Une comparaison d’estimateurs non paramétriques pour les fonctions de répartition de populations finies 5. Étude en simulation

À la présente section, nous analysons certains résultats de simulation. Notre objectif est de comparer l’efficacité par rapport au plan de sondage des estimateurs des fonctions de répartition présentés à la section 2 et des estimateurs de la variance présentés à la section 4. Les résultats des simulations s’appliquent à l’échantillonnage aléatoire simple sans remise et à l’échantillonnage de Poisson avec probabilités d’inclusion inégales. À titre de référence, nous avons également inclus dans l’étude en simulation l’estimateur de la fonction de répartition de Horvitz-Thompson

F ^ π ( t ) : = 1 N j s π j 1 I ( y j t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaeqiWdahabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGaamOtaaaadaaeqb qaaiabec8aWnaaDaaaleaacaWGQbaabaGaeyOeI0IaaGymaaaakiaa dMeadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGccqGHKjYOca WG0baacaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam4Caaqab0Ga eyyeIuoaaaa@51AA@

et l’estimateur de variance correspondant

V ˜ ( F ^ π ( t ) ) := 1 N 2 i , j s π i , j π i π j π i , j π i π j I ( y i t ) I ( y j t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGwbGbaG aadaqadaqaaiqadAeagaqcamaaBaaaleaacqaHapaCaeqaaOWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGOoaiaai2 dadaWcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaa kmaaqafabeWcbaGaamyAaiaaiYcacaWGQbGaeyicI4Saam4Caaqab0 GaeyyeIuoakmaalaaabaGaeqiWda3aaSbaaSqaaiaadMgacaaISaGa amOAaaqabaGccqGHsislcqaHapaCdaWgaaWcbaGaamyAaaqabaGccq aHapaCdaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGa amyAaiaaiYcacaWGQbaabeaakiabec8aWnaaBaaaleaacaWGPbaabe aakiabec8aWnaaBaaaleaacaWGQbaabeaaaaGccaWGjbWaaeWaaeaa caWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaamiDaaGaayjkai aawMcaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGc cqGHKjYOcaWG0baacaGLOaGaayzkaaGaaiOlaaaa@6F9C@

Nous avons considéré des populations artificielles ainsi que réelles. Les premières ont été obtenues en générant N = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0JaaGymaiaaysW7caaIWaGaaGimaiaaicdaaaa@3E40@ valeurs x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@3A08@ à partir de variables aléatoires i.i.d. de loi uniforme avec support sur l’intervalle ( 0 , 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaicdacaGGSaGaaGymaaGaayjkaiaawMcaaaaa@3B9F@ et en les combinant avec trois types de fonction de régression m ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaae WaaeaacaWG4baacaGLOaGaayzkaaaaaa@3B69@ et deux types de composantes de l’erreur ε i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccaGGUaaaaa@3B6E@ Les fonctions de régression sont i) m ( x ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaae WaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@3D29@ (uniforme), ii) m ( x ) = 10 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaae WaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiaaicdacaWG 4baaaa@3EE1@ (linéaire) et iii) m ( x ) = 10 x 1 / 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaae WaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiaaicdacaWG 4bWaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaI0aaaaaaaaaa@409D@ (concave), tandis que les composantes de l’erreur ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaaaaa@3AB2@ sont soit des réalisations indépendantes tirées d’une loi t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38EA@ de Student unique à v = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaey ypa0JaaGynaaaa@3AB1@ dl, ou des réalisations indépendantes tirées de N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@38C4@ lois t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38EA@ de Student non centrales décalées à v = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaey ypa0JaaGynaaaa@3AB1@ dl et avec paramètres de non-centralité donnés par μ = 15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3EFA@ Les décalages appliqués aux composantes de l’erreur dans le dernier cas font en sorte que les moyennes des lois t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38EA@ de Student non centrales à partir desquelles elles sont générées soient nulles. Les populations artificielles sont présentées aux figures 5.1 à 5.3. En ce qui concerne les populations réelles, nous avons pris la population M U 284 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam yvaiaaikdacaaI4aGaaGinaaaa@3BD9@ de municipalités suédoises de Särndal et coll. (1992) (taille de la population N = 284 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aad6eacqGH9aqpcaaIYaGaaGioaiaaisdaaiaawMcaaaaa@3CCE@ et considéré le logarithme naturel de R M T 85 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaam ytaiaadsfacaaI4aGaaGynaiabg2da9aaa@3CFA@ Revenus de l’imposition municipale de 1985 (en millions de couronnes) comme variable étudiée Y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaai ilaaaa@397F@ et le logarithme naturel de P 85 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaaG ioaiaaiwdacqGH9aqpaaa@3B4D@ population de 1985 (en milliers) ou de R E V 84 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaam yraiaadAfacaaI4aGaaGinaiabg2da9aaa@3CF3@ valeurs immobilières selon les évaluations de 1984 (en millions de couronnes) comme variable auxiliaire X . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybGaai Olaaaa@3980@ Les populations réelles sont présentées à la figure 5.4.

Figure 5.1 de l'article 14541

Description de la figure 5.1

Figure composée de deux graphiques en nuages de point de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@374D@  en fonction de x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai ilaaaa@37FC@  chacun représentant une population artificielle. Le premier graphique est la population générée à partir de y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaOGaaiilaaaa@3CF2@  où ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student avec ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  L’axe des y va de -4 à 8 et l’axe des x va de 0,0 à 1,0. Le nuage de point est centré autour de y=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaey ypa0JaaGimaiaac6caaaa@3BBF@  Le deuxième graphique en nuage de points est la population générée à partir de y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  et ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indép. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  et μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  L’axe des y va de -10 à 40 et l’axe des x va de 0,0 à 1,0. Le nuage de point est concentré autour de y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaey ypa0JaaGimaaaa@3B0D@  pour de petites valeurs de x. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai Olaaaa@39FE@  Plus x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  augmente, plus la dispersion des points augmente.

Figure 5.2 de l'article 14541

Description de la figure 5.2

Figure composée de deux graphiques en nuages de point de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@374D@  en fonction de x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai ilaaaa@37FC@  chacun représentant une population artificielle. Le premier graphique est la population générée à partir de y i =10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaaicdacaWG4bWaaSba aSqaaiaadMgaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaadMgaae qaaOGaaiilaaaa@416A@  où ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student avec ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  L’axe des y va de 0 à 10 et l’axe des x va de 0,0 à 1,0. Le nuage de point montre une relation linéaire croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  Le deuxième graphique en nuage de points est la population générée à partir de y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  et ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indép. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  et μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  L’axe des y va de 0 à 50 et l’axe des x va de 0,0 à 1,0. Le nuage de point montre une relation linéaire croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  Plus x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  augmente, plus la dispersion des points augmente.

Figure 5.3 de l'article 14541

Description de la figure 5.3

Figure composée de deux graphiques en nuages de point de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@374D@  en fonction de x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai ilaaaa@37FC@  chacun représentant une population artificielle. Le premier graphique est la population générée à partir de y i =10 x i 1/4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaaicdacaWG4bWaa0ba aSqaaiaadMgaaeaadaWcgaqaaiaaigdaaeaacaaI0aaaaaaakiabgU caRiabew7aLnaaBaaaleaacaWGPbaabeaakiaacYcaaaa@42FA@  où ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student avec ν=5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aGaaiOlaaaa@3A7E@  L’axe des y va de 0 à 15 et l’axe des x va de 0,0 à 1,0. Le nuage de point montre une relation concave croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  Le deuxième graphique en nuage de points est la population générée à partir de y i = ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMga aeqaaaaa@3C38@  et ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqWI8iIoaaa@3A43@  indép. t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3748@  de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaI1aaaaa@39CC@  et μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3D58@  L’axe des y va de 0 à 50 et l’axe des x va de 0,0 à 1,0. Le nuage de point montre une relation concave croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  Plus x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  augmente, plus la dispersion des points augmente.

Figure 5.4 de l'article 14541

Description de la figure 5.4

Figure composée de deux graphiques en nuages de point de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@374D@  en fonction de x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai ilaaaa@37FC@  chacun représentant une population réelle, population MU284 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam yvaiaaikdacaaI4aGaaGinaaaa@3A37@  de municipalités suédoises de Särndal et coll. (1992). Dans le premier graphique, y i =lnRMT 85 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyt aiaadsfacaaI4aGaaGynamaaBaaaleaacaWGPbaabeaaaaa@4078@  pour la i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaacaqGLbaaaaaa@3852@  municipalité et x i =lnP 85 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGqbGaaGio aiaaiwdadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@3F86@  L’axe des y va de 3 à 9 et l’axe des x va de 1 à 6. Le nuage de point montre une relation linéaire croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@39FF@  Dans le deuxième graphique, y i =lnRMT 85 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyt aiaadsfacaaI4aGaaGynamaaBaaaleaacaWGPbaabeaaaaa@4078@  pour la i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaacaqGLbaaaaaa@3852@  municipalité et x i =lnREV 84 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciiBaiaac6gacaWGsbGaamyr aiaadAfacaaI4aGaaGinamaaBaaaleaacaWGPbaabeaakiaac6caaa a@412C@  L’axe des y va de 3 à 9 et l’axe des x va de 6 à 11. Le nuage de point montre une relation linéaire croissante entre x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@394C@  et y, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpepeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai ilaaaa@39FD@  mais plus dispersée.

Pour chaque population, nous avons sélectionné indépendamment B = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbGaey ypa0JaaGymaiaaysW7caaIWaGaaGimaiaaicdaaaa@3E34@ échantillons. Pour le tirage d’échantillons à partir des populations artificielles, en cas d’échantillonnage aléatoire simple sans remise, nous avons fixé la taille d’échantillon à n = 100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaey ypa0JaaGymaiaaicdacaaIWaGaaiilaaaa@3CC9@ et en cas d’échantillonnage de Poisson, nous avons fixé la taille d’échantillon espérée à n * = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaaGymaiaaicdacaaIWaaaaa@3CFE@ et fait en sorte que les probabilités d’inclusion dans l’échantillon soient proportionnelles aux écarts-types des lois t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38EA@ de Student non centrales décalées susmentionnées. Pour le tirage d’échantillons dans les populations réelles, nous avons fixé la taille d’échantillon à n = 30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaey ypa0JaaG4maiaaicdaaaa@3B61@ en cas d’échantillonnage aléatoire simple sans remise. Pour l’échantillonnage de Poisson, nous avons fixé la taille d’échantillon espérée à n * = 30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaaG4maiaaicdaaaa@3C46@ et fait en sorte que les probabilités d’inclusion dans l’échantillon soient proportionnelles aux valeurs absolues des résidus des régressions linéaires par les moindres carrés des valeurs y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaaaa@3A09@ de la population sur les valeurs x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@3A08@ de la population.

Comme pour la définition des estimateurs non paramétriques, nous avons utilisé la fonction noyau d’Epanechnikov K ( u ) : = 0,75 ( 1 u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaae WaaeaacaWG1baacaGLOaGaayzkaaGaaiOoaiabg2da9iaabcdacaqG SaGaae4naiaabwdadaqadaqaaiaaigdacqGHsislcaWG1bWaaWbaaS qabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@44FA@ avec λ = 0,15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcq GH9aqpcaqGWaGaaeilaiaabgdacaqG1aaaaa@3D79@ ou λ = 0,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcq GH9aqpcaqGWaGaaeilaiaabodaaaa@3CC3@ pour les échantillons tirés des populations artificielles et la fonction noyau gaussienne K ( u ) : = 1 / 2 π e ( 1 / 2 ) u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaae WaaeaacaWG1baacaGLOaGaayzkaaGaaiOoaiabg2da9maalyaabaGa aGymaaqaamaakaaabaGaaGOmaiabec8aWbWcbeaakiaadwgadaahaa WcbeqaaiabgkHiTmaabmaabaWaaSGbaeaacaaIXaaabaGaaGOmaaaa aiaawIcacaGLPaaacaWG1bWaaWbaaWqabeaacaaIYaaaaaaaaaaaaa@4775@ avec λ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcq GH9aqpcaaIXaaaaa@3B66@ ou λ = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcq GH9aqpcaaIYaaaaa@3B67@ pour les échantillons tirés des populations réelles. Dans les tableaux présentant les résultats des simulations, les estimateurs non paramétriques correspondant aux petites et aux grandes valeurs de fenêtre de lissage sont désignés par un s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZbaaaa@38E9@ (pour small) ou par un l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbaaaa@38E2@ (pour large), respectivement, dans l’indice inférieur. Nous avons recouru à la fonction noyau gaussienne pour les échantillons tirés des populations réelles afin d’éviter les problèmes de singularité qui se posent en cas de vides dans le jeu de valeurs x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@3A08@ échantillonnées. De tels vides sont nettement plus susceptibles d’exister dans le cas des populations réelles que dans celui des populations artificielles, parce que les lois des variables auxiliaires sont asymétriques dans les premières. En fait, dans les populations artificielles, les estimateurs non paramétriques étaient bien définis pour chacun des B = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbGaey ypa0JaaGymaiaaysW7caaIWaGaaGimaiaaicdaaaa@3E34@ échantillons sélectionnés selon le plan d’échantillonnage aléatoire simple sans remise. Pour le plan d’échantillonnage de Poisson, par contre, 47 des B = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbGaey ypa0JaaGymaiaaysW7caaIWaGaaGimaiaaicdaaaa@3E34@ échantillons simulés étaient tels que les estimateurs non paramétriques avec la petite valeur de fenêtre de lissage n’ont pas pu être calculés et seulement un de ces échantillons était tel que les estimateurs non paramétriques avec la grande valeur de fenêtre de lissage étaient indéfinis. Les résultats des simulations s’appliquant aux estimateurs non paramétriques dans les tableaux 5.2 et 5.5 tiennent compte uniquement des échantillons pour lesquels les estimateurs étaient bien définis et sont donc fondés sur un peu moins que les B = 1 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbGaey ypa0JaaGymaiaaysW7caaIWaGaaGimaiaaicdaaaa@3E34@ réalisations.

Les tableaux 5.1 à 5.4 donnent le biais simulé (BIAIS) et la racine carrée de l’erreur quadratique moyenne simulée (REQM) pour chaque estimateur de la fonction de répartition à différents niveaux de t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38EA@ auxquels F N ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbWaaS baaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa aa@3C47@ a été estimée : en se basant, par exemple, sur les valeurs F ˜ b ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaG aadaWgaaWcbaGaamOyaaqabaGcdaqadaqaaiaadshaaiaawIcacaGL PaaacaGGSaaaaa@3D1A@ b = 1 , 2 , , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaey ypa0JaaGymaiaacYcacaaIYaGaaiilaiablAciljaacYcacaWGcbGa aiilaaaa@3FFE@ tirées de l’estimateur F ˜ ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaG aadaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSaaaaa@3BFD@

BIAIS : = 1 B b = 1 B ( F ˜ b ( t ) F N ( t ) ) × 10 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGcbGaae ysaiaabgeacaqGjbGaae4uaiaacQdacqGH9aqpdaWcaaqaaiaaigda aeaacaWGcbaaamaaqahabaWaaeWaaeaaceWGgbGbaGaadaWgaaWcba GaamOyaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsisl caWGgbWaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOa GaayzkaaaacaGLOaGaayzkaaGaey41aqRaaGymaiaaicdacaaMe8Ua aGimaiaaicdacaaIWaaaleaacaWGIbGaeyypa0JaaGymaaqaaiaadk eaa0GaeyyeIuoaaaa@577B@

et

REQM : = 1 B b = 1 B ( F ˜ b ( t ) F N ( t ) ) 2 × 10 000. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGsbGaae yraiaabgfacaqGnbGaaiOoaiabg2da9maakaaabaWaaSaaaeaacaaI XaaabaGaamOqaaaadaaeWbqaamaabmaabaGabmOrayaaiaWaaSbaaS qaaiaadkgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOe I0IaamOramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaay jkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaa caWGIbGaeyypa0JaaGymaaqaaiaadkeaa0GaeyyeIuoaaSqabaGccq GHxdaTcaaIXaGaaGimaiaaysW7caaIWaGaaGimaiaaicdacaGGUaaa aa@5879@

La REQM montre que les estimateurs fondés sur les valeurs prédites modifiées sont habituellement plus efficaces. Dans le cas de l'échantillonnage dans les populations réelles, l'augmentation des REQM est parfois assez grande. Comme prévu, les estimateurs fondés sur le modèle ont tendance à être plus efficaces que les estimateurs par la différence généralisée sous échantillonnage aléatoire simple sans remise quand les deux types d’estimateurs sont approximativement sans biais. Sous échantillonnage de Poisson, le BIAIS des estimateurs fondés sur le modèle augmente, mais demeure néanmoins concurrentiel. Une plus grande variabilité des probabilités d’inclusion dans l’échantillon modifierait certainement ce résultat, car elle augmenterait le BIAIS des estimateurs fondés sur le modèle. Les résultats des simulations ne doivent donc pas être considérés comme contredisant Johnson, Breidt et Opsomer (2008) qui se prononcent en faveur des estimateurs par la différence généralisée (appelés estimateurs assistés par modèle dans leur article), soutenant qu’il s’agit d’« un bon choix global pour les estimateurs de la fonction de répartition ».

Tableau 5.1
Populations artificielles (taille de population N = 1 000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage aléatoire simple sans remise. Taille d’échantillon n = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaqGXaGaaeimaiaabcdaaaa@38CC@ Sommaire du tableau
Le tableau montre les résultats de Tableau 5.1
Populations artificielles (taille de population XXXX). BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage aléatoire simple sans remise. Taille d’échantillon XXXX
XXXX , XXXX, BIAIS , REQM et REQM , calculées selon XXXX avec XXXX i.i.d. de Student centrale XXXX avec XXXX, XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX, XXXX avec XXXX i.i.d. de Student XXXX avec XXXX, XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX, XXXX avec XXXX i.i.d. de Student XXXX avec XXXX et XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX unités de mesure (figurant comme en-tête de colonne).
  t = F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAIS REQM BIAIS REQM BIAIS REQM BIAIS REQM BIAIS REQM
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWjLspw0le9v8qqaqFD0xXdHaVhbbf9y8qqaqFr0xc9qq Fr0dXdbvb9frpepee9k8hqNsFf0=qqfqpeFne9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaamyA aaqabaGccaGGSaaaaa@419E@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWjLspw0le9v8qqaqFD0xXdHaVhbbf9y8qqaqFr0xc9qq Fr0dXdbvb9frpepee9k8hqNsFf0=qqfqpeFne9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLn aaBaaaleaacaWGPbaabeaakiablYJi6aaa@3EEF@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 6 216 -3 433 31 512 23 434 12 207
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 15 219 10 430 0 502 -10 429 3 213
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWjLspw0le9v8qqaqFD0xXdHaVhbbf9y8qqaqFr0xc9qq Fr0dXdbvb9frpepee9k8hqNsFf0=qqfqpeFne9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeaga qcamaaDaaaleaacaWGZbaabaGaaiOkaaaakmaabmaabaGaamiDaaGa ayjkaiaawMcaaaaa@4034@ 6 209 -30 411 22 484 22 414 3 200
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 15 214 -9 409 10 477 1 407 -10 207
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 6 213 8 425 24 504 -4 430 8 207
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 6 210 10 417 22 494 -8 422 6 206
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 8 213 9 426 25 503 -5 432 5 206
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 7 210 10 417 23 494 -6 424 4 206
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 7 208 11 411 19 489 -5 417 6 200
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 26 225 33 376 8 477 26 419 33 209
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 52 236 23 374 -5 475 38 421 29 213
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 20 195 -29 351 -89 471 11 407 30 202
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 36 201 -11 357 -94 473 28 410 21 204
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 8 211 11 370 -7 473 4 415 16 211
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 5 208 8 367 -5 468 5 411 16 212
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 11 210 11 372 -11 475 4 416 15 210
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 7 208 11 368 -7 468 8 412 15 211
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 1 211 1 391 -6 477 8 399 18 210
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 32 201 25 275 13 250 -14 264 -36 217
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 114 250 152 304 12 236 -180 312 -86 242
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -50 165 12 226 51 216 26 230 13 172
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -46 155 -14 199 69 195 23 211 17 156
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -5 186 4 275 15 248 11 269 -2 201
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -5 184 7 274 17 250 5 269 -2 196
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -10 180 5 275 16 245 14 266 -1 200
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -9 176 3 272 15 242 13 262 -1 194
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -7 203 14 413 37 472 17 405 1 206
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 24 204 23 351 27 403 26 382 29 208
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 94 242 135 372 51 392 13 380 15 212
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 55 182 -9 301 -18 368 -23 359 37 202
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 124 210 -31 278 -63 363 -8 356 48 200
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -2 194 -4 349 11 401 18 377 13 208
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 190 -5 345 12 398 17 374 11 209
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 0 191 -5 352 14 401 20 376 13 207
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -1 189 -6 344 13 397 18 375 12 209
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -4 205 -5 401 21 470 24 401 14 207
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 81 207 44 316 17 384 -2 376 23 203
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 138 258 183 356 35 367 -50 374 8 208
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 7 146 -14 274 16 352 -8 358 15 197
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 9 144 10 246 -2 323 -18 339 24 186
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 3 175 3 319 10 383 17 374 10 203
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 0 178 5 316 11 380 17 370 8 202
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 1 167 5 320 12 383 17 374 9 203
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -1 164 6 316 13 379 20 368 8 201
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 4 209 11 412 25 477 27 422 10 200
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 59 234 95 402 66 455 51 395 26 208
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 94 259 190 441 147 467 98 400 16 212
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 30 184 33 343 -123 435 -34 385 40 203
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 57 201 58 331 -148 437 2 382 34 203
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 1 205 7 386 12 449 17 392 13 208
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -1 204 0 385 9 445 20 389 11 209
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 3 201 8 389 7 449 13 392 14 207
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 0 198 6 383 9 446 19 390 13 208
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 0 205 -2 399 9 463 25 398 14 208
Tableau 5.2
Populations artificielles (taille de population N=1 000 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage de Poisson avec probabilités d’inclusion dans l’échantillon π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaaaa@37CF@ proportionnelles aux écarts-types des lois t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaaaa@35F1@ de Student non centrales avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3836@ dl et avec paramètres de non-centralité μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaakiaac6ca aaa@3BC2@ Taille espérée d’échantillon n * =100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIXaGaaGimaiaaicdaaaa@39CC@
Sommaire du tableau
Le tableau montre les résultats de Tableau 5.2
Populations artificielles (taille de population BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage de Poisson avec probabilités d’inclusion dans l’échantillon proportionnelles aux écarts-types des lois de Student non centrales avec dl et avec paramètres de non-centralité Taille espérée d’échantillon
XXXX , XXXX, BIAIS , REQM et REQM , calculées selon XXXX avec XXXX i.i.d. de Student centrale XXXX avec XXXX, XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX, XXXX avec XXXX i.i.d. de Student XXXX avec XXXX, XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX, XXXX avec XXXX i.i.d. de Student XXXX avec XXXX et XXXX avec XXXX indép. de Student non centrale XXXX avec XXXX et XXXX unités de mesure (figurant comme en-tête de colonne).
  t= F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t= F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t= F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAIS REQM BIAIS REQM BIAIS REQM BIAIS REQM BIAIS REQM
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ -10 252 -11 593 -22 738 -20 743 6 357
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ -1 237 9 543 -15 621 -5 590 11 302
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 22 244 -29 485 -3 555 9 515 -17 297
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 14 238 -10 492 -5 564 14 524 -1 283
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -6 247 0 579 -27 724 -40 736 3 349
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 231 11 526 -1 598 -10 566 7 285
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 23 248 23 505 -4 562 -27 531 -20 304
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 12 240 20 504 1 573 -13 538 -6 287
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -6 220 -7 543 -37 741 -44 929 -48 1 058
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ=15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 17 164 30 411 4 749 14 590 15 190
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 47 173 19 383 -1 602 57 498 15 187
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 21 175 -7 378 -89 554 -11 473 3 192
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 29 152 -3 367 -99 555 27 481 3 184
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 1 159 10 406 -11 737 -5 579 -2 194
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 1 158 9 388 -5 586 14 482 -1 192
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 14 186 27 409 -3 562 -17 487 -10 200
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 3 160 22 399 -11 566 -5 482 -2 193
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -3 162 -7 451 -31 738 -29 980 -55 1 067
  y i =10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 8 461 21 561 -12 259 -18 218 -30 164
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 78 429 183 451 2 248 -161 261 -79 189
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -69 306 12 340 10 267 15 199 6 143
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -59 294 4 302 56 205 15 172 17 124
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -25 441 4 560 -10 257 9 219 5 153
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -14 372 35 410 -10 262 4 219 5 151
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -31 333 -2 386 -29 294 4 227 -1 161
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -20 339 15 372 -10 259 11 215 4 151
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -15 385 3 746 -37 917 -35 1 004 -48 1 070
  y i =10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ=15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ -4 516 30 671 7 453 11 344 6 182
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 63 409 129 539 61 421 9 341 1 180
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 44 300 -29 433 -45 422 -47 345 12 180
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 107 314 -41 420 -60 397 -22 323 31 171
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -27 502 8 667 -8 450 0 344 -8 185
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -10 364 16 510 11 425 -2 345 -7 182
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -6 325 -9 479 -25 447 -14 356 -10 187
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -7 332 -9 489 -5 426 -3 344 -6 182
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -16 349 -2 705 -21 886 -42 1 013 -61 1 069
  y i =10 x i 1/4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 36 497 47 629 9 418 -11 320 15 191
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 56 393 186 490 43 383 -48 308 13 184
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -29 276 -19 383 -18 380 -43 335 -1 204
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ -29 274 10 355 7 336 -29 290 23 179
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -30 475 12 630 4 421 7 317 6 191
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -42 336 31 452 11 390 8 312 8 186
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -31 306 5 429 -18 406 -14 344 -8 210
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -28 308 14 424 7 387 5 315 7 191
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -15 380 10 739 -23 891 -37 993 -47 1 064
  y i =10 x i 1/4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ=15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 24 308 69 687 53 690 38 406 2 188
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 47 301 131 553 139 561 91 393 -2 186
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 15 237 2 435 -135 513 -59 411 12 186
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 27 235 18 435 -149 506 -5 374 13 179
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -28 274 -8 673 4 688 3 403 -10 191
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -29 251 -12 512 17 541 7 395 -9 188
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ -3 255 -12 481 -7 536 -20 422 -12 196
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ -12 251 -16 489 2 538 -4 399 -9 189
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ -10 267 -8 608 -4 860 -38 1 009 -63 1 066
Tableau 5.3
Populations réelles (taille de population N=284 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage aléatoire simple sans remise. Taille d’échantillon n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaaIZaGaaGimaaaa@3829@
Sommaire du tableau

Le tableau montre les résultats de Tableau 5.3
Populations réelles (taille de population XXXX BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage aléatoire simple sans remise. Taille d’échantillon XXXX
BIAIS , REQM , REQM and BIAISR , MU284 Population avec XXXX et XXXX unités de mesure (figurant comme en-tête de colonne).
  t= F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t= F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t= F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAIS REQM BIAIS REQM BIAISR REQM BIAIS REQM BIAIS REQM
Population MU284 avec Y=lnRMT85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X=lnP85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 133 421 339 625 180 529 -265 490 -187 439
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 52 380 67 588 45 555 -63 469 -87 370
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 8 81 -154 203 90 130 62 123 6 54
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 28 66 -170 212 69 112 57 109 2 50
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ -28 300 -24 497 8 483 -48 421 -38 319
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -28 326 -96 569 -52 544 3 466 1 319
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 26 177 -11 302 0 244 1 308 -18 102
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 29 179 -10 302 -2 243 -1 308 -21 104
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 22 388 -10 771 9 864 5 731 -43 394
  Population MU284 avec Y=lnRMT85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X=lnREV84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 143 449 303 643 138 554 -217 543 -166 446
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 62 395 62 611 36 582 -49 519 -71 376
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -11 204 -32 300 -101 328 42 285 31 155
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 36 183 -40 288 -149 345 6 261 34 122
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 5 340 -22 548 4 557 -30 498 -23 332
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ -2 349 -78 599 -36 588 10 522 8 331
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 24 303 7 446 -6 494 2 439 -13 209
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 29 304 4 443 -6 495 -1 432 -18 192
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 34 395 1 766 16 880 9 744 -37 398
Tableau 5.4
Populations réelles (taille de population N=284 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaaikdacaaI4aGaaGinaaGaayzkaaGaaiOlaaaa@3A48@ BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage de Poisson avec probabilités d’inclusion proportionnelles à la valeur absolue des résidus de la régression linéaire des valeurs y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3807@ de la population sur les valeurs x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiabgkHiTaaa@3806@ de la population. Taille espérée n * =30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBamaaCa aaleqabaGaaGOkaaaakiaai2dacaaIZaGaaGimaaaa@3914@
Sommaire du tableau
Le tableau montre les résultats de Populations réelles (taille de population XXXX BIAIS et REQM des estimateurs de la fonction de répartition sous échantillonnage de Poisson avec probabilités d’inclusion proportionnelles à la valeur absolue des résidus de la régression linéaire des valeurs XXXX de la population sur les valeurs XXXX de la population. Taille espérée XXXX XXXX, BIAIS , REQM , REQM et BIAISR , calculées selon Population MU284 avec XXXX et XXXX unités de mesure (figurant comme en-tête de colonne).
  t= F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t= F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t= F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t= F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAIS REQM BIAIS REQM BIAISR REQM BIAIS REQM BIAIS REQM
Population MU284 avec Y=lnRMT85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X=lnP85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 204 420 485 668 239 519 -412 626 -90 317
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 180 424 417 684 319 614 -239 548 -148 348
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ -41 97 -118 199 132 178 40 140 -71 104
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 11 70 -147 211 63 128 -25 122 -85 106
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 24 360 30 649 0 675 -68 614 58 368
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 9 390 -63 737 -64 774 -7 682 75 414
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 16 184 -14 307 36 283 16 323 -11 103
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 25 187 -15 312 30 286 14 328 -11 112
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 40 445 73 1 983 12 2 498 -43 3 094 -49 3 341
  Population MU284 avec Y=lnRMT85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X=lnREV84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
F ^ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAB@ 349 660 1 185 1 373 890 1 059 458 654 -32 270
F ^ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA4@ 287 601 1 003 1 236 771 989 484 695 42 263
F ^ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C60@ 317 453 739 866 761 879 624 701 159 207
F ^ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C59@ 364 471 720 842 718 824 572 647 96 158
F ˜ s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BAA@ 35 488 82 818 -31 772 7 634 -8 326
F ˜ l ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaaaa@3BA3@ 22 500 3 878 -98 852 40 704 27 354
F ˜ s * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadohaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C5F@ 37 317 32 498 -13 513 32 412 7 157
F ˜ l * ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia Waa0baaSqaaiaadYgaaeaacaaIQaaaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaaaa@3C58@ 51 313 30 498 -30 518 12 411 -10 149
F ˜ π ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaSbaaSqaaiabec8aWbqabaGcdaqadaqaaiaadshaaiaawIcacaGL Paaaaaa@3C6F@ 32 671 19 1 658 -172 2 354 -173 2 787 -191 2 935

Considérons enfin les résultats des simulations concernant les estimateurs de variance de la section 4. Les tableaux 5.5 à 5.8 donnent le biais relatif (BIAISR) et la racine carrée de l’erreur quadratique moyenne relative (REQMR) pour chacun d’eux. Par exemple, selon les estimations de variance V ˜ b ( F ˜ ( t ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGwbGbaG aadaWgaaWcbaGaamOyaaqabaGcdaqadaqaaiqadAeagaacamaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaa@3F8D@ b=1,2,,B, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaG ypaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYscaaISaGaamOqaiaa cYcaaaa@3FD1@  obtenues au moyen de l’estimateur V ˜ ( F ˜ ( t ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGwbGbaG aadaqadaqaaiqadAeagaacamaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaacYcaaaa@3E70@

BIAISR:= 1 B b=1 B V ˜ b ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) ×10000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGcbGaae ysaiaabgeacaqGjbGaae4uaiaabkfacaaI6aGaaGypamaalaaabaGa aGymaaqaaiaadkeaaaWaaabCaeqaleaacaWGIbGaaGypaiaaigdaae aacaWGcbaaniabggHiLdGcdaWcaaqaaiqadAfagaacamaaBaaaleaa caWGIbaabeaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baaca GLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0IaamOvamaaBaaaleaa caWGcbaabeaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baaca GLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamOvamaaBaaaleaacaWG cbaabeaakmaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOa GaayzkaaaacaGLOaGaayzkaaaaaiabgEna0kaabgdacaqGWaGaaGjb VlaabcdacaqGWaGaaeimaaaa@61DD@

et

REQMR:= 1 B b=1 B ( V ˜ b ( F ˜ ( t ) ) V B ( F ˜ ( t ) ) ) 2 V B ( F ˜ ( t ) ) ×10000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGsbGaae yraiaabgfacaqGnbGaaeOuaiaaiQdacaaI9aWaaSaaaeaadaGcaaqa amaalaaabaGaaGymaaqaaiaadkeaaaWaaabCaeqaleaacaWGIbGaaG ypaiaaigdaaeaacaWGcbaaniabggHiLdGcdaqadaqaaiqadAfagaac amaaBaaaleaacaWGIbaabeaakmaabmaabaGabmOrayaaiaWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0IaamOv amaaBaaaleaacaWGcbaabeaakmaabmaabaGabmOrayaaiaWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaacaWGwbWaaSbaaSqaai aadkeaaeqaaOWaaeWaaeaaceWGgbGbaGaadaqadaqaaiaadshaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaGaey41aqRaaeymaiaabcdaca aMe8UaaeimaiaabcdacaqGWaaaaa@63B3@

V B ( F ˜ ( t ) ):= 1 B b=1 B ( F ˜ b ( t ) F N ( t ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadkeaaeqaaOWaaeWaaeaaceWGgbGbaGaadaqadaqaaiaa dshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI6aGaaGypamaala aabaGaaGymaaqaaiaadkeaaaWaaabCaeqaleaacaWGIbGaaGypaiaa igdaaeaacaWGcbaaniabggHiLdGcdaqadaqaaiqadAeagaacamaaBa aaleaacaWGIbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiab gkHiTiaadAeadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaadshaai aawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc caaIUaaaaa@5437@

À titre de référence, nous donnons également les BIAISR et REQMR de l’estimateur

V ˜ ( F ˜ π ( t ) ):= 1 N 2 i,js π i,j π i π j π i,j π i π j I( y i t )I( y j t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGwbGbaG aadaqadaqaaiqadAeagaacamaaBaaaleaacqaHapaCaeqaaOWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGOoaiaai2 dadaWcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaa kmaaqafabeWcbaGaamyAaiaaiYcacaWGQbGaeyicI4Saam4Caaqab0 GaeyyeIuoakmaalaaabaGaeqiWda3aaSbaaSqaaiaadMgacaaISaGa amOAaaqabaGccqGHsislcqaHapaCdaWgaaWcbaGaamyAaaqabaGccq aHapaCdaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGa amyAaiaaiYcacaWGQbaabeaakiabec8aWnaaBaaaleaacaWGPbaabe aakiabec8aWnaaBaaaleaacaWGQbaabeaaaaGccaWGjbWaaeWaaeaa caWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaamiDaaGaayjkai aawMcaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGc cqGHKjYOcaWG0baacaGLOaGaayzkaaaaaa@6EE9@

pour la variance de l’estimateur de Horvitz-Thompson.

Tableau 5.5
Populations artificielles (taille de population N = 1 000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaeGaaeaaca WGobGaaGypaiaabgdacaqGSaGaaeimaiaabcdacaqGWaaacaGLPaaa caGGUaaaaa@3B88@ BIAISR et REQMR des estimateurs de variance sous échantillonnage aléatoire simple sans remise. Taille d’échantillon n = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaiaai2 dacaaIXaGaaGimaiaaicdaaaa@38E1@
Sommaire du tableau
Le tableau montre les résultats de Populations artificielles (taille de population XXXX BIAISR et REQMR des estimateurs de variance sous échantillonnage aléatoire simple sans remise. Taille d’échantillon XXXX XXXX, BIAISR , REQMR et REQMR, calculées selon avec XXXX i.i.d. XXXX de Student centrale avec XXXX unités de mesure (figurant comme en-tête de colonne).
  t = F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1 092 32 442 -1 249 3 895 -1 714 3 077 -1 536 3 828 -824 34 601
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -576 31 726 -603 3 838 -1 122 3 374 -951 3 758 -441 33 055
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 091 32 579 -1 292 3 914 -1 708 3 085 -1 640 3 828 -802 34 809
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -556 31 881 -622 3 857 -1 148 3 361 -1 025 3 749 -425 33 184
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 42 30 952 57 3 928 -592 3 776 -287 3 825 551 33 462
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1 900 29 622 50 4 707 -917 3 557 -998 3 695 -1 480 29 417
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 359 29 623 535 4 572 -395 3 881 -527 3 736 -1 277 28 267
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 832 30 119 -101 4 710 -991 3 530 -1 077 3 704 -1 398 29 927
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1 362 29 713 465 4 559 -420 3 865 -591 3 718 -1 236 28 489
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -351 29 132 1 096 4 215 -78 4 074 574 4 067 -638 29 507
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2 170 11 624 -1 027 2 480 -816 3 274 -1 424 2 583 -1 946 8 681
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 534 11 605 -529 2 632 -148 2 975 -859 2 590 -1 151 9 015
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 765 12 107 -1 108 2 529 -714 3 366 -1 318 2 660 -1 905 8 658
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1 062 11 948 -671 2 735 -212 3 291 -762 2 785 -1 048 8 590
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 254 31 545 -52 3 726 136 4 152 267 3 992 35 30 264
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1 642 25 809 -855 3 541 -1 076 3 038 -1 081 3 030 -1 361 21 157
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -950 25 692 -323 3 509 -597 3 312 -617 3 164 -1 124 20 231
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 385 26 406 -997 3 505 -1 089 3 045 -1 096 3 033 -1 310 21 393
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -832 26 212 -292 3 556 -614 3 317 -716 3 154 -1 135 20 286
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 105 29 621 507 3 857 209 4 244 425 3 910 -337 29 082
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2 465 30 612 -1 121 4 594 -1 512 3 183 -1 958 3 076 -863 19 720
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 780 28 103 -663 4 420 -1 092 3 319 -1 491 3 140 -439 18 985
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -2 052 33 980 -1 150 4 619 -1 537 3 217 -1 948 3 127 -954 19 637
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1 194 33 573 -691 4 472 -1 124 3 368 -1 438 3 228 -357 19 245
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -81 30 001 9 3 756 -110 3 996 -598 3 661 440 32 455
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -1 873 29 437 -758 3 759 -621 3 476 -709 3 599 -1 298 27 679
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 267 28 511 -284 3 661 -131 3 758 -321 3 552 -1 075 26 790
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 710 30 670 -928 3 741 -628 3 510 -777 3 603 -1 245 27 972
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -939 30 486 -270 3 764 -171 3 803 -375 3 581 -1 014 26 926
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 178 29 640 599 3 816 533 4 324 590 3 874 -404 28 917
Tableau 5.6
Populations artificielles (taille de population N=1000 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaadaqacaqaai aad6eacqGH9aqpcaaIXaGaaGjbVlaaicdacaaIWaGaaGimaaGaayzk aaGaaiOlaaaa@3FF8@ BIAISR et REQMR des estimateurs de variance sous échantillonnage de Poisson avec probabilités d’inclusion dans l’échantillon π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacqaHapaCda WgaaWcbaGaamyAaaqabaaaaa@3B06@ proportionnelles aux écarts-types des lois t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWG0baaaa@3928@ de Student non centrale avec v=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWG2bGaey ypa0JaaGynaaaa@3AEF@ dl et avec paramètre de non-centralité μ=15 x i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacqaH8oqBcq GH9aqpcaaIXaGaaGynaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG Uaaaaa@3F38@ Taille espérée d’échantillon n * =100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWGUbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaaGymaiaaicdacaaIWaaaaa@3D3C@
Sommaire du tableau
Le tableau montre les résultats de Populations artificielles (taille de population XXXX BIAISR et REQM des estimateurs de variance sous échantillonnage de Poisson avec probabilités d’inclusion dans l’échantillon XXXX proportionnelles aux écarts-types des lois XXXX de Student non centrale avec XXXX dl et avec paramètre de non-centralité XXXX Taille espérée d’échantillon XXXX. Les données sont présentées selon (titres de rangée) et XXXX, BIAISR , REQM et REQM, calculées selon avec XXXX i.i.d. XXXX de Student centrale avec XXXX unités de mesure (figurant comme en-tête de colonne).
  t = F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR
y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -3 306 65 777 -4 248 8 032 -5 093 4 242 -6 258 4 844 -5 652 32 037
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -2 048 47 035 -2 656 4 705 -2 434 3 116 -3 310 3 939 -3 092 29 380
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3 362 36 855 -2 488 4 409 -1 910 3 147 -2 869 3 910 -4 329 23 247
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -2 696 39 509 -2 076 4 450 -1 768 3 163 -2 648 3 811 -3 244 26 343
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 113 129 637 259 15 120 618 6 327 193 5 429 273 6 097
  y i = ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacqaH1oqzdaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3D84@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -740 125 975 -2 522 14 864 -5 466 3 658 -4 896 6 691 -1 551 83 262
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -391 83 047 -1 503 8 946 -2 428 4 099 -2 228 5 526 -1 154 54 680
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3 260 58 072 -2 649 7 661 -2 260 3 936 -2 795 5 011 -2 116 48 739
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -716 77 935 -2 000 7 979 -1 934 4 235 -2 279 5 243 -1 243 52 531
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 666 251 134 -564 26 553 -87 7 344 -2 6 029 407 6 610
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -6 801 7 898 -6 470 4 281 -1 059 22 596 -398 32 401 -1 650 72 632
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4 978 5 826 -2 898 4 473 -603 9 530 206 15 226 -1 157 40 466
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4 520 6 691 -2 710 4 213 -3 245 6 723 -1 156 12 681 -2 458 32 907
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -4 226 6 206 -1 674 5 062 -978 7 874 55 12 781 -1 283 33 737
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -707 47 550 118 7 214 609 4 409 743 4 628 435 4 800
  y i = 10 x i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@41FC@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -7 398 8 847 -6 235 3 667 -2 493 8 171 -1 051 16 299 -1 440 71 943
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4 548 9 463 -3 136 3 282 -1 187 4 246 -832 7 638 -982 45 182
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -3 902 11 727 -2 808 3 409 -2 411 3 501 -1 721 6 737 -1 671 41 389
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -3 598 10 771 -2 610 3 462 -1 284 3 988 -852 7 008 -972 43 017
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 146 57 044 -42 8 708 520 4 784 214 4 686 390 5 085
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ i.i.d. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -7 731 8 568 -6 597 3 484 -2 442 7 775 -903 16 067 -1 967 56 480
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4 611 9 378 -2 990 3 252 -874 4 119 -347 7 420 -1 310 35 051
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4 747 11 909 -2 679 3 298 -1 896 3 272 -2 248 5 747 -3 382 27 222
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -4 223 10 380 -2 100 3 494 -788 3 731 -550 5 975 -1 795 29 856
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -428 47 038 -206 7 350 641 4 504 738 4 708 487 4 943
  y i = 10 x i 1 / 4 + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIXaGaaGimaiaadIhadaqhaaWc baGaamyAaaqaamaalyaabaGaaGymaaqaaiaaisdaaaaaaOGaey4kaS IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@438C@ avec ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeSipIOdaaa@3B14@ indép. t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3819@ de Student non centrale avec ν = 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaiwdaaaa@3A5E@ et μ = 15 x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaigdacaaI1aGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3D2E@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -4 936 40 696 -6 111 4 579 -5 549 4 035 -1 864 14 381 -1 509 84 892
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -3 004 29 404 -2 764 3 962 -2 436 3 606 -1 234 7 357 -1 103 53 875
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -4 328 27 704 -2 516 4 235 -2 671 3 332 -2 586 5 955 -1 939 47 601
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -3 454 28 267 -2 263 4 160 -2 329 3 574 -1 433 6 682 -1 171 50 985
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ 152 98 607 663 12 879 15 5 376 20 5 080 429 5 619
Tableau 5.7
Populations réelles (taille de population N=284 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaadaqacaqaai aad6eacqGH9aqpcaaIYaGaaGioaiaaisdaaiaawMcaaiaac6caaaa@3DBE@ BIAISR et REQMR des estimateurs de variance sous échantillonnage aléatoire simple sans remise. Taille d’échantillon n=30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWGUbGaey ypa0JaaG4maiaaicdaaaa@3B9F@
Sommaire du tableau
Le tableau montre les résultats de Populations réelles (taille de population XXXX BIAISR et REQM des estimateurs de variance sous échantillonnage aléatoire simple sans remise. Taille d’échantillon XXXX XXXX, BIAISR , REQM et REQM, calculées selon Population MU284 avec XXXX et XXXX et Population MU284 avec XXXX et XXXX unités de mesure (figurant comme en-tête de colonne).
  t = F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR
Population MU284 avec Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2 853 16 809 -1 700 3 037 -1 554 2 984 -1 100 4 633 -5 503 16 257
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 110 16 374 -1 827 2 760 -1 683 2 847 -927 4 387 -3 016 18 685
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 043 19 081 -91 7 728 -448 9 120 -484 7 715 -1 877 65 298
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -424 18 971 104 7 819 -382 9 110 -301 7 799 -1 058 62 968
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -186 29 720 -603 3 901 31 3 971 500 4 383 -74 28 418
  Population MU284 avec Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -2 283 16 303 -1 450 3 538 -945 3 526 -1 071 4 300 -4 832 19 401
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -1 095 16 755 -1 427 3 181 -938 3 390 -780 4 051 -2 753 20 551
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -1 737 14 642 -298 5 648 -546 5 282 -736 5 679 -3 564 38 344
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1 174 14 111 -27 5 856 -422 5 452 -228 5 974 -1 433 43 923
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -307 28 421 -460 3 963 -344 3 850 112 4 235 -401 27 987
Tableau 5.8
Populations réelles (taille de population N=284 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaadaqacaqaai aad6eacqGH9aqpcaaIYaGaaGioaiaaisdaaiaawMcaaiaac6caaaa@3DBE@ BIAISR et REQMR des estimateurs de variance sous échantillonnage de Poisson avec probabilités d’inclusion proportionnelles à la valeur absolue des résidus de la régression linéaire des valeurs y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaaaa@3A47@ de la population sur les valeurs x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaaa@3A46@ de la population. Taille espérée n * =30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peub0dXxdrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWGUbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaaG4maiaaicdaaaa@3C84@
Table summary
This table displays the results of Real populations (population size XXXX RBIAS and RRMSE of variance estimators under Poisson sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression of the population XXXX values on the population XXXX values. Expected size XXXX XXXX, RBIAS , RRMSE and RRMSE, calculated using MU284 population with XXXX and XXXX and MU284 population with XXXX and XXXX units of measure (appearing as column headers).
  t = F N 1 ( 0,05 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@40DD@ t = F N 1 ( 0,50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiwdacaaIWaaacaGLOaGaayzkaaaaaa@40DB@ t = F N 1 ( 0,75 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiEdacaaI1aaacaGLOaGaayzkaaaaaa@40E2@ t = F N 1 ( 0,95 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamiDaiaai2 dacaWGgbWaa0baaSqaaiaad6eaaeaacqGHsislcaaIXaaaaOWaaeWa aeaacaaIWaGaaGOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaaaa@40E4@
BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR BIAISR REQMR
Population MU284 avec Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X = ln P 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadcfacaaI4aGaaGynaaaa@3CFE@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -3 502 26 342 -1 841 14 037 -2 691 12 087 -3 415 9 674 -5 932 26 823
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -2 159 27 610 -1 782 14 010 -2 840 12 002 -3 186 10 177 -4 455 26 802
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -434 22 455 515 15 503 -506 31 296 -1 460 23 496 -2 649 78 527
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -80 22 921 677 15 575 -280 33 294 -1 283 26 612 -1 597 72 166
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -294 361 991 522 75 891 43 48 764 -241 36 354 90 32 354
  Population MU284 avec Y = ln R M T 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 daciGGSbGaaiOBaiaadkfacaWGnbGaamivaiaaiIdacaaI1aaaaa@3EAC@ et X = ln R E V 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaai2 daciGGSbGaaiOBaiaadkfacaWGfbGaamOvaiaaiIdacaaI0aaaaa@3EA4@
V ˜ ( F ˜ s ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E1E@ -5 220 18 699 -3 667 8 749 -3 222 7 537 -3 018 9 279 -4 955 44 597
V ˜ ( F ˜ l ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3E17@ -4 254 20 765 -3 100 9 180 -3 435 7 231 -3 196 8 540 -3 461 43 206
V ˜ ( F ˜ s * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaam4CaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ED3@ -2 938 18 922 -1 110 11 828 -1 265 8 726 -1 040 10 963 -3 682 89 262
V ˜ ( F ˜ l * ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaqhaaWcbaGaamiBaaqaaiaaiQcaaaGc daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@3ECC@ -1 938 19 997 -699 12 641 -1 003 9 305 -599 11 545 -1 558 98 798
V ˜ ( F ˜ π ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia WaaeWabeaaceWGgbGbaGaadaWgaaWcbaGaeqiWdahabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EE3@ -143 128 401 493 33 934 -255 18 473 -91 17 904 327 16 463

Comme le montrent les résultats des simulations, les estimateurs de variance souffrent d’une grande variabilité. Ce problème touche aussi l’estimateur de variance pour l’estimateur de Horvitz-Thompson qui, à l’occasion, présente de très grandes REQMR. Il est en outre intéressant de noter que, si le BIAISR des estimateurs de variance pour les estimateurs par la différence généralisée est presque toujours négatif et parfois assez grand en valeur absolue, celui de l’estimateur de variance pour l’estimateur de Horvitz-Thompson est positif dans la plupart des cas considérés.

Remerciements

La présente étude a été financée en partie par la subvention FAR 2014-ATE-0200 octroyée par University of Milano-Bicocca.

Annexe

Soit β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaa a@3992@ une suite de nombres réels. Tout au long de la présente annexe, nous désignerons par O i 1 , i 2 , , i k ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGpbWaaS baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacqWIMaYscaaISaGaamyAamaaBa aameaacaWGRbaabeaaaSqabaGcdaqadaqaaiabek7aIbGaayjkaiaa wMcaaaaa@4542@ les termes de reste qui peuvent dépendre de x i 1 , x i 2 , , x i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaaGilaiaa dIhadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGcca aISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaamyAamaaBaaameaa caWGRbaabeaaaSqabaaaaa@449D@ et qui sont de même ordre que la suite β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaa a@3992@ uniformément pour i 1 , i 2 , , i k U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadMgadaWgaaWcbaGaaGOmaaqa baGccaaISaGaeSOjGSKaaGilaiaadMgadaWgaaWcbaGaam4Aaaqaba GccqGHiiIZcaWGvbGaaiOlaaaa@4418@ Formellement, R ( x i 1 , x i 2 , , x i k ) = O i 1 , i 2 , , i k ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaae WaaeaacaWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaa leqaaOGaaGilaiaadIhadaWgaaWcbaGaamyAamaaBaaameaacaaIYa aabeaaaSqabaGccaaISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGa amyAamaaBaaameaacaWGRbaabeaaaSqabaaakiaawIcacaGLPaaaca aI9aGaam4tamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGa aGilaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaeSOjGSKaaG ilaiaadMgadaWgaaadbaGaam4AaaqabaaaleqaaOWaaeWaaeaacqaH YoGyaiaawIcacaGLPaaaaaa@551F@ si

sup i 1 , i 2 , , i k U | R ( x i 1 , x i 2 , , x i k ) | = O ( β ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGfqbqabS qaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaaBaaa meaacaaIYaaabeaaliaaiYcacqWIMaYscaaISaGaamyAamaaBaaame aacaWGRbaabeaaliabgIGiolaaykW7caWGvbaabeGcbaGaci4Caiaa cwhacaGGWbaaamaaemaabaGaaGPaVlaadkfadaqadaqaaiaadIhada WgaaWcbaGaamyAamaaBaaabaGaaGymaaqabaaabeaakiaaiYcacaWG 4bWaaSbaaSqaaiaadMgadaWgaaqaaiaaikdaaeqaaaqabaGccaaISa GaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaamyAamaaBaaabaGaam4A aaqabaaabeaaaOGaayjkaiaawMcaaiaaykW7aiaawEa7caGLiWoaca aI9aGaam4tamaabmaabaGaeqOSdigacaGLOaGaayzkaaGaaGOlaaaa @62E6@

En outre, pour simplifier la notation, nous écrirons m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadMgaaeqaaaaa@39FD@ à la place de m ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaae WaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaa aa@3C8D@ et σ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyAaaqaaiaaikdaaaaaaa@3B8B@ à la place de σ 2 ( x i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda ahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaacaGGUaaaaa@3F03@

Biais de l’estimateur fondé sur le modèle de Kuo

E ( F ^ ( t ) F N ( t ) ) = E ( 1 N i s j s w i , j [ I ( ε j t m j ) I ( ε i t m i ) ] ) = 1 N i s j s w i , j [ G ( t m j | x j ) G ( t m i | x i ) ] = 1 2 N i s [ G ( 2,0 ) ( t m i | x i ) ( m i ) 2 G ( 1,0 ) ( t m i | x i ) m i ′′ 2 G ( 1,1 ) ( t m i | x i ) m i + G ( 0 , 2 ) ( t m i | x i ) ] j s w i , j ( x j x i ) 2 + o ( λ 2 ) = λ 2 N n N μ 2 2 μ 0 a b [ G ( 2,0 ) ( t m ( x ) | x ) ( m ( x ) ) 2 G ( 1,0 ) ( t m ( x ) | x ) m ′′ ( x ) 2 G ( 1,1 ) ( t m ( x ) | x ) m ( x ) + G ( 0 , 2 ) ( t m ( x ) | x ) ] h s ¯ ( x ) d x + o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaa aabaGaamyramaabmaabaGabmOrayaajaWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaai2da caWGfbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabe WcbaGaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaa dEhadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaeaacaWGQbGaey icI4Saam4Caaqab0GaeyyeIuoakmaadmaabaGaamysamaabmaabaGa eqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTi aad2gadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsisl caWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaaqabaGccqGHKj YOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaaGaay5waiaaw2faaaGaayjkaiaawMcaaaqaaaqaaiaai2 dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcbaGaamyAaiab gMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcba GaamyAaiaaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqa b0GaeyyeIuoakmaadmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadE eadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGa amyAaaqabaaakiaawIa7aiaadIhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacaaI9aWaaSaaaeaa caaIXaaabaGaaGOmaiaad6eaaaWaaabuaeqaleaacaWGPbGaeyycI8 Saam4Caaqab0GaeyyeIuoakmaadeaabaGaam4ramaaCaaaleqabaWa aeWaaeaacaaIYaGaaGilaiaaicdaaiaawIcacaGLPaaaaaGcdaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqa baaakiaawIa7aiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaadaqadaqaaiqad2gagaqbamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadEeada ahaaWcbeqaamaabmaabaGaaGymaiaaiYcacaaIWaaacaGLOaGaayzk aaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaS qaaiaadMgaaeqaaaGccaGLiWoacaWG4bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaGabmyBayaagaWaaSbaaSqaaiaadMgaaeqaaa GccaGLBbaaaeaaaeaacaaMe8UaaGjbVpaadiaabaGaeyOeI0IaaGOm aiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaaiYcacaaIXaaaca GLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWG TbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaWG4bWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaGabmyBayaafaWaaSbaaSqaaiaa dMgaaeqaaOGaey4kaSIaam4ramaaCaaaleqabaWaaeWaaeaacaaIWa GaaiilaiaaikdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGa amiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7ai aadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaiaaw2fa amaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiab gUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaaqaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaaiaa ikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaada WcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdacqaH 8oqBdaWgaaWcbaGaaGimaaqabaaaaOWaa8qmaeqaleaacaWGHbaaba GaamOyaaqdcqGHRiI8aOWaamqaaeaacaWGhbWaaWbaaSqabeaadaqa daqaaiaaikdacaaISaGaaGimaaGaayjkaiaawMcaaaaakmaabmaaba WaaqGaaeaacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjk aiaawMcaaiaaykW7aiaawIa7aiaadIhaaiaawIcacaGLPaaadaqada qaaiqad2gagaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadEeadaahaa WcbeqaamaabmaabaGaaGymaiaaiYcacaaIWaaacaGLOaGaayzkaaaa aOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaaca WG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiEaaGaayjkaiaa wMcaaiqad2gagaqbgaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaa Gaay5waaaabaaabaGaaGjbVlaaysW7daWacaqaaiabgkHiTiaaikda caWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaaISaGaaGymaaGaay jkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyB amaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaadI haaiaawIcacaGLPaaaceWGTbGbauaadaqadaqaaiaadIhaaiaawIca caGLPaaacqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqaaiaaicdaca GGSaGaaGOmaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaadIhaaiaawIcacaGLPaaaaiaaw2faaiaadIgadaWg aaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawI cacaGLPaaacaWGKbGaamiEaiabgUcaRiaad+gadaqadaqaaiabeU7a SnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai6caaaaaaa@71E0@

Biais de l’estimateur par la différence généralisée de Kuo

Écrivons

F ˜ ( t ) F N ( t ) = 1 N { i s j s w ˜ i , j [ I ( ε j t m j ) I ( ε i t m i ) ] + i s ( 1 1 π i ) j s w ˜ i , j [ I ( ε j t m j ) I ( ε i t m i ) ] } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVeFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOe I0IaamOramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaay jkaiaawMcaaaqaaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaa ceaabaWaaabuaeqaleaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIu oakmaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadMgacaaISaGaamOA aaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaWada qaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiab gsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaGaeyOeI0IaamysamaabmaabaGaeqyTdu2aaSbaaSqa aiaadMgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUha aaqaaaqaaiaaysW7caaMe8+aaiGaaeaacaaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7cqGHRaWkdaaeqbqabSqaaiaadMgacqGHiiIZ caWGZbaabeqdcqGHris5aOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaae aacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjk aiaawMcaaiaaysW7daaeqbqaaiqadEhagaacamaaBaaaleaacaWGPb GaaGilaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGH ris5aOWaamWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGaam OAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWG QbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadMeadaqadaqaaiabew 7aLnaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshacqGHsislcaWG TbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaaacaGL9baacaaIUaaaaaaa@AADE@

Des étapes similaires à celles suivies pour F ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@3B4E@ montrent que

E ( F ˜ ( t ) F N ( t ) ) = λ 2 N n N μ 2 2 μ 0 a b [ G ( 2,0 ) ( t m ( x ) | x ) ( m ( x ) ) 2 G ( 1,0 ) ( t m ( x ) | x ) m ′′ ( x ) 2 G ( 1,1 ) ( t m ( x ) | x ) m ( x ) + G ( 0 , 2 ) ( t m ( x ) | x ) ] h ( x ) d x + o ( λ 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaamyramaabmaabaGabmOrayaaiaWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaai2da cqaH7oaBdaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaad6eacqGHsi slcaWGUbaabaGaamOtaaaadaWcaaqaaiabeY7aTnaaBaaaleaacaaI YaaabeaaaOqaaiaaikdacqaH8oqBdaWgaaWcbaGaaGimaaqabaaaaO Waa8qmaeaadaWabaqaaiaadEeadaahaaWcbeqaamaabmaabaGaaGOm aiaaiYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaai aadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGPaVdGaayjcSdGaamiEaaGaayjkaiaawMcaamaabmaabaGabmyBay aafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaam4ramaaCaaaleqabaWaae WaaeaacaaIXaGaaGilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawI cacaGLPaaacaaMc8oacaGLiWoacaWG4baacaGLOaGaayzkaaGabmyB ayaafyaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbaaaS qaaiaadggaaeaacaWGIbaaniabgUIiYdaakeaaaeaadaWacaqaaiaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaeyOeI0IaaGOmaiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaaiYcacaaIXaaacaGLOaGaayzkaaaaaOWa aeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiEaaGaayjkaiaawMca aiqad2gagaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgUcaRi aadEeadaahaaWcbeqaamaabmaabaGaaGimaiaacYcacaaIYaaacaGL OaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaamiE aaGaayjkaiaawMcaaaGaayzxaaGaamiAamaabmaabaGaamiEaaGaay jkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam4BamaabmaabaGaeq4U dW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaiilaaaaaa a@D090@

h ( x ) := h s ¯ ( x ) + ( 1 π 1 ( x ) ) h s ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaacaWG4baacaGLOaGaayzkaaGaaGOoaiaai2dacaWGObWaaSba aSqaaiaaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG4baacaGLOa GaayzkaaGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aaWba aSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG4baacaGLOaGaay zkaaaacaGLOaGaayzkaaGaamiAamaaBaaaleaacaWGZbaabeaakmaa bmaabaGaamiEaaGaayjkaiaawMcaaiaai6caaaa@52C0@

Variance de l’estimateur fondé sur le modèle de Kuo

var ( F ^ ( t ) F N ( t ) ) = var ( 1 N i s j s w i , j I ( ε j t m j ) 1 N i s I ( y i t ) ) = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m j | x j ) G 2 ( t m j | x j ) ] + 1 N 2 i s [ G ( t m i | x i ) G 2 ( t m i | x i ) ] = A 1 + A 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaqG2bGaaeyyaiaabkhadaqadaqaaiqadAeagaqcamaabmaa baGaamiDaaGaayjkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGaam OtaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacaaI9aGaaeODaiaabggacaqGYbWaaeWaaeaadaWcaaqaai aaigdaaeaacaWGobaaamaaqafabeWcbaGaamyAaiabgMGiplaadoha aeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiY cacaWGQbaabeaakiaadMeaaSqaaiaadQgacqGHiiIZcaWGZbaabeqd cqGHris5aOWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamOAaaqabaGccq GHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGa ayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaad6eaaaWaaa buaeaacaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGa eyizImQaamiDaaGaayjkaiaawMcaaaWcbaGaamyAaiabgMGiplaado haaeqaniabggHiLdaakiaawIcacaGLPaaaaeaaaeaacaaI9aWaaSaa aeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeqb qaamaaqafabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaamOAaaqabaGccaWG3bWaaSbaaSqaai aadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaaabaGa amOAaiabgIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaW qaaiaaikdaaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaa dMgadaWgaaadbaGaaGymaaqabaWccqGHjiYZcaWGZbaabeqdcqGHri s5aOWaamWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsisl caWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiWoacaaMc8UaamiEam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadEea daahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaaabaaabaGaaGjbVlaaysW7cqGHRaWkdaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabeWcbaGaamyAai abgMGiplaadohaaeqaniabggHiLdGcdaWadaqaaiaadEeadaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqaba aakiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGL OaGaayzkaaGaeyOeI0Iaam4ramaaCaaaleqabaGaaGOmaaaakmaabm aabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaa beaaaOGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacaaI9aGaamyqamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmaa qabaGccaaISaaaaaaa@DC0E@

A 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m j | x j ) G 2 ( t m j | x j ) ] = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] ( i s w i , j ) 2 = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOoaiaai2da daWcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakm aaqafabaWaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaa BaaameaacaaIXaaabeaaliaaiYcacaWGQbaabeaakiaadEhadaWgaa WcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaa aeaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgada WgaaadbaGaaGOmaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aaWc baGaamyAamaaBaaameaacaaIXaaabeaaliabgMGiplaadohaaeqani abggHiLdGcdaWadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiab gkHiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaawIa7aiaaykW7ca WG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Ia am4ramaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGaaGPa VlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawU facaGLDbaaaeaaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaamOtamaa CaaaleqabaGaaGOmaaaaaaGcdaaeqbqabSqaaiaadQgacqGHiiIZca WGZbaabeqdcqGHris5aOWaamWaaeaacaWGhbWaaeWaaeaadaabcaqa aiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiW oacaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMca aiabgkHiTiaadEeadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaa wIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaay zkaaaacaGLBbGaayzxaaWaaeWaaeaadaaeqbqabSqaaiaadMgacqGH jiYZcaWGZbaabeqdcqGHris5aOGaam4DamaaBaaaleaacaWGPbGaaG ilaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGcbaaabaGaaGypamaalaaabaGaaGymaaqaaiaad6gaaaWaaeWaae aadaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaae aacaWGIbaaniabgUIiYdGcdaWadaqaaiaadEeadaqadaqaamaaeiaa baGaamiDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPa aacaaMc8oacaGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaiabgkHi TiaadEeadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaam iDaiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaM c8oacaGLiWoacaaMc8UaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2 faamaadmaabaWaaSGbaeaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGb aebaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaamiAam aaBaaaleaacaWGZbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMca aaaaaiaawUfacaGLDbaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGbae baaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIha aeaaaeaacaaMe8UaaGjbVlabgUcaRiaad+eadaqadaqaamaabmaaba GaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiabeg7aHbGaayjkaiaawMcaaaaaaaa@F2D5@

et

A 2 := 1 N 2 i s [ G ( t m i | x i ) G 2 ( t m i | x i ) ] = 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + O ( n 1 α ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaamyqamaaBaaaleaacaaIYaaabeaaaOqaaiaaiQdacaaI9aWa aSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcda aeqbqabSqaaiaadMgacqGHjiYZcaWGZbaabeqdcqGHris5aOWaamWa aeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaS baaSqaaiaadMgaaeqaaaGccaGLiWoacaaMc8UaamiEamaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadEeadaahaaWcbe qaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2ga daWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaykW7caWG4bWaaSbaaS qaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaabaaa baGaaGypamaalaaabaGaaGymaaqaaiaad6eacqGHsislcaWGUbaaam aabmaabaWaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaaiaad6eaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaa8qmaeqaleaaca WGHbaabaGaamOyaaqdcqGHRiI8aOWaamWaaeaacaWGhbWaaeWaaeaa daabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOa GaayzkaaGaaGPaVdGaayjcSdGaaGPaVlaadIhaaiaawIcacaGLPaaa cqGHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzk aaGaaGPaVdGaayjcSdGaaGPaVlaadIhaaiaawIcacaGLPaaaaiaawU facaGLDbaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGbaebaaeqaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRaWkca WGpbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa eqySdegacaGLOaGaayzkaaGaaGOlaaaaaaa@9BD9@

Donc,

var ( F ^ ( t ) F N ( t ) ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaaeODaiaabggacaqGYbWaaeWaaeaaceWGgbGbaKaadaqadaqa aiaadshaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6 eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzk aaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaadaqadaqaam aalaaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaaaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcbaGaamyyaaqaai aadkgaa0Gaey4kIipakmaadmaabaGaam4ramaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaai aaykW7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaGaeyOeI0Ia am4ramaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7 aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa WaamWaaeaadaWcgaqaaiaadIgadaWgaaWcbaGaaGPaVlqadohagaqe aaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWGObWaaS baaSqaaiaadohaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaa aaGaay5waiaaw2faaiaadIgadaWgaaWcbaGaaGPaVlqadohagaqeaa qabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaqa aaqaaiabgUcaRmaalaaabaGaaGymaaqaaiaad6eacqGHsislcaWGUb aaamaabmaabaWaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaaiaad6ea aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaa8qmaeqale aacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaamWaaeaacaWGhbWaaeWa aeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baaca GLOaGaayzkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGL PaaacqGHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaada abcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGa ayzkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaaai aawUfacaGLDbaacaWGObWaaSbaaSqaaiaaykW7ceWGZbGbaebaaeqa aOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRa WkcaWGpbWaaeWaaeaadaqadaqaaiaad6gacqaH7oaBaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaHXoqyaiaawIcaca GLPaaacaaIUaaaaaaa@C646@

Variance de l’estimateur par la différence généralisée de Kuo

Notons que,

F ˜ ( t ) F N ( t ) = 1 N { j s I ( y j t ) [ i s w ˜ i , j i s w ˜ i , j ( π i 1 1 ) + ( π j 1 1 ) ] i s I ( y i t ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaG aadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSba aSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaG ypamaalaaabaGaaGymaaqaaiaad6eaaaWaaiWaaeaadaaeqbqaaiaa dMeadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGccqGHKjYOca WG0baacaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam4Caaqab0Ga eyyeIuoakmaadmaabaWaaabuaeaaceWG3bGbaGaadaWgaaWcbaGaam yAaiaaiYcacaWGQbaabeaaaeaacaWGPbGaeyycI8Saam4Caaqab0Ga eyyeIuoakiabgkHiTmaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadM gacaaISaGaamOAaaqabaaabaGaamyAaiabgIGiolaadohaaeqaniab ggHiLdGcdaqadaqaaiabec8aWnaaDaaaleaacaWGPbaabaGaeyOeI0 IaaGymaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkdaqa daqaaiabec8aWnaaDaaaleaacaWGQbaabaGaeyOeI0IaaGymaaaaki abgkHiTiaaigdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHsisl daaeqbqaaiaadMeadaqadaqaaiaadMhadaWgaaWcbaGaamyAaaqaba GccqGHKjYOcaWG0baacaGLOaGaayzkaaaaleaacaWGPbGaeyycI8Sa am4Caaqab0GaeyyeIuoaaOGaay5Eaiaaw2haaaaa@8578@

de sorte que

var ( F ˜ ( t ) F N ( t ) ) = var ( 1 N j s I ( y j t ) [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] ) + var ( 1 N i s I ( y i t ) ) = B 1 + A 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaaeODaiaabggacaqGYbWaaeWaaeaaceWGgbGbaGaadaqadaqa aiaadshaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6 eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzk aaaabaGaaGypaiaabAhacaqGHbGaaeOCamaabmaabaWaaSaaaeaaca aIXaaabaGaamOtaaaadaaeqbqaaiaadMeadaqadaqaaiaadMhadaWg aaWcbaGaamOAaaqabaGccqGHKjYOcaWG0baacaGLOaGaayzkaaaale aacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaadmaabaWaaabu aeaaceWG3bGbaGaadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaae aacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakiabgUcaRmaabmaa baGaeqiWda3aa0baaSqaaiaadQgaaeaacqGHsislcaaIXaaaaOGaey OeI0IaaGymaaGaayjkaiaawMcaaiabgkHiTmaaqafabaGabm4Dayaa iaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamyAaiabgI GiolaadohaaeqaniabggHiLdGcdaqadaqaaiabec8aWnaaDaaaleaa caWGPbaabaGaeyOeI0IaaGymaaaakiabgkHiTiaaigdaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaeaaaeaacaaMe8Ua aGjbVlabgUcaRiaabAhacaqGHbGaaeOCamaabmaabaWaaSaaaeaaca aIXaaabaGaamOtaaaadaaeqbqaaiaadMeadaqadaqaaiaadMhadaWg aaWcbaGaamyAaaqabaGccqGHKjYOcaWG0baacaGLOaGaayzkaaaale aacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoaaOGaayjkaiaawMca aaqaaaqaaiaai2dacaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamyqamaaBaaaleaacaaIYaaabeaakiaaiYcaaaaaaa@9AE6@

où le terme A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaikdaaeqaaaaa@399F@ est le même que dans la variance de F ^ ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSaaaaa@3BFE@ et où

B 1 := var ( 1 N j s I ( y j t ) [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] ) = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] [ i s w ˜ i , j + ( π j 1 1 ) i s w ˜ i , j ( π i 1 1 ) ] 2 = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] [ i s w ˜ i , j + ( π j 1 1 ) ( 1 i s w ˜ i , j ) ] 2 + O ( λ n 1 ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α + λ n 1 ) = A 1 + O ( ( n λ ) 1 α + λ n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGbca aaaeaacaWGcbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOoaiaai2da caqG2bGaaeyyaiaabkhadaqadaqaamaalaaabaGaaGymaaqaaiaad6 eaaaWaaabuaeaacaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQga aeqaaOGaeyizImQaamiDaaGaayjkaiaawMcaaaWcbaGaamOAaiabgI GiolaadohaaeqaniabggHiLdGcdaWadaqaamaaqafabaGabm4Dayaa iaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamyAaiabgM GiplaadohaaeqaniabggHiLdGccqGHRaWkdaqadaqaaiabec8aWnaa DaaaleaacaWGQbaabaGaeyOeI0IaaGymaaaakiabgkHiTiaaigdaai aawIcacaGLPaaacqGHsisldaaeqbqaaiqadEhagaacamaaBaaaleaa caWGPbGaaGilaiaadQgaaeqaaaqaaiaadMgacqGHiiIZcaWGZbaabe qdcqGHris5aOWaaeWaaeaacqaHapaCdaqhaaWcbaGaamyAaaqaaiab gkHiTiaaigdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBb GaayzxaaaacaGLOaGaayzkaaaabaaabaGaaGypamaalaaabaGaaGym aaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeqaleaaca WGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaadmaabaGaam4ramaa bmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQb aabeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaacqGHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaO WaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaa dQgaaeqaaaGccaGLiWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabe aaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaadmaabaWaaabuaeaa ceWG3bGbaGaadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaeaaca WGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakiabgUcaRmaabmaabaGa eqiWda3aa0baaSqaaiaadQgaaeaacqGHsislcaaIXaaaaOGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgkHiTmaaqafabaGabm4DayaaiaWa aSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamyAaiabgIGiol aadohaaeqaniabggHiLdGcdaqadaqaaiabec8aWnaaDaaaleaacaWG PbaabaGaeyOeI0IaaGymaaaakiabgkHiTiaaigdaaiaawIcacaGLPa aaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaaakeaaaeaacaaI 9aWaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaa GcdaaeqbqabSqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWa amWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadQgaaeqaaaGccaGLiWoacaaMe8UaamiEamaaBaaa leaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadEeadaahaa WcbeqaaiaaikdaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamOAaaqabaaakiaawIa7aiaaysW7caWG4bWaaS baaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWa amWaaeaadaaeqbqaaiqadEhagaacamaaBaaaleaacaWGPbGaaGilai aadQgaaeqaaaqaaiaadMgacqGHjiYZcaWGZbaabeqdcqGHris5aOGa ey4kaSYaaeWaaeaacqaHapaCdaqhaaWcbaGaamOAaaqaaiabgkHiTi aaigdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaaI XaGaeyOeI0YaaabuaeaaceWG3bGbaGaadaWgaaWcbaGaamyAaiaaiY cacaWGQbaabeaaaeaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa aOGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaad+eadaqadaqaaiabeU7aSjaad6gadaahaaWcbeqa aiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaeaaaeaacaaI9aWaaS aaaeaacaaIXaaabaGaamOBaaaadaqadaqaamaalaaabaGaamOtaiab gkHiTiaad6gaaeaacaWGobaaaaGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaakmaapedabeWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipa kmaadmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Iaam yBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaa ysW7caWG4baacaGLOaGaayzkaaGaeyOeI0Iaam4ramaaCaaaleqaba GaaGOmaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaysW7ca WG4baacaGLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaadaWcgaqa aiaadIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaai aadIhaaiaawIcacaGLPaaaaeaacaWGObWaaSbaaSqaaiaadohaaeqa aOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faai aadIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaa dIhaaiaawIcacaGLPaaacaWGKbGaamiEaaqaaaqaaiaaysW7caaMe8 Uaey4kaSIaam4tamaabmaabaWaaeWaaeaacaWGUbGaeq4UdWgacaGL OaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeqySdeMaey 4kaSIaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGa ayjkaiaawMcaaaqaaaqaaiaai2dacaWGbbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaam4tamaabmaabaWaaeWaaeaacaWGUbGaeq4UdWga caGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeqySde Maey4kaSIaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaa aOGaayjkaiaawMcaaiaai6caaaaaaa@7306@

Donc,

var ( F ˜ ( t ) F N ( t ) ) = var ( F ^ ( t ) F N ( t ) ) + O ( ( n λ ) 1 α + λ n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG2bGaae yyaiaabkhadaqadaqaaiqadAeagaacamaabmaabaGaamiDaaGaayjk aiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGaamOtaaqabaGcdaqada qaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI9aGaaeOD aiaabggacaqGYbWaaeWaaeaaceWGgbGbaKaadaqadaqaaiaadshaai aawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaad6eaaeqaaOWa aeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS Iaam4tamaabmaabaWaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzk aaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeqySdeMaey4kaSIaeq 4UdWMaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaa wMcaaiaai6caaaa@63B9@

Biais de l’estimateur fondé sur le modèle avec valeurs prédites modifiées

Soit m ^ ^ i := k s w i , k m k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK GbaKaadaWgaaWcbaGaamyAaaqabaGccaaI6aGaaGypamaaqababeWc baGaam4AaiabgIGiolaadohaaeqaniabggHiLdGccaWG3bWaaSbaaS qaaiaadMgacaaISaGaam4AaaqabaGccaWGTbWaaSbaaSqaaiaadUga aeqaaOGaaiilaaaa@4799@ c i , j := 1 w j , j + w i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI6aGaaGypaiaaigda cqGHsislcaWG3bWaaSbaaSqaaiaadQgacaaISaGaamOAaaqabaGccq GHRaWkcaWG3bWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@4738@ et

d i , j := 1 c i , j [ ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + k s , k j ( w j , k w i , k ) ε k ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI6aGaaGypamaalaaa baGaaGymaaqaaiaadogadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabe aaaaGcdaWadaqaamaabmaabaGaaGymaiabgkHiTiaadogadaWgaaWc baGaamyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaaba GaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaacqGHRaWkdaqadaqaaiqad2gagaqcgaqcamaaBaaaleaaca WGQbaabeaakiabgkHiTiaad2gadaWgaaWcbaGaamOAaaqabaaakiaa wIcacaGLPaaacqGHsisldaqadaqaaiqad2gagaqcgaqcamaaBaaale aacaWGPbaabeaakiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaacqGHRaWkdaaeqbqabSqaaiaadUgacqGHiiIZca WGZbGaaGilaiaadUgacqGHGjsUcaWGQbaabeqdcqGHris5aOWaaeWa aeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaam4AaaqabaGccqGHsi slcaWG3bWaaSbaaSqaaiaadMgacaaISaGaam4AaaqabaaakiaawIca caGLPaaacqaH1oqzdaWgaaWcbaGaam4AaaqabaaakiaawUfacaGLDb aacaaIUaaaaa@77B5@

Observons que w i , j = O i , j ( ( n λ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI9aGaam4tamaaBaaa leaacaWGPbGaaGilaiaadQgaaeqaaOWaaeWaaeaadaqadaqaaiaad6 gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigda aaaakiaawIcacaGLPaaaaaa@47B2@ d’où

y j m ^ j t m ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadQgaaeqaaOGaeyOeI0IabmyBayaajaWaaSbaaSqaaiaa dQgaaeqaaOGaeyizImQaamiDaiabgkHiTiqad2gagaqcamaaBaaale aacaWGPbaabeaaaaa@42DE@

est (asymptotiquement, aussitôt que c i , j > 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqacaqaai aadogadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaai6dacaaI WaaacaGLPaaaaaa@3DEC@ équivalent à

ε j t m i + d i , j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaa BaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAai aaiYcacaWGQbaabeaakiaai6caaaa@45B9@

Comme d i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@3B99@ ne dépend pas de ε j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOAaaqabaGccaGGSaaaaa@3B6D@ il s’ensuit que

E ( I ( y j m ^ j t m ^ i ) ) = E ( I ( ε j t m i + d i , j ) ) = E ( E ( I ( ε j t m i + d i , j ) | ε k , k j ) ) = E ( G ( t m i + d i , j | x j ) ) . ( A .1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaamyramaabmaabaGaamysamaabmaabaGaamyEamaaBaaaleaa caWGQbaabeaakiabgkHiTiqad2gagaqcamaaBaaaleaacaWGQbaabe aakiabgsMiJkaadshacqGHsislceWGTbGbaKaadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaaI9aGaam yramaabmaabaGaamysamaabmaabaGaeqyTdu2aaSbaaSqaaiaadQga aeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaa qabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaaaeaacaaI9aGaam yramaabmaabaGaamyramaabmaabaWaaqGaaeaacaWGjbWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0 IaamyBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWgaaWc baGaamyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7ai aawIa7aiaaykW7cqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaISaGa am4AaiabgcMi5kaadQgaaiaawIcacaGLPaaaaiaawIcacaGLPaaaae aaaeaacaaI9aGaamyramaabmaabaGaam4ramaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaakiabgUcaRi aadsgadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaOGaayjcSdGa aGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaai aawIcacaGLPaaacaaIUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaacgeacaGGUaGaaGymaiaacMcaaaa@9A2A@

Or, en utilisant le fait que

d i , j = ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + k s , k j ( w j , k w i , k ) ε k + R ( d i , j ) , ( A .2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaaI9aWaaeWaaeaacaaI XaGaeyOeI0Iaam4yamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaa GccaGLOaGaayzkaaWaaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGabm yBayaajyaajaWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamyBamaa BaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaaba GabmyBayaajyaajaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamyB amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaaqa fabeWcbaGaam4AaiabgIGiolaadohacaaISaGaam4AaiabgcMi5kaa dQgaaeqaniabggHiLdGcdaqadaqaaiaadEhadaWgaaWcbaGaamOAai aaiYcacaWGRbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAaiaa iYcacaWGRbaabeaaaOGaayjkaiaawMcaaiabew7aLnaaBaaaleaaca WGRbaabeaakiabgUcaRiaadkfadaqadaqaaiaadsgadaWgaaWcbaGa amyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcacaaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGOmaiaacMca aaa@8139@

E 1 / 4 ( | R ( d i , j ) | 4 ) = O i , j ( λ n 1 + ( n λ ) 3 / 2 ) , ( A .3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaW baaSqabeaadaWcgaqaaiaaigdaaeaacaaI0aaaaaaakmaabmaabaGa aGPaVpaaemaabaGaaGPaVlaadkfadaqadaqaaiaadsgadaWgaaWcba GaamyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7aiaa wEa7caGLiWoadaahaaWcbeqaaiaaykW7caaI0aaaaaGccaGLOaGaay zkaaGaaGypaiaad+eadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaa kmaabmaabaGaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0IaaGymaa aakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaamaa CaaaleqabaGaeyOeI0YaaSGbaeaacaaIZaaabaGaaGOmaaaaaaaaki aawIcacaGLPaaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaiyqaiaac6cacaaIZaGaaiykaaaa@6A9F@

on voit en examinant (A.1) que

E ( I ( y j m ^ j t m ^ i ) ) = E ( G ( t m i + d i , j ) | x j ) = G ( t m i | x j ) + G ( 1,0 ) ( t m i | x j ) E ( d i , j ) + 1 2 G ( 2,0 ) ( t m i | x j ) E ( d i , j 2 ) + o i , j ( λ 4 + ( n λ ) 1 ) . ( A .4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaamyramaabmaabaGaamysamaabmaabaGaamyEamaaBaaaleaa caWGQbaabeaakiabgkHiTiqad2gagaqcamaaBaaaleaacaWGQbaabe aakiabgsMiJkaadshacqGHsislceWGTbGbaKaadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaaI9aGaam yramaabmaabaWaaqGaaeaacaWGhbWaaeWaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWgaaWcba GaamyAaiaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7aiaa wIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaay zkaaaabaaabaGaaGypaiaadEeadaqadaqaamaaeiaabaGaamiDaiab gkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7ca WG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIa am4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaGilaiaaicdaaiaawI cacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2ga daWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamyramaabmaabaGaamiz amaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaGccaGLOaGaayzkaa aabaaabaGaaGjbVlaaysW7cqGHRaWkdaWcaaqaaiaaigdaaeaacaaI YaaaaiaadEeadaahaaWcbeqaamaabmaabaGaaGOmaiaaiYcacaaIWa aacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsisl caWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMe8UaamiEam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadweadaqadaqa aiaadsgadaqhaaWcbaGaamyAaiaaiYcacaWGQbaabaGaaGOmaaaaaO GaayjkaiaawMcaaiabgUcaRiaad+gadaWgaaWcbaGaamyAaiaaiYca caWGQbaabeaakmaabmaabaGaeq4UdW2aaWbaaSqabeaacaaI0aaaaO Gaey4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaaGOlaaaaca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGinaiaa cMcaaaa@B53F@

Donc,

E ( F ^ * ( t ) F N ( t ) ) = E ( 1 N i s j s w i , j ( I ( y j m ^ j t m ^ i ) I ( y i t ) ) ) = 1 N i s j s w i , j [ G ( t m i | x j ) G ( t m i | x i ) ] + 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) E ( d i , j ) + 1 2 N i s j s w i , j G ( 2 , 0 ) ( t m i | x j ) E ( d i , j 2 ) + o ( λ 4 + ( n λ ) 1 ) := C 1 + C 2 + C 3 + o ( λ 4 + ( n λ ) 1 ) . ( A .5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqbca aaaeaacaWGfbWaaeWaaeaaceWGgbGbaKaadaahaaWcbeqaaiaaiQca aaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaai2dacaWGfbWaaeWaaeaadaWcaa qaaiaaigdaaeaacaWGobaaamaaqafabeWcbaGaamyAaiabgMGiplaa dohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAai aaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqab0Gaeyye IuoakmaabmaabaGaamysamaabmaabaGaamyEamaaBaaaleaacaWGQb aabeaakiabgkHiTiqad2gagaqcamaaBaaaleaacaWGQbaabeaakiab gsMiJkaadshacqGHsislceWGTbGbaKaadaWgaaWcbaGaamyAaaqaba aakiaawIcacaGLPaaacqGHsislcaWGjbWaaeWaaeaacaWG5bWaaSba aSqaaiaadMgaaeqaaOGaeyizImQaamiDaaGaayjkaiaawMcaaaGaay jkaiaawMcaaaGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaaqaaiaa igdaaeaacaWGobaaamaaqafabeWcbaGaamyAaiabgMGiplaadohaae qaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiYca caWGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakm aadmaabaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyB amaaBaaaleaacaWGPbaabeaaaOGaayjcSdGaaGjbVlaadIhadaWgaa WcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWaaeWa aeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaae qaaaGccaGLiWoacaaMe8UaamiEamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faaaqaaaqaaiaaysW7caaMe8Uaey 4kaSYaaSaaaeaacaaIXaaabaGaamOtaaaadaaeqbqabSqaaiaadMga cqGHjiYZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaS qaaiaadMgacaaISaGaamOAaaqabaGccaWGhbWaaWbaaSqabeaadaqa daqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaaaeaacaWGQb GaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjcSdGaaG jbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaWG fbWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgacaaISaGaamOAaaqaba aakiaawIcacaGLPaaaaeaaaeaacaaMe8UaaGjbVlabgUcaRmaalaaa baGaaGymaaqaaiaaikdacaWGobaaamaaqafabeWcbaGaamyAaiabgM GiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGa amyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbeqaamaabmaaba GaaGOmaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqaaiaadQgacqGH iiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabcaqaaiaadshacq GHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacaaMe8Ua amiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadweada qadaqaaiaadsgadaqhaaWcbaGaamyAaiaaiYcacaWGQbaabaGaaGOm aaaaaOGaayjkaiaawMcaaiabgUcaRiaad+gadaqadaqaaiabeU7aSn aaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaamOBaiabeU7a SbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaay jkaiaawMcaaaqaaaqaaiaaiQdacaaI9aGaam4qamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGOmaaqabaGccqGHRa WkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4Bamaabmaa baGaeq4UdW2aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaaca WGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaaGccaGLOaGaayzkaaGaaGOlaaaacaaMf8UaaGzbVlaaywW7ca GGOaGaaiyqaiaac6cacaaI1aGaaiykaaaa@1C16@

Considérons d’abord C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaigdaaeqaaaaa@39A0@ et notons que

C 1 := 1 N i s j s w i , j [ G ( t m i | x j ) G ( t m i | x i ) ] = 1 2 N i s G ( 0 , 2 ) ( t m i | x i ) j s w i , j ( x j x i ) 2 + o ( λ 2 ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h s ¯ ( x ) d x + o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaam4qamaaBaaaleaacaaIXaaabeaaaOqaaiaaiQdacaaI9aWa aSaaaeaacaaIXaaabaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHji YZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaaeqani abggHiLdGcdaWadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiab gkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7ca WG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Ia am4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaale aacaWGPbaabeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaaaeaacaaI9a WaaSaaaeaacaaIXaaabaGaaGOmaiaad6eaaaWaaabuaeaacaWGhbWa aWbaaSqabeaadaqadaqaaiaaicdacaGGSaGaaGOmaaGaayjkaiaawM caaaaaaeaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakmaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabe aaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaaiYcaca WGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaa bmaabaGaamiEamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadIhada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGVbWaaeWaaeaacqaH7oaBdaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaeaaaeaacaaI9aGaeq4UdW2aaWba aSqabeaacaaIYaaaaOWaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaai aad6eaaaWaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaa cqaH8oqBdaWgaaWcbaGaaGimaaqabaaaaOWaa8qmaeaacaWGhbWaaW baaSqabeaadaqadaqaaiaaicdacaGGSaGaaGOmaaGaayjkaiaawMca aaaaaeaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzk aaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaacaWGOb WaaSbaaSqaaiaaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaamizaiaadIhacqGHRaWkcaWGVbWaaeWaaeaacq aH7oaBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaIUaaa aaaa@C563@

Considérons ensuite C 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaikdaaeqaaOGaaiOlaaaa@3A5D@ (A.2) et (A.3) impliquent que

E ( d i , j ) = ( 1 c i , j ) ( t m i ) + ( m ^ ^ j m j ) ( m ^ ^ i m i ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) = ( w j , j w i , j ) ( t m i ) + m j ′′ k s w j , k ( x k x j ) 2 m i ′′ k s w i , k ( x k x i ) 2 + o i , j ( λ 2 ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) = ( w j , j w i , j ) ( t m i ) + ( m j ′′ m i ′′ ) k s w j , k ( x k x j ) 2 + m i ′′ ( k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) + o i , j ( λ 2 ) + O i , j ( λ n 1 + ( n λ ) 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGbca aaaeaacaWGfbWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgacaaISaGa amOAaaqabaaakiaawIcacaGLPaaaaeaacaaI9aWaaeWaaeaacaaIXa GaeyOeI0Iaam4yamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaGc caGLOaGaayzkaaWaaeWaaeaacaWG0bGaeyOeI0IaamyBamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGabmyB ayaajyaajaWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamyBamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGa bmyBayaajyaajaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamyBam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaad+ea daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaabaGaeq4UdW MaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRmaabmaa baGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 YaaSGbaeaacaaIZaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaa aeaacaaI9aWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaam OAaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaISaGaamOA aaqabaaakiaawIcacaGLPaaadaqadaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIabmyB ayaagaWaaSbaaSqaaiaadQgaaeqaaOGaaGjbVpaaqafabaGaam4Dam aaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaOWaaeWaaeaacaWG4bWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGQb aabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWG RbGaeyicI4Saam4Caaqab0GaeyyeIuoakiabgkHiTiqad2gagaGbam aaBaaaleaacaWGPbaabeaakiaaysW7daaeqbqaaiaadEhadaWgaaWc baGaamyAaiaaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaale aacaWGRbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgI GiolaadohaaeqaniabggHiLdaakeaaaeaacaaMe8UaaGjbVlabgUca Riaad+gadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaaba Gaeq4UdW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4k aSIaam4tamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaOWaaeWaae aacqaH7oaBcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey4k aSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabe aacqGHsisldaWcgaqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaa wMcaaaqaaaqaaiaai2dadaqadaqaaiaadEhadaWgaaWcbaGaamOAai aaiYcacaWGQbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAaiaa iYcacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH RaWkdaqadaqaaiqad2gagaGbamaaBaaaleaacaWGQbaabeaakiabgk HiTiqad2gagaGbamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca amaaqafabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoaaOqa aaqaaiaaysW7caaMe8Uaey4kaSIabmyBayaagaWaaSbaaSqaaiaadM gaaeqaaOGaaGjbVpaabmaabaWaaabuaeaacaWG3bWaaSbaaSqaaiaa dQgacaaISaGaam4AaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaam 4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZca WGZbaabeqdcqGHris5aOGaeyOeI0YaaabuaeaacaWG3bWaaSbaaSqa aiaadMgacaaISaGaam4AaaqabaGcdaqadaqaaiaadIhadaWgaaWcba Gaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHii IZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaabaaabaGaaGjb VlaaysW7cqGHRaWkcaWGVbWaaSbaaSqaaiaadMgacaaISaGaamOAaa qabaGcdaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgUcaRiaad+eadaWgaaWcbaGaamyAaiaaiYcacaWGQb aabeaakmaabmaabaGaeq4UdWMaamOBamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0YaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaakiaawIcacaGLPaaaaaaaaa@39BD@

de sorte que

C 2 = C 2, a + C 2, b + C 2, c + o ( λ 2 ) + O ( λ n 1 + ( n λ ) 3 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaikdaaeqaaOGaaGypaiaadoeadaWgaaWcbaGaaGOmaiaa iYcacaWGHbaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGOmaiaaiY cacaWGIbaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGOmaiaaiYca caWGJbaabeaakiabgUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaale qabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaad+eadaqadaqa aiabeU7aSjaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHRa Wkdaqadaqaaiaad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqa aiabgkHiTmaalyaabaGaaG4maaqaaiaaikdaaaaaaaGccaGLOaGaay zkaaGaaGilaaaa@5C80@

C 2, a := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) ( w j , j w i , j ) ( t m i ) = 1 N i s G ( 1 , 0 ) ( t m i | x i ) ( t m i ) j s w i , j ( w j , j w i , j ) + O ( n 1 ) = 1 n λ N n N K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) [ h s ¯ ( x ) / h s ( x ) ] d x + O ( ( n λ ) 1 λ 1 α + n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGdbWaaSbaaSqaaiaaikdacaaISaGaamyyaaqabaaakeaa caaI6aGaaGypamaalaaabaGaaGymaaqaaiaad6eaaaWaaabuaeqale aacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakmaaqafabaGaam4D amaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaOGaam4ramaaCaaale qabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaaa baGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaa wIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaay zkaaWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaamOAaaqa baGccqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaISaGaamOAaaqaba aakiaawIcacaGLPaaadaqadaqaaiaadshacqGHsislcaWGTbWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaaabaGaaGypamaala aabaGaaGymaaqaaiaad6eaaaWaaabuaeaacaWGhbWaaWbaaSqabeaa daqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaaaeaaca WGPbGaeyycI8Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjcSd GaaGjbVlaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa daqadaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaI SaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLd GcdaqadaqaaiaadEhadaWgaaWcbaGaamOAaiaaiYcacaWGQbaabeaa kiabgkHiTiaadEhadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaO GaayjkaiaawMcaaiabgUcaRiaad+eadaqadaqaaiaad6gadaahaaWc beqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaeaaaeaacaaI9a WaaSaaaeaacaaIXaaabaGaamOBaiabeU7aSbaadaWcaaqaaiaad6ea cqGHsislcaWGUbaabaGaamOtaaaadaWcaaqaaiaadUeadaqadaqaai aaicdaaiaawIcacaGLPaaacqGHsislcqaH6oWAaeaacqaH8oqBdaWg aaWcbaGaaGimaaqabaaaaOWaa8qmaeqaleaacaWGHbaabaGaamOyaa qdcqGHRiI8aOGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiil aiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8oa caGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaamaabmaabaGaamiDai abgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIca caGLPaaadaWadaqaamaalyaabaGaamiAamaaBaaaleaacaaMc8Uabm 4CayaaraaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaaqaaiaa dIgadaWgaaWcbaGaam4CaaqabaGcdaqadaqaaiaadIhaaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaGaamizaiaadIhaaeaaaeaacaaMe8Ua aGjbVlabgUcaRiaad+eadaqadaqaamaabmaabaGaamOBaiabeU7aSb GaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeU7a SnaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeg7aHjabgUcaRiaad6 gadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaaaa aa@F32C@

avec κ := 1 1 K 2 ( u ) d u , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH6oWAca aI6aGaaGypamaapedabaGaam4samaaCaaaleqabaGaaGOmaaaaaeaa cqGHsislcaaIXaaabaGaaGymaaqdcqGHRiI8aOWaaeWaaeaacaWG1b aacaGLOaGaayzkaaGaamizaiaadwhacaGGSaaaaa@4688@

C 2, b := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) ( m j ′′ m i ′′ ) k s w j , k ( x k x j ) 2 = o ( λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaam4qamaaBaaaleaacaaIYaGaaGilaiaadkgaaeqaaaGcbaGa aGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqa aiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caamaabmaabaGabmyBayaagaWaaSbaaSqaaiaadQgaaeqaaOGaeyOe I0IabmyBayaagaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa WaaabuaeaacaWG3bWaaSbaaSqaaiaadQgacaaISaGaam4AaaqabaGc daqadaqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4b WaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aaGcba aabaGaaGypaiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaaaaaa@7A7D@

et

C 2, c := 1 N i s j s w i , j G ( 1 , 0 ) ( t m i | x j ) m i ′′ ( k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) = 1 N i s G ( 1 , 0 ) ( t m i | x i ) m i ′′ ( j s w i , j k s w j , k ( x k x j ) 2 k s w i , k ( x k x i ) 2 ) + o ( λ 2 ) = o ( λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaam4qamaaBaaaleaacaaIYaGaaGilaiaadogaaeqaaaGcbaGa aGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcba GaamyAaiabgMGiplaadohaaeqaniabggHiLdGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaadEeadaahaaWcbe qaamaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaaqa aiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaaGccaGL iWoacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaiqad2gagaGbamaaBaaaleaacaWGPbaabeaakiaaysW7daqadaqa amaaqafabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaO WaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakiab gkHiTmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGilaiaadUgaae qaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoa aOGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigdaaeaaca WGobaaamaaqafabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGa aiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamyAaiabgMGiplaado haaeqaniabggHiLdGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGabmyBayaagaWaaSba aSqaaiaadMgaaeqaaOGaaGjbVpaabmaabaWaaabuaeaacaWG3bWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaa dohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamOAai aaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaaleaacaWGRbaa beaakiabgkHiTiaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgIGiolaadoha aeqaniabggHiLdGccqGHsisldaaeqbqaaiaadEhadaWgaaWcbaGaam yAaiaaiYcacaWGRbaabeaakmaabmaabaGaamiEamaaBaaaleaacaWG RbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaam4AaiabgIGiolaa dohaaeqaniabggHiLdaakiaawIcacaGLPaaacqGHRaWkcaWGVbWaae WaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa aeaaaeaacaaI9aGaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaaca aIYaaaaaGccaGLOaGaayzkaaGaaGOlaaaaaaa@DA60@

Considérons enfin C 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaiodaaeqaaOGaaiOlaaaa@3A5E@ Notons que, d’après (A.2) et (A.3),

E ( d i , j 2 ) = k s ( w j , k w i , k ) 2 σ k 2 + O i , j ( λ 4 + ( n λ ) 2 ) ( A .6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaae WaaeaacaWGKbWaa0baaSqaaiaadMgacaaISaGaamOAaaqaaiaaikda aaaakiaawIcacaGLPaaacaaI9aWaaabuaeaadaqadaqaaiaadEhada WgaaWcbaGaamOAaiaaiYcacaWGRbaabeaakiabgkHiTiaadEhadaWg aaWcbaGaamyAaiaaiYcacaWGRbaabeaaaOGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWGRbaabaGaaGOm aaaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakiabgUcaRi aad+eadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakmaabmaabaGa eq4UdW2aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaacaWGUb Gaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIYaaa aaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaiyqaiaac6cacaaI2aGaaiykaaaa@6E92@

d’où

C 3 = 1 2 N i s j s w i , j G ( 2 , 0 ) ( t m i | x j ) k s ( w j , k w i , k ) 2 σ k 2 + O ( λ 4 + ( n λ ) 2 ) = 1 2 N i s G ( 2 , 0 ) ( t m i | x i ) σ i 2 j s w i , j k s ( w j , k w i , k ) 2 + o ( ( n λ ) 1 ) + O ( λ 4 ) = 1 n λ N n N κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) [ h s ¯ ( x ) / h s ( x ) ] d x + o ( ( n λ ) 1 ) + O ( λ 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca aabaGaam4qamaaBaaaleaacaaIZaaabeaaaOqaaiaai2dadaWcaaqa aiaaigdaaeaacaaIYaGaamOtaaaadaaeqbqabSqaaiaadMgacqGHji YZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaGccaWGhbWaaWbaaSqabeaadaqadaqaai aaikdacaGGSaGaaGimaaGaayjkaiaawMcaaaaaaeaacaWGQbGaeyic I4Saam4Caaqab0GaeyyeIuoakmaabmaabaWaaqGaaeaacaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbaabeaaaOGaayjcSdGaaGjbVlaa dIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaadaaeqbqaam aabmaabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaaeqaaOGa eyOeI0Iaam4DamaaBaaaleaacaWGPbGaaGilaiaadUgaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqa aiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabeqdcq GHris5aOGaey4kaSIaam4tamaabmaabaGaeq4UdW2aaWbaaSqabeaa caaI0aaaaOGaey4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaa baaabaGaaGypamaalaaabaGaaGymaaqaaiaaikdacaWGobaaamaaqa fabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYaGaaiilaiaaicda aiaawIcacaGLPaaaaaaabaGaamyAaiabgMGiplaadohaaeqaniabgg HiLdGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWc baGaamyAaaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaGaeq4Wdm3aa0baaSqaaiaadMgaaeaa caaIYaaaaOWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaaISaGaam OAaaqabaaabaGaamOAaiabgIGiolaadohaaeqaniabggHiLdGcdaae qbqaamaabmaabaGaam4DamaaBaaaleaacaWGQbGaaGilaiaadUgaae qaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbGaaGilaiaadUgaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacq GHiiIZcaWGZbaabeqdcqGHris5aOGaey4kaSIaam4BamaabmaabaWa aeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaGccaGLOaGaayzkaaGaey4kaSIaam4tamaabmaa baGaeq4UdW2aaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaaaba aabaGaaGypamaalaaabaGaaGymaaqaaiaad6gacqaH7oaBaaWaaSaa aeaacaWGobGaeyOeI0IaamOBaaqaaiaad6eaaaWaaSaaaeaacqaH6o WAcqGHsislcqaH4oqCaeaacqaH8oqBdaqhaaWcbaGaaGimaaqaaiaa ikdaaaaaaOWaa8qmaeaacaWGhbWaaWbaaSqabeaadaqadaqaaiaaik dacaGGSaGaaGimaaGaayjkaiaawMcaaaaaaeaacaWGHbaabaGaamOy aaqdcqGHRiI8aOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGjb VlaadIhaaiaawIcacaGLPaaacqaHdpWCdaahaaWcbeqaaiaaikdaaa GcdaqadaqaaiaadIhaaiaawIcacaGLPaaadaWadaqaamaalyaabaGa amiAamaaBaaaleaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaam iEaaGaayjkaiaawMcaaaqaaiaadIgadaWgaaWcbaGaam4CaaqabaGc daqadaqaaiaadIhaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaam izaiaadIhacqGHRaWkcaWGVbWaaeWaaeaadaqadaqaaiaad6gacqaH 7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaki aawIcacaGLPaaacqGHRaWkcaWGpbWaaeWaaeaacqaH7oaBdaahaaWc beqaaiaaisdaaaaakiaawIcacaGLPaaaaaaaaa@0997@

avec θ := 1 1 K ( v ) 1 1 K ( u + v ) K ( u ) d u d v . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCca aI6aGaaGypamaapedabaGaam4samaabmaabaGaamODaaGaayjkaiaa wMcaaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipakmaape dabaGaam4samaabmaabaGaamyDaiabgUcaRiaadAhaaiaawIcacaGL PaaacaWGlbWaaeWaaeaacaWG1baacaGLOaGaayzkaaGaamizaiaadw hacaWGKbGaamODaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4k Iipakiaac6caaaa@54AE@

En substituant les développements susmentionnés à C 1 , C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadoeadaWgaaWcbaGaaGOmaaqa baaaaa@3C0A@ et C 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaiodaaeqaaaaa@39A1@ dans (A.5), on obtient finalement

E ( F ^ * ( t ) F N ( t ) ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h s ¯ ( x ) d x + 1 n λ N n N [ K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) h s 1 ( x ) h s ¯ ( x ) d x + κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) h s 1 ( x ) h s ¯ ( x ) d x ] + o ( λ 2 + ( n λ ) 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGfbWaaeWaaeaaceWGgbGbaKaadaahaaWcbeqaaiaaiQca aaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaai aaikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaa daWcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqaaiaadEeadaahaaWcbeqa amaabmaabaGaaGimaiaacYcacaaIYaaacaGLOaGaayzkaaaaaaqaai aadggaaeaacaWGIbaaniabgUIiYdGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8 oacaGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaiaadIgadaWgaaWc baGaaGPaVlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcaca GLPaaacaWGKbGaamiEaaqaaaqaaiaaysW7caaMe8Uaey4kaSYaaSaa aeaacaaIXaaabaGaamOBaiabeU7aSbaadaWcaaqaaiaad6eacqGHsi slcaWGUbaabaGaamOtaaaadaWabaqaamaalaaabaGaam4samaabmaa baGaaGimaaGaayjkaiaawMcaaiabgkHiTiabeQ7aRbqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqabSqaaiaadggaaeaacaWG IbaaniabgUIiYdGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdaca GGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaWaaeWaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay jkaiaawMcaaiaadIgadaqhaaWcbaGaam4CaaqaaiabgkHiTiaaigda aaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGObWaaSbaaSqaai aaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzk aaGaamizaiaadIhaaiaawUfaaaqaaaqaaiaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7daWacaqaaiabgUcaRmaalaaabaGaeqOUdSMa eyOeI0IaeqiUdehabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaIYa aaaaaakmaapedabaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYaGa aiilaiaaicdaaiaawIcacaGLPaaaaaaabaGaamyyaaqaaiaadkgaa0 Gaey4kIipakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aiaawIa7aiaaysW7ca WG4baacaGLOaGaayzkaaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamiAamaaDaaaleaacaWGZb aabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMca aiaadIgadaWgaaWcbaGaaGPaVlqadohagaqeaaqabaGcdaqadaqaai aadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaGaayzxaaaabaaabaGa aGzbVlabgUcaRiaad+gadaqadaqaaiabeU7aSnaaCaaaleqabaGaaG OmaaaakiabgUcaRmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaai6 caaaaaaa@121D@

Biais de l’estimateur par la différence généralisée avec valeurs prédites modifiées

Soit d ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGKbGbaG aadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaaa@3BA8@ l’équivalent pondéré selon le plan de sondage de d i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@3B99@ et observons que

F ˜ * ( t ) F N ( t ) = 1 N [ i s j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) + i s ( 1 π i 1 ) j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) ] . ( A .7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGabmOrayaaiaWaaWbaaSqabeaacaaIQaaaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabe aakmaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobaaamaadeaabaWaaabuaeqaleaacaWGPbGaey ycI8Saam4Caaqab0GaeyyeIuoakmaaqafabaGabm4DayaaiaWaaSba aSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaado haaeqaniabggHiLdGcdaqadaqaaiaadMeadaqadaqaaiabew7aLnaa BaaaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaS baaSqaaiaadMgaaeqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaa dMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGjb WaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waaaabaaabaGaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVpaadiaabaGa ey4kaSYaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oakmaabmaabaGaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbaa baGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaaqafabaGabm4Day aaiaWaaSbaaSqaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiab gIGiolaadohaaeqaniabggHiLdGcdaqadaqaaiaadMeadaqadaqaai abew7aLnaaBaaaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsisl caWGTbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIabmizayaaiaWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacqGH sislcaWGjbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaey izImQaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayzxaaGa aGOlaaaacaaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiEdacaGGPa aaaa@B0D9@

En adaptant la preuve qui mène à (A.4), on voit que le développement asymptotique en (A.4) est également vérifié en prenant d ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGKbGbaG aadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaaa@3BA8@ à la place de d i , j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccaGGUaaaaa@3C55@ L’adaptation de la partie restante de la preuve mène en bout de ligne à

E ( F ˜ * ( t ) F N ( t ) ) = λ 2 N n N μ 2 μ 0 a b G ( 0 , 2 ) ( t m ( x ) | x ) h ( x ) d x + 1 n λ N n N [ K ( 0 ) κ μ 0 a b G ( 1 , 0 ) ( t m ( x ) | x ) ( t m ( x ) ) h s 1 ( x ) h ( x ) d x + κ θ μ 0 2 a b G ( 2 , 0 ) ( t m ( x ) | x ) σ 2 ( x ) h s 1 ( x ) h ( x ) d x ] + o ( λ 2 + ( n λ ) 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabca aaaeaacaWGfbWaaeWaaeaaceWGgbGbaGaadaahaaWcbeqaaiaaiQca aaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaai2dacqaH7oaBdaahaaWcbeqaai aaikdaaaGcdaWcaaqaaiaad6eacqGHsislcaWGUbaabaGaamOtaaaa daWcaaqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTn aaBaaaleaacaaIWaaabeaaaaGcdaWdXaqabSqaaiaadggaaeaacaWG IbaaniabgUIiYdGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaicdaca GGSaGaaGOmaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaaysW7caWG4baacaGLOaGaayzkaaGaamiAamaabmaa baGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baabaaabaGaaGjbVl aaysW7cqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaeq4UdWgaamaa laaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaaamaadeaabaWaaS aaaeaacaWGlbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyOeI0Ia eqOUdSgabaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaaaakmaapedabe WcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaadEeadaahaaWcbeqa amaabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaae WaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcaca GLPaaadaqadaqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baa caGLOaGaayzkaaaacaGLOaGaayzkaaGaamiAamaaDaaaleaacaWGZb aabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMca aiaadIgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaa Gaay5waaaabaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVpaadiaabaGaey4kaSYa aSaaaeaacqaH6oWAcqGHsislcqaH4oqCaeaacqaH8oqBdaqhaaWcba GaaGimaaqaaiaaikdaaaaaaOWaa8qmaeqaleaacaWGHbaabaGaamOy aaqdcqGHRiI8aOGaam4ramaaCaaaleqabaWaaeWaaeaacaaIYaGaai ilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8 oacaGLiWoacaaMe8UaamiEaaGaayjkaiaawMcaaiabeo8aZnaaCaaa leqabaGaaGOmaaaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadI gadaqhaaWcbaGaam4CaaqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaa dIhaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaamizaiaadIhaaiaaw2faaaqaaaqaaiaaysW7caaMe8Uaey4k aSIaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaaGilaaaaaaa@06B8@

h ( x ) := h s ¯ ( x ) + ( 1 π 1 ( x ) ) h s ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaacaWG4baacaGLOaGaayzkaaGaaGOoaiaai2dacaWGObWaaSba aSqaaiaaykW7ceWGZbGbaebaaeqaaOWaaeWaaeaacaWG4baacaGLOa GaayzkaaGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aaWba aSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG4baacaGLOaGaay zkaaaacaGLOaGaayzkaaGaamiAamaaBaaaleaacaWGZbaabeaakmaa bmaabaGaamiEaaGaayjkaiaawMcaaiaai6caaaa@52C0@

Variance de l’estimateur fondé sur le modèle avec valeurs prédites modifiées

Écrivons

F ^ * ( t ) F N ( t ) = 1 N ( i s j s w i , j I ( ε j t m i + d i , j ) i s I ( ε i t m i ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaahaaWcbeqaaiaaiQcaaaGccaaMb8+aaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaiaai2dadaWcaaqaaiaaigdaaeaa caWGobaaamaabmaabaWaaabuaeqaleaacaWGPbGaeyycI8Saam4Caa qab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaaleaacaWGPbGaaGil aiaadQgaaeqaaOGaamysaaWcbaGaamOAaiabgIGiolaadohaaeqani abggHiLdGcdaqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiab gsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaey 4kaSIaamizamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaaGccaGL OaGaayzkaaGaeyOeI0YaaabuaeaacaWGjbWaaeWaaeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabgM GiplaadohaaeqaniabggHiLdaakiaawIcacaGLPaaaaaa@76AB@

et observons que

var ( F ^ * ( t ) F N ( t ) ) = D 1 + D 2 + D 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG2bGaae yyaiaabkhadaqadaqaaiqadAeagaqcamaaCaaaleqabaGaaGOkaaaa kiaaygW7daqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGgb WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaacaGLOaGaayzkaaGaaGypaiaadseadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamir amaaBaaaleaacaaIZaaabeaakiaaiYcaaaa@4FD2@

D 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa liaaiYcacaWGQbaabeaakiaadEhadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaliaaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Sa am4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba WccqGHjiYZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaameaa caaIXaaabeaaliabgMGiplaadohaaeqaniabggHiLdGcciGGJbGaai 4BaiaacAhadaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaa caWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaai aadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamizamaa BaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgaae qaaaGccaGLOaGaayzkaaGaaGilaiaadMeadaqadaqaaiabew7aLnaa BaaaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaS baaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaSIa amizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilai aadQgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGilaaaa @8228@

D 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 × cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaO Gaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaqaaiaadQgadaWgaa adbaGaaGOmaaqabaWccqGHiiIZcaWGZbGaaGilaiaadQgadaWgaaad baGaaGOmaaqabaWccqGHGjsUcaWGQbWaaSbaaWqaaiaaigdaaeqaaa WcbeqdcqGHris5aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliab gIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWg aaadbaGaaGymaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOGaey 41aqRaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccq GHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAam aaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacq aH1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGc cqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaW qaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyA amaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@96F1@

et où D 3 := A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaiodaaeqaaOGaaGOoaiaai2dacaWGbbWaaSbaaSqaaiaa ikdaaeqaaaaa@3CE6@ provenant de la variance de l’estimateur fondé sur le modèle de Kuo.

Considérons D 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaOGaaiOlaaaa@3A5D@ Observons que

cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) = E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) E ( G ( t m i 1 + d i 1 , j | x j ) ) E ( G ( t m i 2 + d i 2 , j | x j ) ) . ( A .8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0de9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0dXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2 gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccqGH RaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaa baGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaa qabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacaaI9aGaamyramaabmaabaGaam4ramaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaliaaiYcacaWGQbaabeaakiabgEIizlaadsha cqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaa ikdaaeqaaSGaaGilaiaadQgaaeqaaaGccaGLiWoacaaMc8UaamiEam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMca aaqaaaqaaiabgkHiTiaadweadaqadaqaaiaadEeadaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAaaqabaaakiaawIa7aiaa ykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaGaamyramaabmaabaGaam4ramaabmaabaWaaqGaaeaa caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaa meaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaOGaayjcSdGaaGPaVl aadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawIca caGLPaaacaaIUaaaaiaacIcacaGGbbGaaiOlaiaaiIdacaGGPaaaaa@AC01@

Puisque

| ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j ) ( t m i 1 t m i 2 ) | | d i 1 , j | + | d i 2 , j | , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aaykW7daqadaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMga daWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamizamaaBaaale aacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgaaeqaaOGa ey4jIKTaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMga daWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaaakiaawIcaca GLPaaacqGHsisldaqadaqaaiaadshacqGHsislcaWGTbWaaSbaaSqa aiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4jIKTaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaa aSqabaaakiaawIcacaGLPaaacaaMc8oacaGLhWUaayjcSdGaeyizIm 6aaqWaaeaacaaMc8UaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgaaeqaaOGaaGPaVdGaay5bSlaawIa7ai abgUcaRmaaemaabaGaaGPaVlaadsgadaWgaaWcbaGaamyAamaaBaaa meaacaaIYaaabeaaliaaiYcacaWGQbaabeaakiaaykW7aiaawEa7ca GLiWoacaaISaaaaa@7D58@

il découle de (A.6) que

E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) = G ( t m i 1 t m i 2 | x j ) + O i 1 , i 2 , j ( λ 2 + ( n λ ) 1 / 2 ) . ( A .9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaae WaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaS IaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGil aiaadQgaaeqaaOGaey4jIKTaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKbWa aSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaa qabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGc caGLOaGaayzkaaaacaGLOaGaayzkaaGaaGypaiaadEeadaqadaqaam aaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaa meaacaaIXaaabeaaaSqabaGccqGHNis2caWG0bGaeyOeI0IaamyBam aaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjc SdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPa aacqGHRaWkcaWGpbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqa baWccaaISaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQb aabeaakmaabmaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4k aSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabe aacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaaaOGaayjkaiaa wMcaaiaai6cacaaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiMdaca GGPaaaaa@87CB@

En outre, de (A.1), (A.4) et (A.6), il découle que

E( G( t m i + d i,j | x j ) )= G( t m i | x j )+ O i,j ( λ 2 + ( nλ ) 1/2 ). (A.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9LqFf0de9 vqaqFeFr0xbba9Fa0P0RWFb9fq0hXdbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadweadaqadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiab gkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaakiaawIa7aiaaysW7caWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaay zkaaGaaGjbVlabg2da9aqaaiaadEeadaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaaakiaawIa7aiaays W7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4k aSIaam4tamaaBaaaleaacaWGPbGaaGilaiaadQgaaeqaaOWaaeWaae aacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaa d6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTmaaly aabaGaaGymaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaGOlaaaa caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlai aaigdacaaIWaGaaiykaaaa@72E5@

En utilisant (A.9) et (A.10) pour obtenir un développement asymptotique pour la covariance en (A.8) et en introduisant par substitution le résultat dans la définition de D 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaOGaaiilaaaa@3A5B@ on obtient

D 1 := 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j cov ( I ( ε j t m i 1 + d i 1 , j ) , I ( ε j t m i 2 + d i 2 , j ) ) = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ E ( G ( t m i 1 + d i 1 , j t m i 2 + d i 2 , j | x j ) ) E ( G ( t m i 1 + d i 1 , j | x j ) ) E ( G ( t m i 2 + d i 2 , j | x j ) ) ] = 1 N 2 i 1 s i 2 s j s w i 1 , j w i 2 , j [ G ( t m i 1 t m i 2 | x j ) G ( t m i 1 | x j ) G ( t m i 2 | x j ) ] + O ( λ 2 n 1 + ( n λ ) 1 / 2 n 1 ) = 1 N 2 j s [ G ( t m j | x j ) G 2 ( t m j | x j ) ] ( i s w i , j ) 2 + O ( λ n 1 + ( n λ ) 1 / 2 n 1 ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + O ( ( n λ ) 1 α + n 1 λ + n 1 ( n λ ) 1 / 2 ) . ( A .11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeacca aaaaqaaiaadseadaWgaaWcbaGaaGymaaqabaaakeaacaaI6aGaaGyp amaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaO WaaabuaeaadaaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgaaeqaaOGaam4DamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqa aaqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aaWcbaGaamyAam aaBaaameaacaaIYaaabeaaliabgMGiplaadohaaeqaniabggHiLdaa leaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaeyycI8Saam4Caaqab0 GaeyyeIuoakiaabogacaqGVbGaaeODamaabmaabaGaamysamaabmaa baGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgk HiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaamys amaabmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizImQaam iDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaaaiaa wIcacaGLPaaaaeaaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaamOtam aaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaaqafabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAaaqabaGccaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOm aaqabaWccaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadohaae qaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaeyyc I8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOWaamqaaeaacaWGfbWa aeWaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4k aSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaG ilaiaadQgaaeqaaOGaey4jIKTaamiDaiabgkHiTiaad2gadaWgaaWc baGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaWGKb WaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOA aaqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLBbaaaeaaaeaacaaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7daWacaqaaiabgkHiTiaadweadaqadaqaaiaadEea daqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaam yAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAaaqaba aakiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaGaamyramaabmaabaGaam4ramaabm aabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaOGa ayjcSdGaaGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcaca GLPaaaaiaawIcacaGLPaaaaiaaw2faaaqaaaqaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafaba WaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaliaaiYcacaWGQbaabeaakiaadEhadaWgaaWcbaGaam yAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaeaacaWG QbGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aaWcbaGaamyA amaaBaaameaacaaIXaaabeaaliabgMGiplaadohaaeqaniabggHiLd GcdaWadaqaaiaadEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaa d2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccq GHNis2caWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOGaayjcSdGaaGjbVlaadIhadaWgaaWcba GaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGhbWaaeWaaeaa daabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaa adbaGaaGymaaqabaaaleqaaaGccaGLiWoacaaMe8UaamiEamaaBaaa leaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaaei aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaaSqabaaakiaawIa7aiaaysW7caWG4bWaaSbaaSqaai aadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaabaaabaGa aGjbVlaaysW7cqGHRaWkcaWGpbWaaeWaaeaacqaH7oaBdaahaaWcbe qaaiaaikdaaaGccaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa ey4kaSYaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaS qabeaacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaakiaad6ga daahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaeaaae aacaaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOm aaaaaaGcdaaeqbqaamaadmaabaGaam4ramaabmaabaWaaqGaaeaaca WG0bGaeyOeI0IaamyBamaaBaaaleaacaWGQbaabeaaaOGaayjcSdGa aGjbVlaadIhadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacq GHsislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqa aiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLiW oacaaMe8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMca aaGaay5waiaaw2faaaWcbaGaamOAaiabgIGiolaadohaaeqaniabgg HiLdGccaaMe8+aaeWaaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamyA aiaaiYcacaWGQbaabeaaaeaacaWGPbGaeyycI8Saam4Caaqab0Gaey yeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUca Riaad+eadaqadaqaaiabeU7aSjaad6gadaahaaWcbeqaaiabgkHiTi aaigdaaaGccqGHRaWkdaqadaqaaiaad6gacqaH7oaBaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaa aaaOGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaa wMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigdaaeaacaWGUbaaamaabm aabaWaaSaaaeaacaWGobGaeyOeI0IaamOBaaqaaiaad6eaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaa8qmaeqaleaacaWGHb aabaGaamOyaaqdcqGHRiI8aOWaamWaaeaacaWGhbWaaeWaaeaadaab caqaaiaadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaaGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaacqGH sislcaWGhbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaabcaqaai aadshacqGHsislcaWGTbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGPaVdGaayjcSdGaaGjbVlaadIhaaiaawIcacaGLPaaaaiaawUfaca GLDbaacaaMe8+aamWaaeaadaWcgaqaaiaadIgadaWgaaWcbaGaaGPa VlqadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaae aacaWGObWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG4baacaGL OaGaayzkaaaaaaGaay5waiaaw2faaiaadIgadaWgaaWcbaGaaGPaVl qadohagaqeaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWG KbGaamiEaaqaaaqaaiaaysW7caaMe8Uaey4kaSIaam4tamaabmaaba WaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaeqySdeMaey4kaSIaamOBamaaCaaaleqaba GaeyOeI0IaaGymaaaakiabeU7aSjabgUcaRiaad6gadaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaaiaad6gacqaH7oaBaiaawIcaca GLPaaadaahaaWcbeqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikda aaaaaaGccaGLOaGaayzkaaGaaGOlaaaacaaMf8UaaGzbVlaacIcaca GGbbGaaiOlaiaaigdacaaIXaGaaiykaaaa@274A@

Considérons ensuite

D 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 × cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaO Gaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaqaaiaadQgadaWgaa adbaGaaGOmaaqabaWccqGHiiIZcaWGZbGaaGilaiaadQgadaWgaaad baGaaGOmaaqabaWccqGHGjsUcaWGQbWaaSbaaWqaaiaaigdaaeqaaa WcbeqdcqGHris5aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliab gIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaSGaeyycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWg aaadbaGaaGymaaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOGaey 41aqRaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccq GHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAam aaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacq aH1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGc cqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaW qaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyA amaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaai6ca aaa@97A9@

Puisque

cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGJbGaae 4BaiaabAhadaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaa caWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgsMiJkaadshacq GHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaa leqaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaig daaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGc caGLOaGaayzkaaGaaGilaiaadMeadaqadaqaaiabew7aLnaaBaaale aacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgsMiJkaadsha cqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaa ikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGypaiaaicdaaaa@64ED@

si | x i 1 x i 2 | > 2 λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aaykW7caWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaa leqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaaWcbeaakiaaykW7aiaawEa7caGLiWoacaaI+aGaaGOmaiab eU7aSjaacYcaaaa@4927@ il s’ensuit que les termes de reste R i 1 , j 1 , i 2 , j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaS baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaa BaaameaacaaIXaaabeaaliaaiYcacaWGPbWaaSbaaWqaaiaaikdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaiil aaaa@4358@ dont la contribution à la covariance susmentionnée est d’ordre O i 1 , j 1 , i 2 , j 2 ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGpbWaaS baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaa BaaameaacaaIXaaabeaaliaaiYcacaWGPbWaaSbaaWqaaiaaikdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOWaaeWa aeaacqaHYoGyaiaawIcacaGLPaaaaaa@45CF@ pour une suite β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaa a@3992@ qui tend vers zéro, apportent à D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaaaa@39A2@ un terme d’ordre O ( λ β ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae WaaeaacqaH7oaBcqaHYoGyaiaawIcacaGLPaaacaGGUaaaaa@3E55@ Or, soit

b i , j 1 , j 2 := c i , j 1 1 ( w j 1 , j 2 w i , j 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaiQdacaaI9a Gaam4yamaaDaaaleaacaWGPbGaaGilaiaadQgadaWgaaadbaGaaGym aaqabaaaleaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG3bWaaSbaaS qaaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaa meaacaaIYaaabeaaaSqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadM gacaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaakiaawIca caGLPaaacaaISaaaaa@5496@

a i , j 1 , j 2 := t m i + d i , j 1 b i , j 1 , j 2 ε j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaiQdacaaI9a GaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWk caWGKbWaaSbaaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXa aabeaaaSqabaGccqGHsislcaWGIbWaaSbaaSqaaiaadMgacaaISaGa amOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaai aaikdaaeqaaaWcbeaakiabew7aLnaaBaaaleaacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaaa@5618@

et notons que

t m i + d i , j 1 = a i , j 1 , j 2 + b i , j 1 , j 2 ε j 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWg aaWcbaGaamyAaiaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbe aakiaai2dacaWGHbWaaSbaaSqaaiaadMgacaaISaGaamOAamaaBaaa meaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaa WcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAaiaaiYcacaWGQbWa aSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaa qabaaaleqaaOGaeqyTdu2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOm aaqabaaaleqaaOGaaGOlaaaa@560B@

Puisque a i , j 1 , j 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaaa@3F22@ ne dépend pas de ε j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaaaa@3BA6@ ni de ε j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccaGGSaaa aa@3C61@ il s’ensuit que

E ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = E ( E ( I ( ε j 1 a i 1 , j 1 , j 2 + b i 1 , j 1 , j 2 ε j 2 ) I ( ε j 2 a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε j 1 ) | ε k , k j 1 , j 2 ) ) = E ( ε i 1 , i 2 , j 1 , j 2 * G ( a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε | x j 2 ) d G ( ε | x j 1 ) ) + E ( ε i 2 , i 1 , j 2 , j 1 * G ( a i 1 , j 1 , j 2 + b i 1 , j 1 , j 2 ε | x j 1 ) d G ( ε | x j 2 ) ) E ( G ( ε i 1 , i 2 , j 1 , j 2 * | x j 1 ) G ( ε i 2 , i 1 , j 2 , j 1 * | x j 2 ) ) , ( A .12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqbba aaaeaacaWGfbWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWc baGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHKjYOcaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqa aaWcbeaakiabgUcaRiaadsgadaWgaaWcbaGaamyAamaaBaaameaaca aIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaa aOGaayjkaiaawMcaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaaca WGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgsMiJkaadshacqGH sislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaale qaaOGaey4kaSIaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikda aeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGcca GLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaai2daca WGfbWaaeWaaeaacaWGfbWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqz daWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHKj YOcaWGHbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaI SaGaamOAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaW qaaiaaikdaaeqaaaWcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyA amaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaig daaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGa eqyTdu2aaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaa GccaGLOaGaayzkaaWaaqGaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWg aaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHKjYOca WGHbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGa amOAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaai aaigdaaeqaaaWcbeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeqyT du2aaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGcca GLOaGaayzkaaGaaGjbVdGaayjcSdGaaGjbVlabew7aLnaaBaaaleaa caWGRbaabeaakiaaiYcacaWGRbGaeyiyIKRaamOAamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGQbWaaSbaaSqaaiaaikdaaeqaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaai2dacaWG fbWaaeWaaeaadaWdXaqabSqaaiabgkHiTiabg6HiLcqaaiabew7aLn aaDaaabaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqaaiaaiQca aaaaniabgUIiYdGccaWGhbWaaeWaaeaadaabcaqaaiaadggadaWgaa WcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqaba aaleqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbWaaSbaaWqaaiaa ikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISa GaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccqaH1oqzcaaMe8oa caGLiWoacaaMe8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadsgacaWGhbWaaeWaaeaa daabcaqaaiabew7aLjaaysW7aiaawIa7aiaaysW7caWG4bWaaSbaaS qaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHRaWkcaWG fbWaaeWaaeaadaWdXaqabSqaaiabgkHiTiabg6HiLcqaaiabew7aLn aaDaaabaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGPbWa aSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaa qabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqaaiaaiQca aaaaniabgUIiYdGccaWGhbWaaeWaaeaadaabcaqaaiaadggadaWgaa WcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqaH1oqzcaaMe8oa caGLiWoacaaMe8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaig daaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadsgacaWGhbWaaeWaaeaa daabcaqaaiabew7aLjaaysW7aiaawIa7aiaaysW7caWG4bWaaSbaaS qaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHsislcaWG fbWaaeWaaeaacaWGhbWaaeWaaeaadaabcaqaaiabew7aLnaaDaaale aacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgadaWgaaad baGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaaGOkaaaakiaa ysW7aiaawIa7aiaaysW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadba GaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGaam4ramaabmaabaWa aqGaaeaacqaH1oqzdaqhaaWcbaGaamyAamaaBaaameaacaaIYaaabe aaliaaiYcacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQga daWgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIXa aabeaaaSqaaiaaiQcaaaGccaaMe8oacaGLiWoacaaMe8UaamiEamaa BaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkai aawMcaaaGaayjkaiaawMcaaiaaiYcaaaGaaGzbVlaacIcacaGGbbGa aiOlaiaaigdacaaIYaGaaiykaaaa@A1D8@

ε i 1 , i 2 , j 1 , j 2 * := a i 1, j 1 , j 2 + a i 2 , j 2 , j 1 b i 1 , j 1 , j 2 1 b i 1 , j 1 , j 2 b i 2 , j 2 , j 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqaaiaaiQca aaGccaaI6aGaaGypamaalaaabaGaamyyamaaBaaaleaacaWGPbWaaS baaWqaaiaaigdacaaISaaabeaaliaadQgadaWgaaadbaGaaGymaaqa baWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRa WkcaWGHbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccaaI SaGaamOAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaW qaaiaaigdaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaamyAamaaBaaa meaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaS GaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGcbaGaaGym aiabgkHiTiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQga daWgaaadbaGaaGOmaaqabaaaleqaaOGaamOyamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOm aaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaaaO GaaGOlaaaa@71F4@

Notons que les deux espérances aux troisième et quatrième lignes de (A.12) sont les mêmes si i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaS baaSqaaiaaigdaaeqaaaaa@39C6@ et j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbWaaS baaSqaaiaaigdaaeqaaaaa@39C7@ sont remplacés par i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaS baaSqaaiaaikdaaeqaaaaa@39C7@ et j 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbWaaS baaSqaaiaaikdaaeqaaOGaaiilaaaa@3A82@ respectivement. Donc, il suffit d’analyser la première espérance. Étant donné que

ε i 1 , i 2 , j 1 , j 2 * = t m i 1 + d i 1 , j 1 + b i 1 , j 1 , j 2 ( t m i 2 ε j 2 ) + R ( ε i 1 , i 2 , j 1 , j 2 * ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWa aSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaa qabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqaaiaaiQca aaGccaaI9aGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaaSqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaa dMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaaca aIXaaabeaaaSqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgadaWg aaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaa baGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaaca aIYaaabeaaaSqabaGccqGHsislcqaH1oqzdaWgaaWcbaGaamOAamaa BaaameaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaacqGHRaWkca WGsbWaaeWaaeaacqaH1oqzdaqhaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaliaaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilai aadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaa caaIYaaabeaaaSqaaiaaiQcaaaaakiaawIcacaGLPaaacaaISaaaaa@74C7@

E 1 / 4 ( | R ( ε i 1 , i 2 , j 1 , j 2 * ) | 4 ) = O i 1 , i 2 , j 1 , j 2 ( λ n 1 + ( n λ ) 3 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaW baaSqabeaadaWcgaqaaiaaigdaaeaacaaI0aaaaaaakmaabmaabaWa aqWaaeaacaWGsbWaaeWaaeaacqaH1oqzdaqhaaWcbaGaamyAamaaBa aameaacaaIXaaabeaaliaaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqa aSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAam aaBaaameaacaaIYaaabeaaaSqaaiaaiQcaaaaakiaawIcacaGLPaaa caaMc8oacaGLhWUaayjcSdWaaWbaaSqabeaacaaMc8UaaGinaaaaaO GaayjkaiaawMcaaiaai2dacaWGpbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaOWaaeWaaeaacqaH7oaBcaWGUbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaey4kaSYaaeWaaeaacaWGUbGa eq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsisldaWcgaqaai aaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@6BD7@

on voit que

E ( ε i 1 , i 2 , j 1 , j 2 * G ( a i 2 , j 2 , j 1 + b i 2 , j 2 , j 1 ε | x j 2 ) d G ( ε | x j 1 ) ) = G ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) [ E ( d i 1 , j 1 ) + b i 1 , j 1 , j 2 ( t m i 2 ) ] + G ( 1 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 ) + G ( 1 , 0 ) ( t m i 2 | x j 2 ) b i 2 , j 2 , j 1 t m i 1 ε d G ( ε | x j 1 ) + 1 2 G ( 2 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) E ( d i 1 , j 1 2 ) + 1 2 G ( 2 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) E ( d i 1 , j 1 d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) , ( A .13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWbba aaaeaacaWGfbWaaeWaaeaadaWdXaqabSqaaiabgkHiTiabg6HiLcqa aiabew7aLnaaDaaabaGaamyAamaaBaaameaacaaIXaaabeaaliaaiY cacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaad baGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaS qaaiaaiQcaaaaaniabgUIiYdGccaWGhbWaaeWaaeaadaabcaqaaiaa dggadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcaca WGQbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGa aGymaaqabaaaleqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbWaaS baaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqa baWccaaISaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccqaH1o qzcaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadsgacaWGhb WaaeWaaeaadaabcaqaaiabew7aLjaaykW7aiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGcca GLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaI9aGaam4ramaabmaabaWaaqGaaeaacaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgada WgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGaam4ramaa bmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7 caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaa GccaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlabgUcaRiaadEeadaahaaWcbeqaamaabmaabaGaaG ymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqa aiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaG ymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWc baGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGLPa aacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSba aSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaGPaVdGaay jcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaa beaaaSqabaaakiaawIcacaGLPaaadaWadaqaaiaadweadaqadaqaai aadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYca caWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaai abgUcaRiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa liaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgada WgaaadbaGaaGOmaaqabaaaleqaaOWaaeWaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaaaGaay5waiaaw2faaaqaaiaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabe aadaqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaa bmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7 caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaa GccaGLOaGaayzkaaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOe I0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbe aakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWg aaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGaamyramaabm aabaGaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGa aGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaay zkaaGaey4kaSIaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiil aiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDai abgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaa aSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQb WaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadkga daWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQb WaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGym aaqabaaaleqaaOWaa8qmaeqaleaacqGHsislcqGHEisPaeaacaWG0b GaeyOeI0IaamyBamaaBaaameaacaWGPbWaaSbaaeaacaaIXaaabeaa aeqaaaqdcqGHRiI8aOGaeqyTduMaamizaiaadEeadaqadaqaamaaei aabaGaeqyTduMaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGa amOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGLPaaaae aacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4k aSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGhbWaaWbaaSqabeaada qadaqaaiaaikdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaS baaWqaaiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGcca GLOaGaayzkaaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaki aaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaad baGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaamyramaabmaaba GaamizamaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGymaaqabaaaleaacaaIYaaaaaGccaGLOa GaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGhbWa aWbaaSqabeaadaqadaqaaiaaikdacaGGSaGaaGimaaGaayjkaiaawM caaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaa leaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawI a7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqa baaaleqaaaGccaGLOaGaayzkaaGaam4ramaabmaabaWaaqGaaeaaca WG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaai aadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGa amyramaabmaabaGaamizamaaDaaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleaacaaI YaaaaaGccaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlabgUcaRiaadEeadaahaaWcbeqaamaabmaa baGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaada abcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhada WgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIca caGLPaaacaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGaaG imaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOe I0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbe aakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaamyramaabm aabaGaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGa aGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaamizamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaabaGaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlabgUcaRiaad+ga daWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPb WaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGym aaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGcda qadaqaaiabeU7aSnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaa baGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 IaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaGaaGzbVlaacIcacaGG bbGaaiOlaiaaigdacaaIZaGaaiykaaaa@17EC@

et que

E ( G ( ε i 1 , i 2 , j 1 , j 2 * | x j 1 ) G ( ε i 2 , i 1 , j 2 , j 1 * | x j 2 ) ) = G ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) [ E ( d i 1 , j 1 ) + b i 1 , j 1 , j 2 ( t m i 2 ) ] + G ( 1 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) [ E ( d i 2 , j 2 ) + b i 2 , j 2 , j 1 ( t m i 1 ) ] + 1 2 G ( 2 , 0 ) ( t m i 1 | x j 1 ) G ( t m i 2 | x j 2 ) E ( d i 1 , j 1 2 ) + 1 2 G ( 2 , 0 ) ( t m i 2 | x j 2 ) G ( t m i 1 | x j 1 ) E ( d i 2 , j 2 2 ) + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) E ( d i 1 , j 1 d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) . ( A .14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeacba aaaaqaaiaadweadaqadaqaaiaadEeadaqadaqaamaaeiaabaGaeqyT du2aa0baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaam yAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleaaca aIQaaaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOA amaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGLPaaacaWGhb WaaeWaaeaadaabcaqaaiabew7aLnaaDaaaleaacaWGPbWaaSbaaWqa aiaaikdaaeqaaSGaaGilaiaadMgadaWgaaadbaGaaGymaaqabaWcca aISaGaamOAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaigdaaeqaaaWcbaGaaGOkaaaakiaaykW7aiaawIa7aiaayk W7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqa aaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaI9aGaam4ramaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaae qaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaa dQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaGaam 4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaa caWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7ai aaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaa leqaaaGccaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlabgUcaRiaadEeadaahaaWcbeqaamaabmaa baGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaada abcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhada WgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIca caGLPaaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTb WaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaaGPa VdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAamaaBaaameaaca aIYaaabeaaaSqabaaakiaawIcacaGLPaaadaWadaqaaiaadweadaqa daqaaiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaa wMcaaiabgUcaRiaadkgadaWgaaWcbaGaamyAamaaBaaameaacaaIXa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaa dQgadaWgaaadbaGaaGOmaaqabaaaleqaaOWaaeWaaeaacaWG0bGaey OeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWc beaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqaaiaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWba aSqabeaadaqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaa aakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaa caWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7ai aaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaaa leqaaaGccaGLOaGaayzkaaGaam4ramaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqa aaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQ gadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaWaamWa aeaacaWGfbWaaeWaaeaacaWGKbWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqa baaakiaawIcacaGLPaaacqGHRaWkcaWGIbWaaSbaaSqaaiaadMgada WgaaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaa beaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakmaabm aabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIXaaabeaaaSqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaae aacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4k aSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGhbWaaWbaaSqabeaada qadaqaaiaaikdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaS baaWqaaiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGcca GLOaGaayzkaaGaam4ramaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaki aaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaad baGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaamyramaabmaaba GaamizamaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGil aiaadQgadaWgaaadbaGaaGymaaqabaaaleaacaaIYaaaaaGccaGLOa GaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaam4ramaaCa aaleqabaWaaeWaaeaacaaIYaGaaiilaiaaicdaaiaawIcacaGLPaaa aaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoa caaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaa WcbeaaaOGaayjkaiaawMcaaiaadEeadaqadaqaamaaeiaabaGaamiD aiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaaSqabaGccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWG QbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadw eadaqadaqaaiaadsgadaqhaaWcbaGaamyAamaaBaaameaacaaIYaaa beaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaaGOmaa aaaOGaayjkaiaawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqaai aaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaqGa aeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaai aaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSba aSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGaay zkaaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicda aiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTi aad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGc caaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSbaaW qaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaadweadaqadaqa aiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiY cacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaadsgadaWgaaWc baGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaW qaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaqaaiaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHRaWkcaWGVbWaaS baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOWaaeWa aeaacqaH7oaBdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaai aad6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaacaaIUaaaaiaaywW7caaMf8Uaaiikai aacgeacaGGUaGaaGymaiaaisdacaGGPaaaaa@F4C1@

En utilisant les développements asymptotiques en (A.4), (A.13) et (A.14), on obtient

cov ( I ( ε j 1 t m i 1 + d i 1 , j 1 ) , I ( ε j 2 t m i 2 + d i 2 , j 2 ) ) = G ( 1 , 0 ) ( t m i 2 | x j 2 ) b i 2 , j 2 , j 1 γ i 1 , j 1 + G ( 1 , 0 ) ( t m i 1 | x j 1 ) b i 1 , j 1 , j 2 γ i 2 , j 2 + G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) cov ( d i 1 , j 1 , d i 2 , j 2 ) + o i 1 , i 2 , j 1 , j 2 ( λ 4 + ( n λ ) 1 ) , ( A .15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeabba aaaeaacaqGJbGaae4BaiaabAhadaqadaqaaiaadMeadaqadaqaaiab ew7aLnaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaki abgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaaaleqaaOGaey4kaSIaamizamaaBaaaleaacaWGPb WaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGym aaqabaaaleqaaaGccaGLOaGaayzkaaGaaGilaiaadMeadaqadaqaai abew7aLnaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaa kiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaa adbaGaaGOmaaqabaaaleqaaOGaey4kaSIaamizamaaBaaaleaacaWG PbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaG OmaaqabaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGa aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaI9aGaam4ramaaCaaale qabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGc daqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaam yAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoacaaM c8UaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbe aaaOGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaSGaaG ilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeq4SdC2aaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBa aameaacaaIXaaabeaaaSqabaGccqGHRaWkcaWGhbWaaWbaaSqabeaa daqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabm aabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWa aSbaaWqaaiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7ca WG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGc caGLOaGaayzkaaGaamOyamaaBaaaleaacaWGPbWaaSbaaWqaaiaaig daaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGa amOAamaaBaaameaacaaIYaaabeaaaSqabaGccqaHZoWzdaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaaaOqaaiaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7cqGHRaWkcaWGhbWaaWbaaSqabeaadaqadaqa aiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaWaaq GaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaaGccaGLOaGa ayzkaaGaam4ramaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaic daaiaawIcacaGLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHi Tiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqaba GccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaiaabogacaqGVb GaaeODamaabmaabaGaamizamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaO GaaGilaiaadsgadaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaa liaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkai aawMcaaaqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7cqGHRaWkcaWGVbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaa qabaWccaaISaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWG QbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaG OmaaqabaaaleqaaOWaaeWaaeaacqaH7oaBdaahaaWcbeqaaiaaisda aaGccqGHRaWkdaqadaqaaiaad6gacqaH7oaBaiaawIcacaGLPaaada ahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaaISaaa aiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUa GaaGymaiaaiwdacaGGPaaaaa@2076@

γ i , j := t m i ε d G ( ε | x j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaaiQdacaaI9aWaa8qm aeqaleaacqGHsislcqGHEisPaeaacaWG0bGaeyOeI0IaamyBamaaBa aameaacaWGPbaabeaaa0Gaey4kIipakiabew7aLjaadsgacaWGhbWa aeWaaeaadaabcaqaaiabew7aLjaaykW7aiaawIa7aiaaykW7caWG4b WaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGOlaaaa@5482@

Observons maintenant que

b i , j 1 , j 2 = w j 1 , j 2 w i , j 2 + O i , j 1 , j 2 ( ( n λ ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaaISaGaamOAamaaBaaameaacaaIXaaabeaaliaa iYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaai2dacaWG3b WaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOA amaaBaaameaacaaIYaaabeaaaSqabaGccqGHsislcaWG3bWaaSbaaS qaaiaadMgacaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGc cqGHRaWkcaWGpbWaaSbaaSqaaiaadMgacaaISaGaamOAamaaBaaame aacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWc beaakmaabmaabaWaaeWaaeaacaWGUbGaeq4UdWgacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaaaa@5AEA@

et que

cov ( d i 1 , j 1 , d i 2 , j 2 ) = 1 c i 1 , j 1 c i 2 , j 2 k s ; k j 1 , j 2 ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 = k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 + O i 1 , i 2 , j 1 , j 2 ( ( n λ ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaae4yaiaab+gacaqG2bWaaeWaaeaacaWGKbWaaSbaaSqaaiaa dMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaaca aIXaaabeaaaSqabaGccaaISaGaamizamaaBaaaleaacaWGPbWaaSba aWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGOmaaqaba aaleqaaaGccaGLOaGaayzkaaaabaGaaGypamaalaaabaGaaGymaaqa aiaadogadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiY cacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaadogadaWgaaWc baGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaW qaaiaaikdaaeqaaaWcbeaaaaGcdaaeqbqaamaabmaabaGaam4Damaa BaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadUgaae qaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaaGilaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaaca WG3bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISaGa am4AaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgadaWgaaadba GaaGOmaaqabaWccaaISaGaam4AaaqabaaakiaawIcacaGLPaaacqaH dpWCdaqhaaWcbaGaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiol aadohacaaI7aGaam4AaiabgcMi5kaadQgadaWgaaadbaGaaGymaaqa baWccaaISaGaamOAamaaBaaameaacaaIYaaabeaaaSqab0GaeyyeIu oaaOqaaaqaaiaai2dadaaeqbqaamaabmaabaGaam4DamaaBaaaleaa caWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadUgaaeqaaOGaey OeI0Iaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGa aGilaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWG3bWaaS baaSqaaiaadQgadaWgaaadbaGaaGOmaaqabaWccaaISaGaam4Aaaqa baGccqGHsislcaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaa qabaWccaaISaGaam4AaaqabaaakiaawIcacaGLPaaacqaHdpWCdaqh aaWcbaGaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaadohaae qaniabggHiLdGccqGHRaWkcaWGpbWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaamyAamaaBaaameaacaaIYaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadQgadaWg aaadbaGaaGOmaaqabaaaleqaaOWaaeWaaeaadaqadaqaaiaad6gacq aH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaikdaaaaa kiaawIcacaGLPaaaaaaaaa@B34A@

de sorte que

D 2 = 2 D 2 a + D 2 b + o ( λ 5 + n 1 ) , ( A .16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaOGaaGypaiaaikdacaWGebWaaSbaaSqaaiaa ikdacaWGHbaabeaakiabgUcaRiaadseadaWgaaWcbaGaaGOmaiaadk gaaeqaaOGaey4kaSIaam4BamaabmaabaGaeq4UdW2aaWbaaSqabeaa caaI1aaaaOGaey4kaSIaamOBamaaCaaaleqabaGaeyOeI0IaaGymaa aaaOGaayjkaiaawMcaaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaGGbbGaaiOlaiaaigdacaaI2aGaaiykaaaa@57D7@

D 2 a := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) ( w j 1 , j 2 w i 1 , j 2 ) γ i 2 , j 2 = 1 N 2 i 1 s i 2 s j 1 s j 2 s w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) ( w j 1 , j 2 w i 1 , j 2 ) γ i 2 , j 2 + O ( n 1 ( n λ ) 1 ) = 1 N 2 j 2 s G ( 1 , 0 ) ( t m j 2 | x j 2 ) γ j 2 , j 2 [ j 1 s w j 1 , j 2 i 1 s w i 1 , j 1 i 2 s w i 2 , j 2 ( i s w i , j 2 ) 2 ] + O ( n 1 λ + n 1 ( n λ ) 1 ) = O ( ( n λ ) 1 α + n 1 λ + n 1 ( n λ ) 1 ) ( A .17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqbca aaaeaacaWGebWaaSbaaSqaaiaaikdacaWGHbaabeaaaOqaaiaaiQda caaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaa aaaaGcdaaeqbqaamaaqafabaWaaabuaeaadaaeqbqaaiaadEhadaWg aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaS baaWqaaiaaigdaaeqaaaWcbeaakiaadEhadaWgaaWcbaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaae qaaaWcbeaakiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYca caaIWaaacaGLOaGaayzkaaaaaaqaaiaadQgadaWgaaadbaGaaGOmaa qabaWccqGHiiIZcaWGZbGaaGilaiaadQgadaWgaaadbaGaaGOmaaqa baWccqGHGjsUcaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHri s5aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliabgIGiolaadoha aeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaey ycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGym aaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaa WcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGL PaaadaqadaqaaiaadEhadaWgaaWcbaGaamOAamaaBaaameaacaaIXa aabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiab gkHiTiaadEhadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaali aaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaa wMcaaiabeo7aNnaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaS GaaGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaaGcbaaabaGa aGypamaalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaa aaaOWaaabuaeaadaaeqbqaamaaqafabaWaaabuaeaacaWG3bWaaSba aSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBa aameaacaaIXaaabeaaaSqabaGccaWG3bWaaSbaaSqaaiaadMgadaWg aaadbaGaaGOmaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaabe aaaSqabaGccaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGa aGimaaGaayjkaiaawMcaaaaaaeaacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadQgadaWgaaad baGaaGymaaqabaWccqGHiiIZcaWGZbaabeqdcqGHris5aaWcbaGaam yAamaaBaaameaacaaIYaaabeaaliabgMGiplaadohaaeqaniabggHi LdaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaeyycI8Saam4Caa qab0GaeyyeIuoakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyB amaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaayk W7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGa aGymaaqabaaaleqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWG3bWaaS baaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaa BaaameaacaaIYaaabeaaaSqabaGccqGHsislcaWG3bWaaSbaaSqaai aadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaa caaIYaaabeaaaSqabaaakiaawIcacaGLPaaacqaHZoWzdaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqa aiaaikdaaeqaaaWcbeaakiabgUcaRiaad+eadaqadaqaaiaad6gada ahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaad6gacqaH7oaB aiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawI cacaGLPaaaaeaaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaamOtamaa CaaaleqabaGaaGOmaaaaaaGcdaaeqbqaaiaadEeadaahaaWcbeqaam aabmaabaGaaGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWa aeaadaabcaqaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadQgada WgaaadbaGaaGOmaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaa dIhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaaaki aawIcacaGLPaaacqaHZoWzdaWgaaWcbaGaamOAamaaBaaameaacaaI YaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaae aacaWGQbWaaSbaaWqaaiaaikdaaeqaaSGaeyicI4Saam4Caaqab0Ga eyyeIuoakmaadmaabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadQgada WgaaadbaGaaGymaaqabaWccaaISaGaamOAamaaBaaameaacaaIYaaa beaaaSqabaaabaGaamOAamaaBaaameaacaaIXaaabeaaliabgIGiol aadohaaeqaniabggHiLdGcdaaeqbqaaiaadEhadaWgaaWcbaGaamyA amaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaig daaeqaaaWcbeaaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaeyyc I8Saam4Caaqab0GaeyyeIuoakmaaqafabaGaam4DamaaBaaaleaaca WGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadbaGa aGOmaaqabaaaleqaaaqaaiaadMgadaWgaaadbaGaaGOmaaqabaWccq GHjiYZcaWGZbaabeqdcqGHris5aOGaeyOeI0YaaeWaaeaadaaeqbqa aiaadEhadaWgaaWcbaGaamyAaiaaiYcacaWGQbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaeaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoa aOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2 faaaqaaaqaaiaaysW7caaMe8Uaey4kaSIaam4tamaabmaabaGaamOB amaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeU7aSjabgUcaRiaad6 gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaad6gacqaH 7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaki aawIcacaGLPaaaaeaaaeaacaaI9aGaam4tamaabmaabaWaaeWaaeaa caWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislca aIXaaaaOGaeqySdeMaey4kaSIaamOBamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiabeU7aSjabgUcaRiaad6gadaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaqadaqaaiaad6gacqaH7oaBaiaawIcacaGLPaaadaah aaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaaGaaGzbVl aaywW7caGGOaGaaiyqaiaac6cacaaIXaGaaG4naiaacMcaaaa@7AC7@

et

D 2 b := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) × k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 = 1 N 2 i 1 s i 2 s j 1 s j 2 s w i 1 , j 1 w i 2 , j 2 G ( 1 , 0 ) ( t m i 1 | x j 1 ) G ( 1 , 0 ) ( t m i 2 | x j 2 ) × k s ( w j 1 , k w i 1 , k ) ( w j 2 , k w i 2 , k ) σ k 2 + O ( n 1 ( n λ ) 1 ) = 1 N 2 k s σ k 2 [ G ( 1 , 0 ) ( t m k | x k ) ] 2 ( i s j s w i , j ( w j , k w i , k ) ) 2 + O ( n 1 λ + n 1 ( n λ ) 1 ) = 1 N 2 k s σ k 2 [ G ( 1 , 0 ) ( t m k | x k ) ] 2 ( j s w j , k i s w i , j i s w i , k ) 2 + O ( n 1 λ + n 1 ( n λ ) 1 ) = O ( ( n λ ) 1 α + n 1 λ ) . ( A .18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjFfea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWbca aaaeaacaWGebWaaSbaaSqaaiaaikdacaWGIbaabeaaaOqaaiaaiQda caaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaa aaaaGcdaaeqbqaamaaqafabaWaaabuaeaadaaeqbqaaiaadEhadaWg aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaS baaWqaaiaaigdaaeqaaaWcbeaakiaadEhadaWgaaWcbaGaamyAamaa BaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaikdaae qaaaWcbeaakiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacYca caaIWaaacaGLOaGaayzkaaaaaaqaaiaadQgadaWgaaadbaGaaGOmaa qabaWccqGHiiIZcaWGZbGaaGilaiaadQgadaWgaaadbaGaaGOmaaqa baWccqGHGjsUcaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHri s5aaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliabgIGiolaadoha aeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGaey ycI8Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGym aaqabaWccqGHjiYZcaWGZbaabeqdcqGHris5aOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaa WcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaaakiaawIcacaGL PaaacaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGaaGimaa GaayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Ia amyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaki aaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgadaWgaaad baGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaabaaabaGaaGjbVl aaysW7caaMe8UaaGjbVlabgEna0oaaqafabaWaaeWaaeaacaWG3bWa aSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccaaISaGaam4Aaa qabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGym aaqabaWccaaISaGaam4AaaqabaaakiaawIcacaGLPaaadaqadaqaai aadEhadaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaliaaiYca caWGRbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAamaaBaaame aacaaIYaaabeaaliaaiYcacaWGRbaabeaaaOGaayjkaiaawMcaaiab eo8aZnaaDaaaleaacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4 Saam4Caaqab0GaeyyeIuoaaOqaaaqaaiaai2dadaWcaaqaaiaaigda aeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuae aadaaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbWaaSbaaWqa aiaaigdaaeqaaSGaaGilaiaadQgadaWgaaadbaGaaGymaaqabaaale qaaOGaam4DamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaSGa aGilaiaadQgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaam4ramaaCa aaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaa aaaabaGaamOAamaaBaaameaacaaIYaaabeaaliabgIGiolaadohaae qaniabggHiLdaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaeyic I4Saam4Caaqab0GaeyyeIuoaaSqaaiaadMgadaWgaaadbaGaaGOmaa qabaWccqGHjiYZcaWGZbaabeqdcqGHris5aaWcbaGaamyAamaaBaaa meaacaaIXaaabeaaliabgMGiplaadohaaeqaniabggHiLdGcdaqada qaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaa BaaameaacaaIXaaabeaaaSqabaGccaaMc8oacaGLiWoacaaMc8Uaam iEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOGa ayjkaiaawMcaaiaadEeadaahaaWcbeqaamaabmaabaGaaGymaiaacY cacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabcaqaaiaadsha cqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqaba aaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOA amaaBaaameaacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaeaaae aacaaMe8UaaGjbVlaaysW7caaMe8Uaey41aq7aaabuaeaadaqadaqa aiaadEhadaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaliaaiY cacaWGRbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamyAamaaBaaa meaacaaIXaaabeaaliaaiYcacaWGRbaabeaaaOGaayjkaiaawMcaam aabmaabaGaam4DamaaBaaaleaacaWGQbWaaSbaaWqaaiaaikdaaeqa aSGaaGilaiaadUgaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadUgaaeqaaaGccaGLOaGa ayzkaaGaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadU gacqGHiiIZcaWGZbaabeqdcqGHris5aOGaey4kaSIaam4tamaabmaa baGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaam OBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaaaOGaayjkaiaawMcaaaqaaaqaaiaai2dadaWcaaqaaiaaigdaae aacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaGaeq4Wdm3a a0baaSqaaiaadUgaaeaacaaIYaaaaOWaamWaaeaacaWGhbWaaWbaaS qabeaadaqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaaa kmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaaca WGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaa dUgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabe aacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aOWa aeWaaeaadaaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbGaaG ilaiaadQgaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadQgacaaI SaGaam4AaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaadMgacaaISa Gaam4AaaqabaaakiaawIcacaGLPaaaaSqaaiaadQgacqGHiiIZcaWG ZbaabeqdcqGHris5aaWcbaGaamyAaiabgMGiplaadohaaeqaniabgg HiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGpbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaO Gaeq4UdWMaey4kaSIaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaa kmaabmaabaGaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqaba GaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaqaaaqaaiaai2dadaWc aaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqa fabaGaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaOWaamWaaeaa caWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGaaGimaaGaay jkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyB amaaBaaaleaacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG4b WaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzx aaWaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbaabe qdcqGHris5aOWaaeWaaeaadaaeqbqaaiaadEhadaWgaaWcbaGaamOA aiaaiYcacaWGRbaabeaakmaaqafabaGaam4DamaaBaaaleaacaWGPb GaaGilaiaadQgaaeqaaOGaeyOeI0YaaabuaeaacaWG3bWaaSbaaSqa aiaadMgacaaISaGaam4AaaqabaaabaGaamyAaiabgMGiplaadohaae qaniabggHiLdaaleaacaWGPbGaeyycI8Saam4Caaqab0GaeyyeIuoa aSqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5aaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam4tamaabmaabaGa amOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeU7aSjabgUcaRi aad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaad6ga cqaH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaa aakiaawIcacaGLPaaaaeaaaeaacaaI9aGaam4tamaabmaabaWaaeWa aeaacaWGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaeqySdeMaey4kaSIaamOBamaaCaaaleqabaGaeyOe I0IaaGymaaaakiabeU7aSbGaayjkaiaawMcaaiaai6caaaGaaGzbVl aaywW7caGGOaGaaiyqaiaac6cacaaIXaGaaGioaiaacMcaaaa@F4DA@

En regroupant tout, on obtient finalement

var ( F ^ * ( t ) F N ( t ) ) = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ h s ¯ ( x ) / h s ( x ) ] h s ¯ ( x ) d x + 1 N n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] h s ¯ ( x ) d x + o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaaeODaiaabggacaqGYbWaaeWaaeaaceWGgbGbaKaadaahaaWc beqaaiaaiQcaaaGccaaMb8+aaeWaaeaacaWG0baacaGLOaGaayzkaa GaeyOeI0IaamOramaaBaaaleaacaWGobaabeaakmaabmaabaGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaai2dadaWcaaqaai aaigdaaeaacaWGUbaaamaabmaabaWaaSaaaeaacaWGobGaeyOeI0Ia amOBaaqaaiaad6eaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOWaa8qmaeqaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaamWa aeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaae WaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGPaVlaa dIhaaiaawIcacaGLPaaacqGHsislcaWGhbWaaWbaaSqabeaacaaIYa aaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaaeaa caWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGPaVlaadIhaai aawIcacaGLPaaaaiaawUfacaGLDbaadaWadaqaamaalyaabaGaamiA amaaBaaaleaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaamiEaa GaayjkaiaawMcaaaqaaiaadIgadaWgaaWcbaGaam4CaaqabaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaamiAam aaBaaaleaacaaMc8Uabm4CayaaraaabeaakmaabmaabaGaamiEaaGa ayjkaiaawMcaaiaadsgacaWG4baabaaabaGaaGjbVlaaysW7cqGHRa WkdaWcaaqaaiaaigdaaeaacaWGobGaeyOeI0IaamOBaaaadaqadaqa amaalaaabaGaamOtaiabgkHiTiaad6gaaeaacaWGobaaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcbaGaamyyaaqa aiaadkgaa0Gaey4kIipakmaadmaabaGaam4ramaabmaabaWaaqGaae aacaWG0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMca aiaaykW7aiaawIa7aiaaykW7caWG4baacaGLOaGaayzkaaGaeyOeI0 Iaam4ramaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaqGaaeaacaWG 0bGaeyOeI0IaamyBamaabmaabaGaamiEaaGaayjkaiaawMcaaiaayk W7aiaawIa7aiaaykW7caWG4baacaGLOaGaayzkaaaacaGLBbGaayzx aaGaamiAamaaBaaaleaacaaMc8Uabm4Cayaaraaabeaakmaabmaaba GaamiEaaGaayjkaiaawMcaaiaadsgacaWG4bGaey4kaSIaam4Bamaa bmaabaGaeq4UdW2aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaamOBam aaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaai6ca aaaaaa@CA5E@

Variance de l’estimateur par la différence généralisée avec valeurs prédites modifiées

Étant donné (A.7), nous allons montrer que

var ( F ˜ * ( t ) F N ( t ) ) = var ( F ^ * ( t ) F N ( t ) ) + o ( n 1 ) ( A .19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG2bGaae yyaiaabkhadaqadaqaaiqadAeagaacamaaCaaaleqabaGaaGOkaaaa kiaaygW7daqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGgb WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaacaGLOaGaayzkaaGaaGypaiaabAhacaqGHbGaaeOCamaabmaaba GabmOrayaajaWaaWbaaSqabeaacaaIQaaaaOGaaGzaVpaabmaabaGa amiDaaGaayjkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGaamOtaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcaWGVbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsislca aIXaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7caGGOaGaaiyqaiaac6cacaaIXaGaaGyoaiaacMcaaaa@69DB@

en démontrant que

var ( 1 N i s ( 1 π i 1 ) j s w ˜ i , j ( I ( ε j t m i + d ˜ i , j ) I ( y i t ) ) ) = o ( n 1 ) . ( A .20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG2bGaae yyaiaabkhadaqadaqaamaalaaabaGaaGymaaqaaiaad6eaaaWaaabu aeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaaba GaaGymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbaabaGaeyOeI0Ia aGymaaaaaOGaayjkaiaawMcaamaaqafabaGabm4DayaaiaWaaSbaaS qaaiaadMgacaaISaGaamOAaaqabaaabaGaamOAaiabgIGiolaadoha aeqaniabggHiLdGcdaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBa aaleaacaWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaSba aSqaaiaadMgaaeqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaadM gacaaISaGaamOAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGjbWa aeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaamiDaa GaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaai2da caWGVbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaa GccaGLOaGaayzkaaGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaacgeacaGGUaGaaGOmaiaaicdacaGGPaaaaa@8081@

Pour prouver (A.20), observons que la variance dans le premier membre peut s’écrire

E 1 + E 2 + E 3 2 E 4 2 E 5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaamyramaaBaaaleaacaaIYaaa beaakiabgUcaRiaadweadaWgaaWcbaGaaG4maaqabaGccqGHsislca aIYaGaamyramaaBaaaleaacaaI0aaabeaakiabgkHiTiaaikdacaWG fbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaaaa@466D@

E 1 := 1 N 2 i 1 s i 2 s j s w ˜ i 1 , j w ˜ i 2 , j ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε j t m i 2 + d ˜ i 2 , j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaigdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaaiqadEhagaacamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaaGilaiaadQgaaeqaaOGabm4DayaaiaWaaSbaaSqaaiaadM gadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaaabaGaamOA aiabgIGiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaai aaikdaaeqaaSGaeyicI4Saam4Caaqab0GaeyyeIuoaaSqaaiaadMga daWgaaadbaGaaGymaaqabaWccqGHiiIZcaWGZbaabeqdcqGHris5aO WaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aa0baaSqaaiaadMgadaWg aaadbaGaaGymaaqabaaaleaacqGHsislcaaIXaaaaaGccaGLOaGaay zkaaWaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aa0baaSqaaiaadMga daWgaaadbaGaaGOmaaqabaaaleaacqGHsislcaaIXaaaaaGccaGLOa GaayzkaaGaey41aqRaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWa aeWaaeaacqaH1oqzdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaeaacaaIXaaabeaa aeqaaOGaey4kaSIabmizayaaiaWaaSbaaSqaaiaadMgadaWgaaadba GaaGymaaqabaWccaaISaGaamOAaaqabaaakiaawIcacaGLPaaacaaI SaGaamysamaabmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaey izImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaaSqabaGccqGHRaWkceWGKbGbaGaadaWgaaWcbaGaam yAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbaabeaaaOGaayjk aiaawMcaaaGaayjkaiaawMcaaiaaiYcaaaa@95B9@

E 2 := 1 N 2 i 1 s i 2 s j 1 s j 2 s , j 2 j 1 w ˜ i 1 , j w ˜ i 2 , j 2 ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j 1 t m i 1 + d ˜ i 1 , j 1 ) , I ( ε j 2 t m i 2 + d ˜ i 2 , j 2 ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peea0dXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaikdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaamaaqafabaGabm4DayaaiaWaaSbaaSqaaiaadMgadaWgaaad baGaaGymaaqabaWccaaISaGaamOAaaqabaGcceWG3bGbaGaadaWgaa WcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcacaWGQbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaeaacaWGQbWaaSbaaWqaaiaaikdaae qaaSGaeyicI4Saam4CaiaaiYcacaWGQbWaaSbaaWqaaiaaikdaaeqa aSGaeyiyIKRaamOAamaaBaaameaacaaIXaaabeaaaSqab0GaeyyeIu oaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWccqGHiiIZcaWGZbaa beqdcqGHris5aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliabgI GiolaadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaabaGaaGymai abgkHiTiabec8aWnaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqa aaWcbaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaabmaabaGaaG ymaiabgkHiTiabec8aWnaaDaaaleaacaWGPbWaaSbaaWqaaiaaikda aeqaaaWcbaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiabgEna0k aabogacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyTdu2a aSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyizIm QaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaacaaI XaaabeaaaSqabaGccqGHRaWkceWGKbGbaGaadaWgaaWcbaGaamyAam aaBaaameaacaaIXaaabeaaliaaiYcacaWGQbWaaSbaaWqaaiaaigda aeqaaaWcbeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacq aH1oqzdaWgaaWcbaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGc cqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaW qaaiaaikdaaeqaaaWcbeaakiabgUcaRiqadsgagaacamaaBaaaleaa caWGPbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadQgadaWgaaadba GaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGa aGilaaaa@A839@

E 3 := 1 N 2 i s ( 1 π i 1 ) 2 var ( I ( ε i t m i ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqaca aabaGaamyramaaBaaaleaacaaIZaaabeaaaOqaaiaaiQdacaaI9aWa aSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcda aeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWa aeaacaaIXaGaeyOeI0IaeqiWda3aa0baaSqaaiaadMgaaeaacqGHsi slcaaIXaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa aeODaiaabggacaqGYbWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzda WgaaWcbaGaamyAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaai aaiYcaaaaaaa@5BFF@

E 4 := 1 N 2 i s j s w ˜ i 1 , j ( 1 π i 1 ) ( 1 π j 1 ) cov ( I ( ε j t m i + d ˜ i , j ) , I ( ε j t m j ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqaca aabaGaamyramaaBaaaleaacaaI0aaabeaaaOqaaiaaiQdacaaI9aWa aSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcda aeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaabu aeaaceWG3bGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaliaaiYcacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4Caaqab0Ga eyyeIuoakmaabmaabaGaaGymaiabgkHiTiabec8aWnaaDaaaleaaca WGPbaabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaabmaabaGa aGymaiabgkHiTiabec8aWnaaDaaaleaacaWGQbaabaGaeyOeI0IaaG ymaaaaaOGaayjkaiaawMcaaiaabogacaqGVbGaaeODamaabmaabaGa amysamaabmaabaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaOGaeyizIm QaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWk ceWGKbGbaGaadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaOGaay jkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWcbaGa amOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaaca WGQbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiYcaaaaa aa@7D41@

et finalement

E 5 := 1 N 2 i 1 s i 2 s j s , j i 2 w ˜ i 1 , j ( 1 π i 1 1 ) ( 1 π i 2 1 ) × cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaiwdaaeqaaOGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaa caWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabaWaaabuaeaada aeqbqaaiqadEhagaacamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigda aeqaaSGaaGilaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZbGaaG ilaiaadQgacqGHGjsUcaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeqd cqGHris5aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliabgIGiol aadohaaeqaniabggHiLdaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqa aSGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaabaGaaGymaiabgk HiTiabec8aWnaaDaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc baGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymai abgkHiTiabec8aWnaaDaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqa aaWcbaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiabgEna0kaabo gacaqGVbGaaeODamaabmaabaGaamysamaabmaabaGaeqyTdu2aaSba aSqaaiaadQgaaeqaaOGaeyizImQaamiDaiabgkHiTiaad2gadaWgaa WcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWkceWG KbGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiY cacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcacaWGjbWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqaba GccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSba aWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawM caaiaai6caaaa@91B8@

Pour commencer, considérons E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaigdaaeqaaaaa@39A2@ et E 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaikdaaeqaaOGaaiOlaaaa@3A5F@ Notons que, à part i) le fait que les indices de sommation i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaS baaSqaaiaaigdaaeqaaaaa@39C6@ et i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaS baaSqaaiaaikdaaeqaaaaa@39C7@ s’étendent sur s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZbaaaa@38E9@ au lieu du complément de s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZbaaaa@38E9@ dans U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbGaai ilaaaa@397B@ ii) la présence des facteurs ( 1 π i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaigdacqGHsislcqaHapaCdaqhaaWcbaGaamyAaaqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaaaaa@3FAC@ et iii) le fait que les w i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@3BAC@ et les d i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaaaaa@3B99@ sont remplacés par leurs équivalents pondérés selon le plan de sondage w ˜ i , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG3bGbaG aadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaaaaa@3BBB@ et d ˜ i , j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGKbGbaG aadaWgaaWcbaGaamyAaiaaiYcacaWGQbaabeaakiaacYcaaaa@3C62@ E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaigdaaeqaaaaa@39A2@ et E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaikdaaeqaaaaa@39A3@ sont semblables à D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaaaa@39A1@ et D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaaaa@39A2@ provenant de var ( F ^ * ( t ) F N ( t ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG2bGaae yyaiaabkhadaqadaqaaiqadAeagaqcamaaCaaaleqabaGaaGOkaaaa kiaaygW7daqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGgb WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaacaGLOaGaayzkaaGaaiilaaaa@4811@ respectivement. L’adaptation des preuves qui mènent aux développements asymptotiques pour D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaaaa@39A1@ et D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaaaa@39A2@ montre donc que

E 1 = 1 n ( N n N ) 2 a b [ G ( t m ( x ) | x ) G 2 ( t m ( x ) | x ) ] [ 1 π 1 ( x ) ] 2 h s ( x ) d x + o ( n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeqaca aabaGaamyramaaBaaaleaacaaIXaaabeaaaOqaaiaai2dadaWcaaqa aiaaigdaaeaacaWGUbaaamaabmaabaWaaSaaaeaacaWGobGaeyOeI0 IaamOBaaqaaiaad6eaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaOWaa8qmaeqaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaam WaaeaacaWGhbWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGPaVl aadIhaaiaawIcacaGLPaaacqGHsislcaWGhbWaaWbaaSqabeaacaaI YaaaaOWaaeWaaeaadaabcaqaaiaadshacqGHsislcaWGTbWaaeWaae aacaWG4baacaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGPaVlaadIha aiaawIcacaGLPaaaaiaawUfacaGLDbaadaWadaqaaiaaigdacqGHsi slcqaHapaCdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaa dIhaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaik daaaGccaWGObWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaamizaiaadIhacqGHRaWkcaWGVbWaaeWaaeaaca WGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaa aaaa@7C40@

et que

E 2 = o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaikdaaeqaaOGaaGypaiaad+gadaqadaqaaiabeU7aSnaa CaaaleqabaGaaGynaaaakiabgUcaRiaad6gadaahaaWcbeqaaiabgk HiTiaaigdaaaaakiaawIcacaGLPaaacaaIUaaaaa@4406@

Comme pour E 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaiodaaeqaaOGaaiilaaaa@3A5E@ on constate immédiatement que

E 3 = E 1 + o ( n 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaiodaaeqaaOGaaGypaiaadweadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWGVbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsi slcaaIXaaaaaGccaGLOaGaayzkaaGaaGilaaaa@4316@

tandis que, pour traiter E 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaisdaaeqaaaaa@39A5@ et E 5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaiwdaaeqaaOGaaiilaaaa@3A60@ on a besoin des développements asymptotiques pour

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) ( A .21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGJbGaae 4BaiaabAhadaqadaqaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaa caWGQbaabeaakiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaai aadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIabmizayaa iaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaam OAaaqabaaakiaawIcacaGLPaaacaaISaGaamysamaabmaabaGaeqyT du2aaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey izImQaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaameaa caaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaca aMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaa ikdacaaIXaGaaiykaaaa@6725@

pour le cas où j = i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaaG ypaiaadMgadaWgaaWcbaGaaGOmaaqabaaaaa@3B7D@ et celui où j i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaey iyIKRaamyAamaaBaaaleaacaaIYaaabeaakiaac6caaaa@3D39@ Dans le premier cas, nous pouvons faire appel à des arguments similaires à ceux utilisés pour prouver (A.9) et (A.10), ce qui donne

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε j t m j ) ) = G ( t m i 1 t m j | x j ) G ( t m i 1 | x j ) G ( t m j | x j ) + O ( λ 2 + ( n λ ) 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaba aabaGaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0Iaam yBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiab gUcaRiqadsgagaacamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGilaiaadMea daqadaqaaiabew7aLnaaBaaaleaacaWGQbaabeaakiabgsMiJkaads hacqGHsislcaWGTbWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGypaiaadEeadaqadaqaamaa eiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAamaaBaaame aacaaIXaaabeaaaSqabaGccqGHNis2caWG0bGaeyOeI0IaamyBamaa BaaaleaacaWGQbaabeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaS baaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Iaam4ramaa bmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPb WaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7 caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaam4ram aabmaabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWG QbaabeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQ gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaam4tamaabmaabaGaeq4U dW2aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWGUbGaeq 4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsisldaWcgaqaaiaa igdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaai6caaaaaaa@A637@

Par contre, quand j i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaey iyIKRaamyAamaaBaaaleaacaaIYaaabeaakiaacYcaaaa@3D37@ la covariance dans (A.21) diffère de zéro uniquement si | x j x i 2 | λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamiEamaa BaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaay5bSl aawIa7aiabgsMiJkabeU7aSbaa@462B@ ou | x i 1 x i 2 | λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aaykW7caWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaa leqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaik daaeqaaaWcbeaaaOGaay5bSlaawIa7aiabgsMiJkabeU7aSjaacYca aaa@47CD@ et en adaptant (A.12), on peut montrer que

E ( I ( ε j t m i 1 + d ˜ i 1 , j ) I ( ε i 2 t m i 2 ) ) = E ( E ( I ( ε j a ˜ i 1 , j , i 2 + b ˜ i 1 , j , i 2 ε i 2 ) I ( ε i 2 t m i 2 ) | ε k , k i , j ) ) = E ( t m i 2 G ( a ˜ i 1 , j , i 2 + b ˜ i 1 , j , i 2 ε | x j ) d G ( ε | x i 2 ) ) = G ( t m i 1 | x j ) G ( t m i 2 | x i 2 ) + G ( t m i 2 | x i 2 ) G ( 1 , 0 ) ( t m i 1 | x j ) E ( d i 1 , j ) + G ( 1 , 0 ) ( t m i 1 | x j ) b ˜ i 1 , j , i 2 γ i 2 , i 2 + 1 2 G ( t m i 2 | x i 2 ) G ( 2 , 0 ) ( t m i 1 | x j ) E ( d i 1 , j 2 ) + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGbba aaaeaacaWGfbWaaeWaaeaacaWGjbWaaeWaaeaacqaH1oqzdaWgaaWc baGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0IaamyBamaaBaaale aacaWGPbWaaSbaaeaacaaIXaaabeaaaeqaaOGaey4kaSIabmizayaa iaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaam OAaaqabaaakiaawIcacaGLPaaacaWGjbWaaeWaaeaacqaH1oqzdaWg aaWcbaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHKjYOca WG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikda aeqaaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGypaiaadweadaqadaqaaiaa dweadaqadaqaamaaeiaabaGaamysamaabmaabaGaeqyTdu2aaSbaaS qaaiaadQgaaeqaaOGaeyizImQabmyyayaaiaWaaSbaaSqaaiaadMga daWgaaadbaGaaGymaaqabaWccaaISaGaamOAaiaaiYcacaWGPbWaaS baaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRmaaGaaabaGaamOyaaGa ay5adaWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISa GaamOAaiaaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiab ew7aLnaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO GaayjkaiaawMcaaiaadMeadaqadaqaaiabew7aLnaaBaaaleaacaWG PbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgsMiJkaadshacqGHsi slcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqa aaGccaGLOaGaayzkaaGaaGPaVdGaayjcSdGaaGPaVlabew7aLnaaBa aaleaacaWGRbaabeaakiaaiYcacaWGRbGaeyiyIKRaamyAaiaaiYca caWGQbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaI9aGaamyramaabmaabaWaa8qmaeqa leaacqGHsislcqGHEisPaeaacaWG0bGaeyOeI0IaamyBamaaBaaame aacaWGPbWaaSbaaeaacaaIYaaabeaaaeqaaaqdcqGHRiI8aOGaam4r amaabmaabaGabmyyayaaiaWaaSbaaSqaaiaadMgadaWgaaadbaGaaG ymaaqabaWccaaISaGaamOAaiaaiYcacaWGPbWaaSbaaWqaaiaaikda aeqaaaWcbeaakiabgUcaRmaaeiaabaWaaacaaeaacaWGIbaacaGLdm aadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWG QbGaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaeqyTdu MaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaacaWGKbGaam4ramaabmaabaWaaqGaaeaacqaH1o qzcaaMc8oacaGLiWoacaWG4bWaaSbaaSqaaiaadMgadaWgaaadbaGa aGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaaba GaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaI9aGaam4ramaabmaa baWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaS baaWqaaiaaigdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaam4ramaabm aabaWaaqGaaeaacaWG0bGaeyOeI0IaamyBamaaBaaaleaacaWGPbWa aSbaaWqaaiaaikdaaeqaaaWcbeaakiaaykW7aiaawIa7aiaaykW7ca WG4bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaaGc caGLOaGaayzkaaGaey4kaSIaam4ramaabmaabaWaaqGaaeaacaWG0b GaeyOeI0IaamyBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqa aaWcbeaakiaaykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadM gadaWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaGaam4r amaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcaca GLPaaaaaGcdaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWg aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGccaaMc8oaca GLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaa wMcaaiaadweadaqadaqaaiaadsgadaWgaaWcbaGaamyAamaaBaaame aacaaIXaaabeaaliaaiYcacaWGQbaabeaaaOGaayjkaiaawMcaaaqa aiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7cqGHRa WkcaWGhbWaaWbaaSqabeaadaqadaqaaiaaigdacaGGSaGaaGimaaGa ayjkaiaawMcaaaaakmaabmaabaWaaqGaaeaacaWG0bGaeyOeI0Iaam yBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaa ykW7aiaawIa7aiaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaWaaacaaeaacaWGIbaacaGLdmaadaWgaaWcbaGaamyA amaaBaaameaacaaIXaaabeaaliaaiYcacaWGQbGaaGilaiaadMgada WgaaadbaGaaGOmaaqabaaaleqaaOGaeq4SdC2aaSbaaSqaaiaadMga daWgaaadbaGaaGOmaaqabaWccaaISaGaamyAamaaBaaameaacaaIYa aabeaaaSqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaa dEeadaqadaqaamaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcba GaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccaaMc8oacaGLiWoa caaMc8UaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaa WcbeaaaOGaayjkaiaawMcaaiaadEeadaahaaWcbeqaamaabmaabaGa aGOmaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaa WcbaGaamOAaaqabaaakiaawIcacaGLPaaacaWGfbWaaeWaaeaacaWG KbWaa0baaSqaaiaadMgadaWgaaadbaGaaGymaaqabaWccaaISaGaam OAaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8Uaey4kaSIaam4BamaaBaaale aacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgadaWgaaad baGaaGOmaaqabaWccaaISaGaamOAaaqabaGcdaqadaqaaiabeU7aSn aaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaamOBaiabeU7a SbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaay jkaiaawMcaaiaaiYcaaaaaaa@993C@

a ˜ i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGHbGbaG aadaWgaaWcbaGaamyAaiaaiYcacaWGQbGaaGilaiaadUgaaeqaaaaa @3D4B@ et b ˜ i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaai aadkgaaiaawoWaamaaBaaaleaacaWGPbGaaGilaiaadQgacaaISaGa am4Aaaqabaaaaa@3DFF@ sont les équivalents pondérés selon le plan de sondage de a i , j , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaadMgacaaISaGaamOAaiaaiYcacaWGRbaabeaaaaa@3D3C@ et b i , j , k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgacaaISaGaamOAaiaaiYcacaWGRbaabeaakiaacYca aaa@3DF7@ respectivement. En adaptant également (A.4) pour tenir compte des poids de sondage, on constate que

cov ( I ( ε j t m i 1 + d ˜ i 1 , j ) , I ( ε i 2 t m i 2 ) ) = G ( 1 , 0 ) ( t m i 1 | x j ) b ˜ i 1 , j , i 2 γ i 2 , i 2 + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) = G ( 1 , 0 ) ( t m i | x j ) ( w ˜ j , i 2 w ˜ i 1 , i 2 ) γ i 2 , i 2 + o i 1 , i 2 , j ( λ 4 + ( n λ ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaae4yaiaab+gacaqG2bWaaeWaaeaacaWGjbWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG0bGaeyOeI0Iaam yBamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiab gUcaRiqadsgagaacamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaae qaaSGaaGilaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGilaiaadMea daqadaqaaiabew7aLnaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaae qaaaWcbeaakiabgsMiJkaadshacqGHsislcaWGTbWaaSbaaSqaaiaa dMgadaWgaaadbaGaaGOmaaqabaaaleqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaaabaGaaGypaiaadEeadaahaaWcbeqaamaabmaabaGa aGymaiaacYcacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaadaabca qaaiaadshacqGHsislcaWGTbWaaSbaaSqaaiaadMgadaWgaaadbaGa aGymaaqabaaaleqaaOGaaGPaVdGaayjcSdGaaGPaVlaadIhadaWgaa WcbaGaamOAaaqabaaakiaawIcacaGLPaaadaaiaaqaaiaadkgaaiaa woWaamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilai aadQgacaaISaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqaH ZoWzdaWgaaWcbaGaamyAamaaBaaameaacaaIYaaabeaaliaaiYcaca WGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaad+gadaWg aaWcbaGaamyAamaaBaaameaacaaIXaaabeaaliaaiYcacaWGPbWaaS baaWqaaiaaikdaaeqaaSGaaGilaiaadQgaaeqaaOWaaeWaaeaacqaH 7oaBdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaaiaad6gacq aH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaaaeaaaeaacaaI9aGaam4ramaaCaaaleqabaWaae WaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqa amaaeiaabaGaamiDaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqaba GccaaMc8oacaGLiWoacaaMc8UaamiEamaaBaaaleaacaWGQbaabeaa aOGaayjkaiaawMcaamaabmaabaGabm4DayaaiaWaaSbaaSqaaiaadQ gacaaISaGaamyAamaaBaaameaacaaIYaaabeaaaSqabaGccqGHsisl ceWG3bGbaGaadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaali aaiYcacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOGaayjkaiaa wMcaaiabeo7aNnaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaS GaaGilaiaadMgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaSIa am4BamaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaSGaaGilai aadMgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamOAaaqabaGcdaqa daqaaiabeU7aSnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaaba GaamOBaiabeU7aSbGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaOGaayjkaiaawMcaaaaaaaa@C7ED@

de sorte que (voir les étapes qui mènent aux développements asymptotiques des termes D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaaaa@39A1@ et D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaaaa@39A2@ dans la variance de l’estimateur en deux étapes fondé sur le modèle)

E 4 = E 1 + o ( n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaisdaaeqaaOGaaGypaiaadweadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWGVbWaaeWaaeaacaWGUbWaaWbaaSqabeaacqGHsi slcaaIXaaaaaGccaGLOaGaayzkaaaaaa@4261@

et

E 5 = o ( λ 5 + n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peee0hXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaaiwdaaeqaaOGaaGypaiaad+gadaqadaqaaiabeU7aSnaa CaaaleqabaGaaGynaaaakiabgUcaRiaad6gadaahaaWcbeqaaiabgk HiTiaaigdaaaaakiaawIcacaGLPaaacaaIUaaaaa@4409@

Cela achève la preuve de (A.20) et donc (A.19) s’ensuit.

Bibliographie

Breidt, F.J., et Opsomer, J.D. (2000). Local polynomial regression estimators in survey sampling. The Annals Statistics, 28(4), 1026-1053.

Chambers, R.L., et Clark, R. (2012). An Introduction to Model-Based Survey Sampling with Applications, Oxford Statistical Science Series 37.

Chambers, R.L., et Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika, 73(3), 597-604.

Chambers, R.L., Dorfman, A.H. et Wehrly, T.E. (1993). Bias robust estimation in finite populations using non-parametric calibration. Journal of the American Statistical Association, 88(421), 268-277.

Chen, J., et Wu, C. (2002). Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Statistica Sinica, 12, 1223-1239.

Dorfman, A.H., et Hall, P. (1993). Estimators of the finite population distribution function using nonparametric regression. The Annals of Statistics, 21(3), 1452-1475.

Fan, J., et Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20(4), 2008-2036.

Hansen, B.E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory, 24, 726-748.

Johnson, A.A., Breidt, F.J. et Opsomer, J.D. (2008). Estimating distribution functions from survey data using nonparametric regression. Journal of Statistical Theory and Practice, 2(3), 419-431.

Kuo, L. (1988). Classical and prediction approaches to estimating distribution functions from survey data. Dans les Proceedings of the Survey Research Methods Section, American Statistical Association, Alexandria, VA, 280-285.

Montanari, G.E., et Ranalli, M.G. (2005). Nonparametric model calibration estimation in survey sampling. Journal of the American Statistical Association, 100(472), 1429-1442.

Rao, J.N.K., Kovar, J.G. et Mantel, H.J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika, 77(2), 365-375.

Rueda, M., Martínez, S., Martínez, H. et Arcos, A. (2007). Estimation of the distribution function with calibration methods. Journal of Statistical Planning and Inference, 137(2), 435-448.

Rueda, M., Sànchez-Borrego, I., Arcos, A. et Martínez, S. (2010). Model-calibration estimation of the distribution function using nonparametric regression. Metrika, 71(1), 33-44.

Särndal, C.-E., Swensson, B. et Wretman, J. (1992). Model Assisted Survey Sampling, New York : Springer.

Wang, J.C., et Opsomer, J.D. (2011). On asymptotic normality and variance estimation for nondifferentiable survey estimators. Biometrika, 98(1), 91-106.

Wu, C. (2003). Optimal calibration estimators in survey sampling. Biometrika, 90(4), 937-951.

Wu, C., et Sitter, R.R. (2001). A model-calibration approach to using complete auxiliary information from survey data. Journal of the American Statistical Association, 96(453), 185-193.

Date de modification :