaGLOaGaayzkaaGaaGilaaaa@71D5@

where

E 1 / 4 ( | R ( ε i 1 , i 2 , j 1 , j 2 * ) | 4 ) = O i 1 , i 2 , j 1 , j 2 ( λ n 1 + ( n λ ) 3 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaWaaSGbaeaacaaIXaaabaGaaGinaaaaaaGcdaqadaqaamaa emaabaGaamOuamaabmaabaGaeqyTdu2aa0baaSqaaiaadMgadaWgaa adbaGaaGymaaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabeaa liaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgada WgaaadbaGaaGOmaaqabaaaleaacaaIQaaaaaGccaGLOaGaayzkaaGa aGPaVdGaay5bSlaawIa7amaaCaaaleqabaGaaGPaVlaaisdaaaaaki aawIcacaGLPaaacaaI9aGaam4tamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaWcca aISaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaakmaabmaabaGaeq4UdWMaamOBamaaCa aaleqabaGaeyOeI0IaaGymaaaakiabgUcaRmaabmaabaGaamOBaiab eU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0YaaSGbaeaaca aIZaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaacaaISaaaaa@68E5@

it is seen that

E ( ε i 1 , i 2 , j 1 , j 2 * G ( a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε | x j 2 ) d G ( ε | x j 1 ) ) = G ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) [ E ( d i 1 , j 1 ) + b i 1 , j 1 , j 2 ( t m i 2 ) ] + G ( 1 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 ) + G ( 1 , 0 ) ( t m i 2 | x j 2 ) b i 2 , j 2 , j 1 t m i 1 ε d G ( ε | x j 1 ) + 1 2 G ( 2 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) E ( d i 1 , j 1 2 ) + 1 2 G ( 2 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) E ( d i 1 , j 1 d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) , ( A .13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCqaaa aabaGaamyramaabmaabaWaa8qmaeqaleaacqGHsislcqGHEisPaeaa cqaH1oqzdaqhaaqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaale aacaaIQaaaaaqdcqGHRiI8aOGaam4ramaabmaabaWaaqGaaeaacaWG HbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaam OAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAamaaBa aameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqa aSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeqyTdu MaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaa meaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaacaWGKbGaam4ram aabmaabaWaaqGaaeaacqaH1oqzcaaMc8oacaGLiWoacaaMc8UaamiE amaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaay jkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGypaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqa baGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaS baaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadEeadaqa daqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAam aaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Ua amiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqaaiaaig dacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaig daaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqa aiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaa Gaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaa leaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawI a7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqa baaaleqaaaGccaGLOaGaayzkaaWaamWaaeaacaWGfbWaaeWaaeaaca WGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGa amOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGLPaaacq GHRaWkcaWGIbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWc caaISaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaS baaWqaaiaaikdaaeqaaaWcbeaakmaabmaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaaaki aawIcacaGLPaaaaiaawUfacaGLDbaaaeaacaaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaSIaam4ramaaCaaaleqaba WaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqa daqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAam aaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Ua amiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHi Tiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqaba GccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSba aWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadweadaqada qaaiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawM caaiabgUcaRiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYca caaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacq GHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaa leqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAam aaBaaameaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaacaWGIbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAam aaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbeaakmaapedabeWcbaGaeyOeI0IaeyOhIukabaGaamiDai abgkHiTiaad2gadaWgaaadbaGaamyAamaaBaaabaGaaGymaaqabaaa beaaa0Gaey4kIipakiabew7aLjaadsgacaWGhbWaaeWaaeaadaabca qaaiabew7aLjaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaa dQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaaaba GaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaGaam4ramaaCaaaleqabaWaae WaaeaacaaIYaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiE amaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaay jkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGcca aMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadweadaqadaqaai aadsgadaqhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYca caWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaaGOmaaaaaOGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaam4ramaa CaaaleqabaWaaeWaaeaacaaIYaGaaiilaiaaicdaaiaawIcacaGLPa aaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWc baGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiW oacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqa aaWcbeaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaam iDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaa beaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaaca WGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaa dweadaqadaqaaiaadsgadaqhaaWcbaGaamyAamaaBaaameaacaaIYa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaaGOm aaaaaOGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqa aiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaq GaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGa ayzkaaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaic daaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHi Tiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqaba GccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadweadaqada qaaiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaadsgadaWgaa WcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaqaaiaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHRaWkcaWGVbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAam aaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOWaae WaaeaacqaH7oaBdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqa aiaad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaigdaaaaakiaawIcacaGLPaaacaaISaaaaiaaywW7caGGOaGaaiyq aiaac6cacaaIXaGaaG4maiaacMcaaaa@154A@

and that

E ( G ( ε i 1 , i 2 , j 1 , j 2 * | x j 1 ) G ( ε i 2 , i 1 , j 2 , j 1 * | x j 2 ) ) = G ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) [ E ( d i 1 , j 1 ) + b i 1 , j 1 , j 2 ( t m i 2 ) ] + G ( 1 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) [ E ( d i 2 , j 2 ) + b i 2 , j 2 , j 1 ( t m i 1 ) ] + 1 2 G ( 2 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) E ( d i 1 , j 1 2 ) + 1 2 G ( 2 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) E ( d i 1 , j 1 d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) . ( A .14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabGqaaa aaaeaacaWGfbWaaeWaaeaacaWGhbWaaeWaaeaadaabcaqaaiabew7a LnaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadM gadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaaG OkaaaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQga daWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGaam4ram aabmaabaWaaqGaaeaacqaH1oqzdaqhaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaliaaiYcacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaG ilaiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaa meaacaaIXaaabeaaaSqaaiaaiQcaaaGccaaMc8oacaGLiWoacaaMc8 UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGypaiaadEeadaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWG QbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadE eadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGa amyAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoaca aMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWc beaaaOGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqa aiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaq GaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGa ayzkaaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBam aaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7 aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaG OmaaqabaaaleqaaaGccaGLOaGaayzkaaWaamWaaeaacaWGfbWaaeWa aeaacaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGL PaaacqGHRaWkcaWGIbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWG QbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqa baaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacaaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaSIaam4ramaaCaaa leqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaa GcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGa amyAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoaca aMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWc beaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa aSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQb WaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaamaadmaa baGaamyramaabmaabaGaamizamaaBaaaleaacaWGPbWaaSbaaWqaai aaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqa aaGccaGLOaGaayzkaaGaey4kaSIaamOyamaaBaaaleaacaWGPbWaaS baaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqa baWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGcdaqada qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaaaleqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaba GaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaGaam4ramaaCaaaleqabaWaae WaaeaacaaIYaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiE amaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaay jkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGcca aMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadweadaqadaqaai aadsgadaqhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYca caWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaaGOmaaaaaOGaayjkai aawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadEeadaahaa WcbeqaamaabmaabaGaaGOmaiaacYcacaaIWaaacaGLOaGaayzkaaaa aOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaai aadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaGPaVdGaayjcSdGa aGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaS qabaaakiaawIcacaGLPaaacaWGhbWaaeWaaeaadaabcaqaaiaadsha cqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqaba aaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOA amaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGLPaaacaWGfb WaaeWaaeaacaWGKbWaa0baaSqaaiaadMgadaWgaaadbaGaaGOmaaqa baWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqaaiaaikdaaa aakiaawIcacaGLPaaaaeaacaaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8Uaey4kaSIaam4ramaaCaaaleqabaWaaeWaaeaaca aIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaa baGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaaca aIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaa leaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawM caaiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYcacaaIWaaa caGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislca WGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa aGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaame aacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaacaWGfbWaaeWaaeaa caWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccaWGKbWaaSbaaSqa aiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaame aacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaeaacaaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaSIaam4BamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaa baGaeq4UdW2aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaaca WGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaaGccaGLOaGaayzkaaGaaGOlaaaacaaMf8UaaGzbVlaacIcaca GGbbGaaiOlaiaaigdacaaI0aGaaiykaaaa@F1CF@

Using the asymptotic expansions in (A.4), (A.13) and (A.14) yields

cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = G ( 1 , 0 ) ( t m i 2 | x j 2 ) b i 2 , j 2 , j 1 γ i 1 , j 1 + G ( 1 , 0 ) ( t m i 1 | x j 1 ) b i 1 , j 1 , j 2 γ i 2 , j 2 + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) cov ( d i 1 , j 1 , d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) , ( A .15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaa aabaGaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccq GHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAam aaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacq aH1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGc cqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaW qaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyA amaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGypaiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWa aeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadM gadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPa VlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqaba aakiaawIcacaGLPaaacaWGIbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaliaaiY cacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabeo7aNnaaBaaa leaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaa adbaGaaGymaaqabaaaleqaaOGaey4kaSIaam4ramaaCaaaleqabaWa aeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaa BaaameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Uaam iEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGa ayjkaiaawMcaaiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaIXa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaa dQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeq4SdC2aaSbaaSqaai aadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaa caaIYaaabeaaaSqabaaakeaacaaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8Uaey4kaSIaam4ramaaCaaaleqabaWaaeWaaeaa caaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBa aaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaa wMcaaiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYcacaaIWa aacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsisl caWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaO GaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaa meaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaacaqGJbGaae4Bai aabAhadaqadaqaaiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaki aaiYcacaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWc caaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawIcaca GLPaaaaeaacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8Uaey4kaSIaam4BamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOA amaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaakmaabmaabaGaeq4UdW2aaWbaaSqabeaacaaI0aaa aOGaey4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaW baaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaaGilaaaa caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlai aaigdacaaI1aGaaiykaaaa@1D80@

where

γ i , j := t m i ε d G ( ε | x j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI6aGaaGypamaapeda beWcbaGaeyOeI0IaeyOhIukabaGaamiDaiabgkHiTiaad2gadaWgaa adbaGaamyAaaqabaaaniabgUIiYdGccqaH1oqzcaWGKbGaam4ramaa bmaabaWaaqGaaeaacqaH1oqzcaaMc8oacaGLiWoacaaMc8UaamiEam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaai6caaaa@5190@

Now observe that

b i , j 1 , j 2 = w j 1 , j 2 w i , j 2 + O i , j 1 , j 2 ( ( n λ ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaI SaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccaaI9aGaam4Dam aaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQga daWgaaadbaGaaGOmaaqabaaaleqaaOGaeyOeI0Iaam4DamaaBaaale aacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa ey4kaSIaam4tamaaBaaaleaacaWGPbGaaGilaiaadQgadaWgaaadba GaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqa baGcdaqadaqaamaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaaaa@57F8@

and that

cov ( d i 1 , j 1 , d i 2 , j 2 ) = 1 c i 1 , j 1 c i 2 , j 2 k s ; k j 1 , j 2 ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 = k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 + O i 1 , i 2 , j 1 , j 2 ( ( n λ ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabogacaqGVbGaaeODamaabmaabaGaamizamaaBaaaleaacaWG PbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaG ymaaqabaaaleqaaOGaaGilaiaadsgadaWgaaWcbaGaamyAamaaBaaa meaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaa WcbeaaaOGaayjkaiaawMcaaaqaaiaai2dadaWcaaqaaiaaigdaaeaa caWGJbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccaWGJbWaaSbaaSqa aiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaame aacaaIYaaabeaaaSqabaaaaOWaaabuaeaadaqadaqaaiaadEhadaWg aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGRbaabe aakiabgkHiTiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaa beaaliaaiYcacaWGRbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam 4DamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaa dUgaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbWaaSbaaWqaai aaikdaaeqaaSGaaGilaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeq4W dm3aa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZca WGZbGaaG4oaiaadUgacqGHGjsUcaWGQbWaaSbaaWqaaiaaigdaaeqa aSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaniabggHiLd aakeaaaeaacaaI9aWaaabuaeaadaqadaqaaiaadEhadaWgaaWcbaGa amOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGRbaabeaakiabgk HiTiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGRbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam4DamaaBa aaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadUgaaeqa aOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaae qaaSGaaGilaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeq4Wdm3aa0ba aSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabe qdcqGHris5aOGaey4kaSIaam4tamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaWcca aISaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaakmaabmaabaWaaeWaaeaacaWGUbGaeq 4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIYaaaaaGc caGLOaGaayzkaaaaaaaa@B054@

so that

D 2 = 2 D 2 a + D 2 b + o ( λ 5 + n 1 ) , ( A .16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaakiaai2dacaaIYaGaamiramaaBaaaleaacaaI YaGaamyyaaqabaGccqGHRaWkcaWGebWaaSbaaSqaaiaaikdacaWGIb aabeaakiabgUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGa aGynaaaakiabgUcaRiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaa aakiaawIcacaGLPaaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7caGGOaGaaiyqaiaac6cacaaIXaGaaGOnaiaacMcaaaa@54E5@

where

D 2 a := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) ( w j 1 , j 2 w i 1 , j 2 ) γ i 2 , j 2 = 1 N 2 i 1 s i 2 s j 1 s j 2 s w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) ( w j 1 , j 2 w i 1 , j 2 ) γ i 2 , j 2 + O ( n 1 ( n λ ) 1 ) = 1 N 2 j 2 s G ( 1 , 0 ) ( t m j 2 | x j 2 ) γ j 2 , j 2 [ j 1 s w j 1 , j 2 i 1 s w i 1 , j 1 i 2 s w i 2 , j 2 ( i s w i , j 2 ) 2 ] + O ( n 1 λ + n 1 ( n λ ) 1 ) = O ( ( n λ ) 1 α + n 1 λ + n 1 ( n λ ) 1 ) ( A .17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaamiramaaBaaaleaacaaIYaGaamyyaaqabaaakeaacaaI6aGa aGypamaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaa aaaOWaaabuaeaadaaeqbqaamaaqafabaWaaabuaeaacaWG3bWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBa aameaacaaIXaaabeaaaSqabaGccaWG3bWaaSbaaSqaaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabe aaaSqabaGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGa aGimaaGaayjkaiaawMcaaaaaaeaacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaeyicI4Saam4CaiaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqa aSGaeyiyIKRaamOAamaaBaaameaacaaIXaaabeaaaSqab0GaeyyeIu oaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGHiiIZcaWGZbaa beqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliabgM GiplaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaS qaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzk aaWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqGH sislcaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawIcacaGL PaaacqaHZoWzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOqaaaqaaiaa i2dadaWcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaa aakmaaqafabaWaaabuaeaadaaeqbqaamaaqafabaGaam4DamaaBaaa leaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaa adbaGaaGymaaqabaaaleqaaOGaam4DamaaBaaaleaacaWGPbWaaSba aWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaa icdaaiaawIcacaGLPaaaaaaabaGaamOAamaaBaaameaacaaIYaaabe aaliabgIGiolaadohaaeqaniabggHiLdaaleaacaWGQbWaaSbaaWqa aiaaigdaaeqaaSGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadM gadaWgaaadbaGaaGOmaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5 aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliabgMGiplaadohaae qaniabggHiLdGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2ga daWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccaaMc8 oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaa igdaaeqaaaWcbeaaaOGaayjkaiaawMcaamaabmaabaGaam4DamaaBa aaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaOGaeyOeI0Iaam4DamaaBaaaleaaca WGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGa aGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaeq4SdC2aaSbaaSqaai aadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaa caaIYaaabeaaaSqabaGccqGHRaWkcaWGpbWaaeWaaeaacaWGUbWaaW baaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGUbGaeq4UdWga caGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOa GaayzkaaaabaaabaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaah aaWcbeqaaiaaikdaaaaaaOWaaabuaeaacaWGhbWaaWbaaSqabeaada qadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQbWaaS baaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGcca GLOaGaayzkaaGaeq4SdC2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOm aaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaaba GaamOAamaaBaaameaacaaIYaaabeaaliabgIGiolaadohaaeqaniab ggHiLdGcdaWadaqaamaaqafabaGaam4DamaaBaaaleaacaWGQbWaaS baaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqa baaaleqaaaqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGHiiIZca WGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMga daWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXa aabeaaaSqabaaabaGaamyAamaaBaaameaacaaIXaaabeaaliabgMGi plaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaam yAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaa ikdaaeqaaaWcbeaaaeaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaey ycI8Saam4Caaqab0GaeyyeIuoakiabgkHiTmaabmaabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIYa aabeaaaSqabaaabaGaamyAaiabgMGiplaadohaaeqaniabggHiLdaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDb aaaeaaaeaacaaMe8UaaGjbVlabgUcaRiaad+eadaqadaqaaiaad6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH7oaBcqGHRaWkcaWGUb WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGUbGaeq4U dWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaaabaaabaGaaGypaiaad+eadaqadaqaamaabmaabaGa amOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiabeg7aHjabgUcaRiaad6gadaahaaWcbeqaaiabgkHiTiaa igdaaaGccqaH7oaBcqGHRaWkcaWGUbWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaiaaywW7ca aMf8UaaiikaiaacgeacaGGUaGaaGymaiaaiEdacaGGPaaaaa@7777@

and

D 2 b := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) × k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 = 1 N 2 i 1 s i 2 s j 1 s j 2 s w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) × k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 + O ( n 1 ( n λ ) 1 ) = 1 N 2 k s σ k 2 [ G ( 1 , 0 ) ( t m k | x k ) ] 2 ( i s j s w i , j ( w j , k w i , k ) ) 2 + O ( n 1 λ + n 1 ( n λ ) 1 ) = 1 N 2 k s σ k 2 [ G ( 1 , 0 ) ( t m k | x k ) ] 2 ( j s w j , k i s w i , j i s w i , k ) 2 + O ( n 1 λ + n 1 ( n λ ) 1 ) = O ( ( n λ ) 1 α + n 1 λ ) . ( A .18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaa aabaGaamiramaaBaaaleaacaaIYaGaamOyaaqabaaakeaacaaI6aGa aGypamaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaa aaaOWaaabuaeaadaaeqbqaamaaqafabaWaaabuaeaacaWG3bWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBa aameaacaaIXaaabeaaaSqabaGccaWG3bWaaSbaaSqaaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabe aaaSqabaGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGa aGimaaGaayjkaiaawMcaaaaaaeaacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaeyicI4Saam4CaiaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqa aSGaeyiyIKRaamOAamaaBaaameaacaaIXaaabeaaaSqab0GaeyyeIu oaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGHiiIZcaWGZbaa beqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliabgM GiplaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaS qaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzk aaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaai aawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGcca aMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaqaaaqaaiaaysW7ca aMe8UaaGjbVlaaysW7cqGHxdaTdaaeqbqaamaabmaabaGaam4Damaa BaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadUgaae qaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaaGilaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaaca WG3bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISaGa am4AaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaam4AaaqabaaakiaawIcacaGLPaaacqaH dpWCdaqhaaWcbaGaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiol aadohaaeqaniabggHiLdaakeaaaeaacaaI9aWaaSaaaeaacaaIXaaa baGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafaba WaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbe aakiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaadEeadaahaa WcbeqaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaa aaqaaiaadQgadaWgaaadbaGaaGOmaaqabaWccqGHiiIZcaWGZbaabe qdcqGHris5aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliabgIGi olaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaae qaaSGaeyycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOWaaeWaae aadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWg aaadbaGaaGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadI hadaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaa wIcacaGLPaaacaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSa GaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGa eyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaa WcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQga daWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaabaaaba GaaGjbVlaaysW7caaMe8UaaGjbVlabgEna0oaaqafabaWaaeWaaeaa caWG3bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISa Gaam4AaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaam4AaaqabaaakiaawIcacaGLPaaada qadaqaaiaadEhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaa liaaiYcacaWGRbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAam aaBaaameaacaaIYaaabeaaliaaiYcacaWGRbaabeaaaOGaayjkaiaa wMcaaiabeo8aZnaaDaaaleaacaWGRbaabaGaaGOmaaaaaeaacaWGRb GaeyicI4Saam4Caaqab0GaeyyeIuoakiabgUcaRiaad+eadaqadaqa aiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaad6 gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigda aaaakiaawIcacaGLPaaaaeaaaeaacaaI9aWaaSaaaeaacaaIXaaaba GaamOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaaiabeo8aZnaa DaaaleaacaWGRbaabaGaaGOmaaaakmaadmaabaGaam4ramaaCaaale qabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGc daqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaam 4AaaqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaa bmaabaWaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiY cacaWGQbaabeaakmaabmaabaGaam4DamaaBaaaleaacaWGQbGaaGil aiaadUgaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbGaaGilai aadUgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam4C aaqab0GaeyyeIuoaaSqaaiaadMgacqGHjiYZcaWGZbaabeqdcqGHri s5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa am4tamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaki abeU7aSjabgUcaRiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGc daqadaqaaiaad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaai abgkHiTiaaigdaaaaakiaawIcacaGLPaaaaeaaaeaacaaI9aWaaSaa aeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqb qaaiabeo8aZnaaDaaaleaacaWGRbaabaGaaGOmaaaakmaadmaabaGa am4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawI cacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2ga daWgaaWcbaGaam4AaaqabaGccaaMc8oacaGLiWoacaaMc8UaamiEam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa amaaCaaaleqabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0 GaeyyeIuoakmaabmaabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadQga caaISaGaam4AaaqabaGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAai aaiYcacaWGQbaabeaakiabgkHiTmaaqafabaGaam4DamaaBaaaleaa caWGPbGaaGilaiaadUgaaeqaaaqaaiaadMgacqGHjiYZcaWGZbaabe qdcqGHris5aaWcbaGaamyAaiabgMGiplaadohaaeqaniabggHiLdaa leaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad+eadaqadaqaaiaa d6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH7oaBcqGHRaWkca WGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGUbGa eq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaa GccaGLOaGaayzkaaaabaaabaGaaGypaiaad+eadaqadaqaamaabmaa baGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 IaaGymaaaakiabeg7aHjabgUcaRiaad6gadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqaH7oaBaiaawIcacaGLPaaacaaIUaaaaiaaywW7ca aMf8UaaiikaiaacgeacaGGUaGaaGymaiaaiIdacaGGPaaaaa@F18A@

Putting everything together finally yields

var ( F ^ * ( t ) F N ( t ) ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaabmaabaGabmOrayaajaWaaWbaaSqa beaacaaIQaaaaOGaaGzaVpaabmaabaGaamiDaaGaayjkaiaawMcaai abgkHiTiaadAeadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaadsha aiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaaI9aWaaSaaaeaaca aIXaaabaGaamOBaaaadaqadaqaamaalaaabaGaamOtaiabgkHiTiaa d6gaaeaacaWGobaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aakmaapedabeWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakmaadmaa baGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaykW7caWG 4baacaGLOaGaayzkaaGaeyOeI0Iaam4ramaaCaaaleqabaGaaGOmaa aakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGa amiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaykW7caWG4baaca GLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaadaWcgaqaaiaadIga daWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaai aawIcacaGLPaaaaeaacaWGObWaaSbaaSqaaiaadohaaeqaaOWaaeWa aeaacaWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaadIgada WgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaa wIcacaGLPaaacaWGKbGaamiEaaqaaaqaaiaaysW7caaMe8Uaey4kaS YaaSaaaeaacaaIXaaabaGaamOtaiabgkHiTiaad6gaaaWaaeWaaeaa daWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaaeaa caWGIbaaniabgUIiYdGcdaWadaqaaiaadEeadaqadaqaamaaeiaaba GaamiDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaa caaMc8oacaGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaiabgkHiTi aadEeadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8 oacaGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2fa aiaadIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaai aadIhaaiaawIcacaGLPaaacaWGKbGaamiEaiabgUcaRiaad+gadaqa daqaaiabeU7aSnaaCaaaleqabaGaaGynaaaakiabgUcaRiaad6gada ahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaaIUaaa aaaa@C76C@

Variance of the generalized difference estimator with modified fitted values

In view of (A.7), we shall show that

var ( F ˜ * ( t ) F N ( t ) ) = var ( F ^ * ( t ) F N ( t ) ) + o ( n 1 ) ( A .19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaeWaaeaaceWGgbGbaGaadaahaaWcbeqaaiaaiQcaaaGc caaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOram aaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaai2dacaqG2bGaaeyyaiaabkhadaqadaqaai qadAeagaqcamaaCaaaleqabaGaaGOkaaaakiaaygW7daqadaqaaiaa dshaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6eaae qaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGa ey4kaSIaam4BamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0IaaG ymaaaaaOGaayjkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaacgeacaGGUaGaaGymaiaaiMdacaGGPaaaaa@66E9@

by showing that

var ( 1 N i s ( 1 π i 1 ) j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) ) = o ( n 1 ) . ( A .20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafa beWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGcdaqadaqaai aaigdacqGHsislcqaHapaCdaqhaaWcbaGaamyAaaqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaadaaeqbqaaiqadEhagaacamaaBaaale aacaWGPbGaaGilaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaa beqdcqGHris5aOWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaa WcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaa leaacaWGPbaabeaakiabgUcaRiqadsgagaacamaaBaaaleaacaWGPb GaaGilaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Iaamysamaa bmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshaai aawIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI9aGa am4BamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaO GaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaacIcacaGGbbGaaiOlaiaaikdacaaIWaGaaiykaaaa@7D8F@

To prove (A.20) observe that the variance on the left hand side may be written as

E 1 + E 2 + E 3 2 E 4 2 E 5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIXaaabeaakiabgUcaRiaadweadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGfbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaG OmaiaadweadaWgaaWcbaGaaGinaaqabaGccqGHsislcaaIYaGaamyr amaaBaaaleaacaaI1aaabeaakiaaiYcaaaa@437B@

where

E 1 := 1 N 2 i 1 s i 2 s j s w ˜ i 1 , j w ˜ i 2 , j ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε j t m i 2 + d ˜ i 2 , j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaaceWG3bGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaa beaaliaaiYcacaWGQbaabeaakiqadEhagaacamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqaaaqaaiaadQga cqGHiiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaaca aIYaaabeaaliabgIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaSGaeyicI4Saam4Caaqab0GaeyyeIuoakm aabmaabaGaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbWaaSba aWqaaiaaigdaaeqaaaWcbaGaeyOeI0IaaGymaaaaaOGaayjkaiaawM caamaabmaabaGaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaaWcbaGaeyOeI0IaaGymaaaaaOGaayjkai aawMcaaiabgEna0kaabogacaqGVbGaaeODamaabmaabaGaamysamaa bmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaabaGaaGymaaqabaaa beaakiabgUcaRiqadsgagaacamaaBaaaleaacaWGPbWaaSbaaWqaai aaigdaaeqaaSGaaGilaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGil aiaadMeadaqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiabgs MiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGOmaaqabaaaleqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaadM gadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaaakiaawIca caGLPaaaaiaawIcacaGLPaaacaaISaaaaa@92C7@

E 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w ˜ i 1 , j w ˜ i 2 , j 2 ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j 1 t m i 1 + d ˜ i 1 , j 1 ) , I ( ε j 2 t m i 2 + d ˜ i 2 , j 2 ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIYaaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaadaaeqbqaaiqadEhagaacamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadQgaaeqaaOGabm4DayaaiaWaaSbaaS qaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaa meaacaaIYaaabeaaaSqabaaabaGaamOAamaaBaaameaacaaIYaaabe aaliabgIGiolaadohacaaISaGaamOAamaaBaaameaacaaIYaaabeaa liabgcMi5kaadQgadaWgaaadbaGaaGymaaqabaaaleqaniabggHiLd aaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaeyicI4Saam4Caaqa b0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccqGHii IZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIXaaa beaaliabgIGiolaadohaaeqaniabggHiLdGcdaqadaqaaiaaigdacq GHsislcqaHapaCdaqhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa aSqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaadaqadaqaaiaaig dacqGHsislcqaHapaCdaqhaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaaSqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacqGHxdaTca qGJbGaae4BaiaabAhadaqadaqaaiaadMeadaqadaqaaiabew7aLnaa BaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgsMiJk aadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGym aaqabaaaleqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaadMgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaa beaaaSqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaabaGaeq yTdu2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa eyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaaSqabaGccqGHRaWkceWGKbGbaGaadaWgaaWcbaGa amyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaai aaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaa iYcaaaa@A558@

E 3 := 1 N 2 i s ( 1 π i 1 ) 2 var ( I ( ε i t m i ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadweadaWgaaWcbaGaaG4maaqabaaakeaacaaI6aGaaGypamaa laaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaa buaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaa baGaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbaabaGaeyOeI0 IaaGymaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaa bAhacaqGHbGaaeOCamaabmaabaGaamysamaabmaabaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaca aISaaaaaaa@590D@

E 4 := 1 N 2 i s j s w ˜ i 1 , j ( 1 π i 1 ) ( 1 π j 1 ) cov ( I ( ε j t m i + d ˜ i , j ) , I ( ε j t m j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadweadaWgaaWcbaGaaGinaaqabaaakeaacaaI6aGaaGypamaa laaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaa buaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaaqafa baGabm4DayaaiaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqaba WccaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniab ggHiLdGcdaqadaqaaiaaigdacqGHsislcqaHapaCdaqhaaWcbaGaam yAaaqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaadaqadaqaaiaa igdacqGHsislcqaHapaCdaqhaaWcbaGaamOAaaqaaiabgkHiTiaaig daaaaakiaawIcacaGLPaaacaqGJbGaae4BaiaabAhadaqadaqaaiaa dMeadaqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiabgsMiJk aadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIa bmizayaaiaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawI cacaGLPaaacaaISaGaamysamaabmaabaGaeqyTdu2aaSbaaSqaaiaa dQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaam OAaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaaISaaaaaaa @7A4F@

and finally

E 5 := 1 N 2 i 1 s i 2 s j s , j i 2 w ˜ i 1 , j ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaI1aaabeaakiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa amOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaa buaeaaceWG3bGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaa beaaliaaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4CaiaaiY cacaWGQbGaeyiyIKRaamyAamaaBaaameaacaaIYaaabeaaaSqab0Ga eyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccqGHiiIZca WGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIXaaabeaa liabgIGiolaadohaaeqaniabggHiLdGcdaqadaqaaiaaigdacqGHsi slcqaHapaCdaqhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqa aiabgkHiTiaaigdaaaaakiaawIcacaGLPaaadaqadaqaaiaaigdacq GHsislcqaHapaCdaqhaaWcbaGaamyAamaaBaaameaacaaIYaaabeaa aSqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacqGHxdaTcaqGJb Gaae4BaiaabAhadaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBaaa leaacaWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaS qaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIabmiz ayaaiaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaabaGa eqyTdu2aaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaO GaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaa meaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPa aacaaIUaaaaa@8EC6@

To begin with, consider E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIXaaabeaaaaa@36B0@ and E 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIYaaabeaakiaac6caaaa@376D@ Observe that except for (i) the fact that the summation indexes i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaaIXaaabeaaaaa@36D4@ and i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaaIYaaabeaaaaa@36D5@ range over s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@35F7@ instead of the complement of s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@35F7@ in U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaacY caaaa@3689@ (ii) the presence of the factors ( 1 π i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaeqiWda3aa0baaSqaaiaadMgaaeaacqGHsislcaaI XaaaaaGccaGLOaGaayzkaaaaaa@3CBA@ and (iii) the fact that the w i , j s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaGqaaOGaa8xgGiaabohaaaa@3A7D@ and the d i , j s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbGaaGilaiaadQgaaeqaaGqaaOGaa8xgGiaabohaaaa@3A6A@ are substituted by their design-weighted counterparts w ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaia WaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@38C9@ and d ˜ i , j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaGccaGGSaaaaa@3970@ E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIXaaabeaaaaa@36B0@ and E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIYaaabeaaaaa@36B1@ are the same as D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@36AF@ and D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaaaaa@36B0@ from var ( F ^ * ( t ) F N ( t ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaeWaaeaaceWGgbGbaKaadaahaaWcbeqaaiaaiQcaaaGc caaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOram aaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaacYcaaaa@451F@ respectively. Adapting the proofs that lead to the asymptotic expansions for D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@36AF@ and D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaaaaa@36B0@ shows thus that

E 1 = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ 1 π 1 ( x ) ] 2 h s ( x ) d x + o ( n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadweadaWgaaWcbaGaaGymaaqabaaakeaacaaI9aWaaSaaaeaa caaIXaaabaGaamOBaaaadaqadaqaamaalaaabaGaamOtaiabgkHiTi aad6gaaeaacaWGobaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaakmaapedabeWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakmaadm aabaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaykW7ca WG4baacaGLOaGaayzkaaGaeyOeI0Iaam4ramaaCaaaleqabaGaaGOm aaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaaba GaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaykW7caWG4baa caGLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaacaaIXaGaeyOeI0 IaeqiWda3aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG 4baacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYa aaaOGaamiAamaaBaaaleaacaWGZbaabeaakmaabmaabaGaamiEaaGa ayjkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam4BamaabmaabaGaam OBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa aaa@794E@

and that

E 2 = o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIYaaabeaakiaai2dacaWGVbWaaeWaaeaacqaH7oaBdaah aaWcbeqaaiaaiwdaaaGccqGHRaWkcaWGUbWaaWbaaSqabeaacqGHsi slcaaIXaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@4114@

As for E 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIZaaabeaaaaa@36B2@ it is immediately seen that

E 3 = E 1 + o ( n 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIZaaabeaakiaai2dacaWGfbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaam4BamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0 IaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@4024@

while in order to deal with E 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaI0aaabeaaaaa@36B3@ and E 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaI1aaabeaaaaa@36B4@ we shall need asymptotic expansions for

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) ( A .21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGa amOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaaca WGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgUcaRiqadsgagaac amaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQ gaaeqaaaGccaGLOaGaayzkaaGaaGilaiaadMeadaqadaqaaiabew7a LnaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgs MiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6cacaaI YaGaaGymaiaacMcaaaa@6433@

for the case when j = i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaWGPbWaaSbaaSqaaiaaikdaaeqaaaaa@388B@ and the case when j i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgc Mi5kaadMgadaWgaaWcbaGaaGOmaaqabaGccaGGUaaaaa@3A47@ In the former case we may employ arguments similar to those for proving (A.9) and (A.10), which lead to

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε j t m j ) ) = G ( t m i 1 t m j | x j ) G ( t m i 1 | x j ) G ( t m j | x j ) + O ( λ 2 + ( n λ ) 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2 gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccqGH RaWkceWGKbGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWa aeWaaeaacqaH1oqzdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaai2dacaWGhbWaaeWaaeaadaab caqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadba GaaGymaaqabaaaleqaaOGaey4jIKTaamiDaiabgkHiTiaad2gadaWg aaWcbaGaamOAaaqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadEeadaqa daqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAam aaBaaameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Ua amiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadEeada qadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamOA aaqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQb aabeaaaOGaayjkaiaawMcaaiabgUcaRiaad+eadaqadaqaaiabeU7a SnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaamOBaiabeU 7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0YaaSGbaeaacaaI XaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaacaaIUaaaaaaa@A345@

When j i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgc Mi5kaadMgadaWgaaWcbaGaaGOmaaqabaGccaGGSaaaaa@3A45@ on the other hand, the covariance in (A.21) is different from zero only if | x j x i 2 | λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8UaamiEamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadIhadaWg aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawEa7ca GLiWoacqGHKjYOcqaH7oaBaaa@4339@ or | x i 1 x i 2 | λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8UaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiabgkHiTiaadIhadaWgaaWcbaGaamyAamaaBaaameaacaaIYa aabeaaaSqabaaakiaawEa7caGLiWoacqGHKjYOcqaH7oaBcaGGSaaa aa@44DB@ and adapting (A.12) it can be shown that

E ( I ( ε j t m i 1 + d ˜ i 1 , j ) I ( ε i 2 t m i 2 ) ) = E ( E ( I ( ε j a ˜ i 1 , j , i 2 + b ˜ i 1 , j , i 2 ε i 2 ) I ( ε i 2 t m i 2 ) | ε k , k i , j ) ) = E ( t m i 2 G ( a ˜ i 1 , j , i 2 + b ˜ i 1 , j , i 2 ε | x j ) d G ( ε | x i 2 ) ) = G ( t m i 1 | x j ) G ( t m i 2 | x i 2 ) + G ( t m i 2 | x i 2 ) G ( 1 , 0 ) ( t m i 1 | x j ) E ( d i 1 , j ) + G ( 1 , 0 ) ( t m i 1 | x j ) b ˜ i 1 , j , i 2 γ i 2 , i 2 + 1 2 G ( t m i 2 | x i 2 ) G ( 2 , 0 ) ( t m i 1 | x j ) E ( d i 1 , j 2 ) + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyqaaa aabaGaamyramaabmaabaGaamysamaabmaabaGaeqyTdu2aaSbaaSqa aiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAamaaBaaabaGaaGymaaqabaaabeaakiabgUcaRiqadsgagaac amaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQ gaaeqaaaGccaGLOaGaayzkaaGaamysamaabmaabaGaeqyTdu2aaSba aSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeyizImQaam iDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaai2dacaWGfbWaaeWaaeaacaWG fbWaaeWaaeaadaabcaqaaiaadMeadaqadaqaaiabew7aLnaaBaaale aacaWGQbaabeaakiabgsMiJkqadggagaacamaaBaaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgacaaISaGaamyAamaaBa aameaacaaIYaaabeaaaSqabaGccqGHRaWkdaaiaaqaaiaadkgaaiaa woWaamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilai aadQgacaaISaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqaH 1oqzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaaaki aawIcacaGLPaaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyA amaaBaaameaacaaIYaaabeaaaSqabaGccqGHKjYOcaWG0bGaeyOeI0 IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaa aOGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaykW7cqaH1oqzdaWgaa WcbaGaam4AaaqabaGccaaISaGaam4AaiabgcMi5kaadMgacaaISaGa amOAaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGypaiaadweadaqadaqaamaapedabeWc baGaeyOeI0IaeyOhIukabaGaamiDaiabgkHiTiaad2gadaWgaaadba GaamyAamaaBaaabaGaaGOmaaqabaaabeaaa0Gaey4kIipakiaadEea daqadaqaaiqadggagaacamaaBaaaleaacaWGPbWaaSbaaWqaaiaaig daaeqaaSGaaGilaiaadQgacaaISaGaamyAamaaBaaameaacaaIYaaa beaaaSqabaGccqGHRaWkdaabcaqaamaaGaaabaGaamOyaaGaay5ada WaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOA aiaaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabew7aLj aaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGc caGLOaGaayzkaaGaamizaiaadEeadaqadaqaamaaeiaabaGaeqyTdu MaaGPaVdGaayjcSdGaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaa ikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaai aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGypaiaadEeadaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadEeadaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaa BaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Uaam iEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGa ayjkaiaawMcaaiabgUcaRiaadEeadaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaa aSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadEea daahaaWcbeqaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaay zkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaaGPaVdGaay jcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGL PaaacaWGfbWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgadaWgaaadba GaaGymaaqabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaaaeaa caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaS Iaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaa wIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2 gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccaaM c8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaay jkaiaawMcaamaaGaaabaGaamOyaaGaay5adaWaaSbaaSqaaiaadMga daWgaaadbaGaaGymaaqabaWccaaISaGaamOAaiaaiYcacaWGPbWaaS baaWqaaiaaikdaaeqaaaWcbeaakiabeo7aNnaaBaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadMgadaWgaaadbaGaaGOmaa qabaaaleqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG hbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaai aadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaGPaVdGaayjcSdGa aGPaVlaadIhadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaS qabaaakiaawIcacaGLPaaacaWGhbWaaWbaaSqabeaadaqadaqaaiaa ikdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamyramaabmaabaGaamiz amaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQ gaaeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlabgUcaRiaad+gadaWgaaWcba GaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWaaSbaaWqa aiaaikdaaeqaaSGaaGilaiaadQgaaeqaaOWaaeWaaeaacqaH7oaBda ahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaaiaad6gacqaH7oaB aiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawI cacaGLPaaacaaISaaaaaaa@964A@

where a ˜ i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaia WaaSbaaSqaaiaadMgacaaISaGaamOAaiaaiYcacaWGRbaabeaaaaa@3A59@ and b ˜ i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGIbaacaGLdmaadaWgaaWcbaGaamyAaiaaiYcacaWGQbGaaGilaiaa dUgaaeqaaaaa@3B0D@ are the design-weighted counterparts of a i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbGaaGilaiaadQgacaaISaGaam4Aaaqabaaaaa@3A4A@ and b i , j , k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbGaaGilaiaadQgacaaISaGaam4AaaqabaGccaGGSaaa aa@3B05@ respectively. Adapting also (A.4) to account for the design-weights, it is seen that

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) = G ( 1 , 0 ) ( t m i 1 | x j ) b ˜ i 1 , j , i 2 γ i 2 , i 2 + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) = G ( 1 , 0 ) ( t m i | x j ) ( w ˜ j , i 2 w ˜ i 1 , i 2 ) γ i 2 , i 2 + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2 gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccqGH RaWkceWGKbGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWa aeWaaeaacqaH1oqzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabe aaaSqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWG PbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaay jkaiaawMcaaaqaaiaai2dacaWGhbWaaWbaaSqabeaadaqadaqaaiaa igdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaacaaeaacaWGIbaacaGL dmaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcaca WGQbGaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeq4S dC2aaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaam yAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaWGVbWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaaBa aameaacaaIYaaabeaaliaaiYcacaWGQbaabeaakmaabmaabaGaeq4U dW2aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaacaWGUbGaeq 4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGc caGLOaGaayzkaaaabaaabaGaaGypaiaadEeadaahaaWcbeqaamaabm aabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaa daabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaO GaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaadaqadaqaaiqadEhagaacamaaBaaaleaacaWGQb GaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeyOeI0Ia bm4DayaaiaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawIcacaGL PaaacqaHZoWzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaali aaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaa d+gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcaca WGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqaaOWaaeWa aeaacqaH7oaBdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaai aad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaaaaaaaa@C4FB@

so that (cfr. the steps that lead to the asymptotic expansions of the terms D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@36AF@ and D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIYaaabeaaaaa@36B0@ in the variance of the model-based two-step estimator)

E 4 = E 1 + o ( n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaI0aaabeaakiaai2dacaWGfbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaam4BamaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0 IaaGymaaaaaOGaayjkaiaawMcaaaaa@3F6F@

and

E 5 = o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaI1aaabeaakiaai2dacaWGVbWaaeWaaeaacqaH7oaBdaah aaWcbeqaaiaaiwdaaaGccqGHRaWkcaWGUbWaaWbaaSqabeaacqGHsi slcaaIXaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@4117@

This completes the proof of (A.20) and thus (A.19) follows.

References

Breidt, F.J., and Opsomer, J.D. (2000). Local polynomial regression estimators in survey sampling. The Annals Statistics, 28(4), 1026-1053.

Chambers, R.L., and Clark, R. (2012). An Introduction to Model-Based Survey Sampling with Applications, Oxford Statistical Science Series 37.

Chambers, R.L., and Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika, 73(3), 597-604.

Chambers, R.L., Dorfman, A.H. and Wehrly, T.E. (1993). Bias robust estimation in finite populations using non-parametric calibration. Journal of the American Statistical Association, 88(421), 268-277.

Chen, J., and Wu, C. (2002). Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Statistica Sinica, 12, 1223-1239.

Dorfman, A.H., and Hall, P. (1993). Estimators of the finite population distribution function using nonparametric regression. The Annals of Statistics, 21(3), 1452-1475.

Fan, J., and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20(4), 2008-2036.

Hansen, B.E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory, 24, 726-748.

Johnson, A.A., Breidt, F.J. and Opsomer, J.D. (2008). Estimating distribution functions from survey data using nonparametric regression. Journal of Statistical Theory and Practice, 2(3), 419-431.

Kuo, L. (1988). Classical and prediction approaches to estimating distribution functions from survey data. In Proceedings of the Survey Research Methods Section, American Statistical Association, Alexandria, VA, 280-285.

Montanari, G.E., and Ranalli, M.G. (2005). Nonparametric model calibration estimation in survey sampling. Journal of the American Statistical Association, 100(472), 1429-1442.

Rao, J.N.K., Kovar, J.G. and Mantel, H.J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika, 77(2), 365-375.

Rueda, M., Martínez, S., Martínez, H. and Arcos, A. (2007). Estimation of the distribution function with calibration methods. Journal of Statistical Planning and Inference, 137(2), 435-448.

Rueda, M., Sànchez-Borrego, I., Arcos, A. and Martínez, S. (2010). Model-calibration estimation of the distribution function using nonparametric regression. Metrika, 71(1), 33-44.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling, New York: Springer.

Wang, J.C., and Opsomer, J.D. (2011). On asymptotic normality and variance estimation for nondifferentiable survey estimators. Biometrika, 98(1), 91-106.

Wu, C. (2003). Optimal calibration estimators in survey sampling. Biometrika, 90(4), 937-951.

Wu, C., and Sitter, R.R. (2001). A model-calibration approach to using complete auxiliary information from survey data. Journal of the American Statistical Association, 96(453), 185-193.

Date modified: