Comparison of some positive variance estimators for the Fay-Herriot small area model 3. Review of REML and adjusted maximum likelihood methods

3.1 REML method

We consider the combined Fay-Herriot model (2.3) with σ v 2 >   0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOaeaaaaaaaaa8qacqGH+aGpcaGG GcGaaGima8aacaGGUaaaaa@3EA4@ The REML variance estimator of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ is obtained by maximizing the residual likelihood function with respect to σ v 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOoaaaa@3B9B@

L REML ( σ v 2 ) | [ i = 1 m z i z i / ( σ v 2 + ψ i ) ] | 1 / 2 i = 1 m ( σ v 2 + ψ i ) 1 / 2 exp { 1 2 y P y } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaqGsbGaaeyraiaab2eacaqGmbaabeaakmaabmaabaGaeq4W dm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey yhIu7aaqWaaeaacaaMc8+aamWaaeaadaWcgaqaamaaqahabaGaaCOE amaaBaaaleaacaWGPbaabeaakiaahQhadaqhaaWcbaGaamyAaaqaaO Gamai2gkdiIcaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqd cqGHris5aaGcbaWaaeWaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaai aaikdaaaGccqGHRaWkcqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaGaaGPaVdGaay5bSlaawIa7am aaCaaaleqabaWaaSGbaeaacqGHsislcaaIXaaabaGaaGOmaaaaaaGc daqeWaqaamaabmaabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYa aaaOGaey4kaSIaeqiYdK3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad2gaa0Gaey4dIu nakmaaCaaaleqabaWaaSGbaeaacqGHsislcaaIXaaabaGaaGOmaaaa aaGcciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTmaalaaabaGaaG ymaaqaaiaaikdaaaGabCyEayaafaGaaCiuaiaahMhaaiaawUhacaGL 9baaaaa@7F07@

where y = ( y 1 , , y m ) ,   P = V 1 V 1 Z ( Z V 1 Z ) 1 Z V 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCyEaiabg2 da9maabmaabaGaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWI MaYscaGGSaGaamyEamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawM caaGGaaiab=jdiIkaacYcacaqGGaGaaCiuaiabg2da9iaahAfadaah aaWcbeqaaiabgkHiTiaaigdaaaGccqGHsislcaWHwbWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaCOwamaabmaabaGabCOwayaafaGaaCOv amaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahQfaaiaawIcacaGLPa aadaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWHAbGbauaacaWHwbWa aWbaaSqabeaacqGHsislcaaIXaaaaOGaaiilaaaa@59AA@ V = Var ( y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2 da9iaabAfacaqGHbGaaeOCamaabmaabaGaaCyEaaGaayjkaiaawMca aiaacYcaaaa@3EFE@ and Z = ( z 1 , , z m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOwaiabg2 da9maabmaabaGaaCOEamaaBaaaleaacaaIXaaabeaakiaacYcacqWI MaYscaGGSaGaaCOEamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGccWaGyBOmGikaaiaac6caaaa@4508@ (Cressie 1992, Datta and Lahiri 2000 and Rao 2003, chapter 6). The REML variance estimator is given by:

σ ^ v REML 2 = max ( σ ˜ v REML 2 , 0 ) , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaciyBaiaacggacaGG4bWaaeWaaeaacuaHdpWCga acamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaa ikdaaaGccaGGSaGaaGimaaGaayjkaiaawMcaaiaacYcacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaigdacaGG Paaaaa@57EA@

where σ ˜ v REML 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaG aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI Yaaaaaaa@3E1E@ is the converging value of the REML algorithm. The asymptotic bias and variance of the REML estimator, up to the second order, are respectively given by:

Bias ( σ ^ v REML 2 ) = o ( 1 m )  and  V ( σ ^ v REML 2 ) = 2 tr ( V 2 ) + o ( 1 m ) . ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM gacaqGHbGaae4CamaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamOD aiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOaGaay zkaaGaeyypa0Jaam4BamaabmaabaWaaSaaaeaacaaIXaaabaGaamyB aaaaaiaawIcacaGLPaaacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiai aadAfadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGa aeyraiaab2eacaqGmbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2 da9maalaaabaGaaGOmaaqaaiaabshacaqGYbWaaeWaaeaacaWHwbWa aWbaaSqabeaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaaaiabgU caRiaad+gadaqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGL OaGaayzkaaGaaeOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@6EFC@

A second order unbiased estimator of the MSE of the EBLUP under REML variance estimation is given by (Datta and Lahiri 2000 and Chen and Lahiri 2008, 2011):

mse { θ ^ i ( σ ^ v REML 2 ) } = { g 1 i ( σ ^ v REML 2 ) + g 2 i ( σ ^ v REML 2 ) + 2 g 3 i ( σ ^ v REML 2 ) if   σ ^ v REML 2 > 0 g 2 i ( 0 ) if   σ ^ v REML 2 0. ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabkfacaqGfb GaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOaGaayzkaaaacaGL7bGa ayzFaaGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGaam4zamaaBaaale aacaaIXaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqa aiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOmaaaaaOGaay jkaiaawMcaaiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaadMgaaeqa aOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabw eacaqGnbGaaeitaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWk caaIYaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaGcdaqadaqaai qbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqG mbaabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaabMgacaqGMbGaae iiaiaabccacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabwea caqGnbGaaeitaaqaaiaaikdaaaacbaGccaWF+aGaaGimaaqaaiaadE gadaWgaaWcbaGaaGOmaiaadMgaaeqaaOWaaeWaaeaacaaIWaaacaGL OaGaayzkaaaabaGaaeyAaiaabAgacaqGGaGaaeiiaiqbeo8aZzaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaakiaab2dacaqGGaGaaGimaiaac6caaaGaaGzbVlaaywW7caaMf8 UaaiikaiaaiodacaGGUaGaaG4maiaacMcaaiaawUhaaaaa@93FE@

Remark 3.1. When σ ^ v 2 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH9aqpcaaIWaGaaiil aaaa@3D5D@ the EBLUP reduces to the synthetic estimator. However, note that when

   σ ^ v 2 = 0 , g 1 i ( σ ^ v 2 ) = 0 ,    g 2 i ( σ ^ v 2 ) = z i [ i = 1 m z i z i / ψ i ] 1 z i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiiaiaabc cacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaakiabg2da 9iaaicdacaGGSaGaam4zamaaBaaaleaacaaIXaGaamyAaaqabaGcda qadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGc caGLOaGaayzkaaGaeyypa0JaaGimaiaacYcacaqGGaGaaeiiaiaadE gadaWgaaWcbaGaaGOmaiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqc amaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2 da9iaahQhadaqhaaWcbaGaamyAaaqaaOGamai2gkdiIcaadaWadaqa amaalyaabaWaaabCaeaacaWH6bWaaSbaaSqaaiaadMgaaeqaaOGaaC OEamaaDaaaleaacaWGPbaabaGccWaGyBOmGikaaaWcbaGaamyAaiab g2da9iaaigdaaeaacaWGTbaaniabggHiLdaakeaacqaHipqEdaWgaa WcbaGaamyAaaqabaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaCOEamaaBaaaleaacaWGPbaabeaakiaacYcaaa a@6F5D@

and g 3 i ( σ ^ v 2 ) = V ¯ ( σ ^ v 2 ) / ψ i > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIZaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0ba aSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaS GbaeaaceWGwbGbaebadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaa dAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaeqiYdK3aaSbaaS qaaiaadMgaaeqaaOaeaaaaaaaaa8qacqGH+aGpcaaIWaaaaiaacYca aaa@4C20@ i.e., mse { θ ^ i ( σ ^ v 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa aakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@445F@ is not a continuous function of σ ^ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccaGGUaaaaa@3B9F@ We will see in the empirical study that when conditioning on { σ ^ v 2 = 0 } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacu aHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaakiabg2da9iaa icdaaiaawUhacaGL9baacaGGSaaaaa@3F8E@ the MSE estimator in (3.3) has significant negative bias, unless the underlying signal to noise ratio σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3DDB@ is negligible.

3.2 Adjusted maximum likelihood methods

The adjusted maximum likelihood variance estimators are derived from optimizing either the profile (AM) or the residual (AR) likelihood adjusted with the factor h ( σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaaiOlaaaa@3E05@ As noted in the introduction, the AM.LL and AR.LL estimators use the adjustment factor h LL ( σ v 2 ) = σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaqGmbGaaeitaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZn aaDaaaleaacaWG2baabaGaaGOmaaaakiaacYcaaaa@448E@ and the AM.YL and AR.YL estimators use the adjustment factor

h YL ( σ v 2 ) = { arc tan [ i = 1 m σ v 2 / ( σ v 2 + ψ i ) ] } 1 / m . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaqGzbGaaeitaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maacmaaba GaaeyyaiaabkhacaqGJbGaciiDaiaacggacaGGUbWaamWaaeaadaWc gaqaamaaqahabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaa qaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaWa aeWaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRa WkcqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaaa caGLBbGaayzxaaaacaGL7bGaayzFaaWaaWbaaSqabeaadaWcgaqaai aaigdaaeaacaWGTbaaaaaakiaac6caaaa@5F45@

We denote by σ ^ v AM .LL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabYeacaqGmbaa baGaaGOmaaaaaaa@3EC6@ and σ ^ v AM .YL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabMfacaqGmbaa baGaaGOmaaaaaaa@3ED3@ the variance estimators obtained by maximizing the adjusted profile likelihood functions, with respect to σ v 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOoaaaa@3B9B@

L AM .* ( σ v 2 ) h ( σ v 2 ) i = 1 m ( σ v 2 + ψ i ) 1 / 2 exp { 1 2 y P y } , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaqGbbGaaeytaiaab6cacaqGQaaabeaakmaabmaabaGaeq4W dm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey yhIuRaamiAamaabmaabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaI YaaaaaGccaGLOaGaayzkaaGaeyyXIC9aaebmaeaadaqadaqaaiabeo 8aZnaaDaaaleaacaWG2baabaGaaGOmaaaakiabgUcaRiabeI8a5naa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2 da9iaaigdaaeaacaWGTbaaniabg+GivdGcdaahaaWcbeqaaiabgkHi TmaalyaabaGaaGymaaqaaiaaikdaaaaaaOGaciyzaiaacIhacaGGWb WaaiWaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiqahMha gaqbaiaahcfacaWH5baacaGL7bGaayzFaaGaaiilaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGinaiaacMca aaa@720F@

where h ( σ v 2 ) = h LL ( σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaeyypa0JaamiAamaaBaaaleaacaqGmbGaaeitaaqabaGcda qadaqaaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjk aiaawMcaaaaa@4654@ and h ( σ v 2 ) = h YL ( σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaeyypa0JaamiAamaaBaaaleaacaqGzbGaaeitaaqabaGcda qadaqaaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjk aiaawMcaaaaa@4661@ for AM.LL and AM.YL respectively. The matrix P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiuaaaa@3805@ is as in (3.1). The bias of the AM estimators up to the second order (denoted by ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeGaaeaacq GHijYUaiaawMcaaaaa@39A5@ is:

B ( σ ^ v AM .LL 2 ) tr { P V 1 } + 2 / σ v 2 tr ( V 2 ) = O ( 1 m ) and B ( σ ^ v AM .YL 2 ) tr { P V 1 } tr ( V 2 ) = O ( 1 m ) , ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqamaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOl aiaabYeacaqGmbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgIKi7o aalaaabaGaaeiDaiaabkhadaGadaqaaiaahcfacqGHsislcaWHwbWa aWbaaSqabeaacqGHsislcaaIXaaaaaGccaGL7bGaayzFaaGaey4kaS YaaSGbaeaacaaIYaaabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaI YaaaaaaaaOqaaiaabshacaqGYbWaaeWaaeaacaWHwbWaaWbaaSqabe aacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaaaiabg2da9iaad+ea daqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzkaa GaaGjbVlaaysW7caaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaaysW7 caaMe8UaamOqamaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODai aabgeacaqGnbGaaeOlaiaabMfacaqGmbaabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgIKi7oaalaaabaGaaeiDaiaabkhadaGadaqaaiaahc facqGHsislcaWHwbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGL 7bGaayzFaaaabaGaaeiDaiaabkhadaqadaqaaiaahAfadaahaaWcbe qaaiabgkHiTiaaikdaaaaakiaawIcacaGLPaaaaaGaeyypa0Jaam4t amaabmaabaWaaSaaaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPa aacaGGSaGaaGzbVlaacIcacaaIZaGaaiOlaiaaiwdacaGGPaaaaa@8DC0@

(Li and Lahiri 2011 and Yoshimori and Lahiri 2014). The AR.LL and AR.YL variance estimators, denoted by σ ^ v AR .LL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOlaiaabYeacaqGmbaa baGaaGOmaaaaaaa@3ECB@ and σ ^ v AR .YL 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOlaiaabMfacaqGmbaa baGaaGOmaaaakiaacYcaaaa@3F92@ are obtained by maximizing the adjusted residual (AR) likelihood functions with respect to σ v 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOoaaaa@3B9B@

L AR .* ( σ v 2 ) h ( σ v 2 ) | i = 1 m z i z i / ( σ v 2 + ψ i ) | 1 / 2 i = 1 m ( σ v 2 + ψ i ) 1 / 2 exp { 1 2 y P y } ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaqGbbGaaeOuaiaab6cacaqGQaaabeaakmaabmaabaGaeq4W dm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey yhIuRaamiAamaabmaabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaI YaaaaaGccaGLOaGaayzkaaGaeyyXIC9aaqWaaeaacaaMc8+aaSGbae aadaaeWbqaaiaahQhadaWgaaWcbaGaamyAaaqabaGcceWH6bGbauaa daWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaaca WGTbaaniabggHiLdaakeaadaqadaqaaiabeo8aZnaaDaaaleaacaWG 2baabaGaaGOmaaaakiabgUcaRiabeI8a5naaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaaaaacaaMc8oacaGLhWUaayjcSdWaaWbaaSqa beaacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaakmaaradaba WaaeWaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH RaWkcqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaS qaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHpis1aOWaaWba aSqabeaacqGHsisldaWcgaqaaiaaigdaaeaacaaIYaaaaaaakiGacw gacaGG4bGaaiiCamaacmaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaaceWH5bGbauaacaWHqbGaaCyEaaGaay5Eaiaaw2haaiaayw W7caaMf8UaaiikaiaaiodacaGGUaGaaGOnaiaacMcaaaa@88FB@

where h ( σ v 2 ) = h LL ( σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaeyypa0JaamiAamaaBaaaleaacaqGmbGaaeitaaqabaGcda qadaqaaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjk aiaawMcaaaaa@4654@ and h ( σ v 2 ) = h YL ( σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaeyypa0JaamiAamaaBaaaleaacaqGzbGaaeitaaqabaGcda qadaqaaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjk aiaawMcaaaaa@4661@ for AR.LL and AR.YL respectively and P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiuaaaa@3805@ is as in (3.1), The asymptotic bias of the AR estimators are given, respectively by:

B ( σ ^ v AR .LL 2 ) 2 / σ v 2 tr ( V 2 ) = O ( 1 m )   and   B ( σ ^ v AR .YL 2 ) = o ( 1 m ) . ( 3.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqamaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOl aiaabYeacaqGmbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgIKi7o aalaaabaWaaSGbaeaacaaIYaaabaGaeq4Wdm3aa0baaSqaaiaadAha aeaacaaIYaaaaaaaaOqaaiaabshacaqGYbWaaeWaaeaacaWHwbWaaW baaSqabeaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaaaiabg2da 9iaad+eadaqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOa GaayzkaaGaaeiiaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeii aiaadkeadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGbb GaaeOuaiaab6cacaqGzbGaaeitaaqaaiaaikdaaaaakiaawIcacaGL PaaacqGH9aqpcaWGVbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTb aaaaGaayjkaiaawMcaaiaac6cacaaMf8UaaGzbVlaacIcacaaIZaGa aiOlaiaaiEdacaGGPaaaaa@6EA1@

Under the regularity conditions given in Section 2 and σ v 2 > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8NpaiaaicdacaGGSaaa aa@3D0F@ the two LL and the two YL variance estimators exist and are m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGTbaaleqaaOGaeyOeI0caaa@3930@ consistent (Li and Lahiri 2011 and Yoshimori and Lahiri 2014). Lahiri and co-authors proposed the following MSE estimators:

mse { θ ^ i ( ) } = g 1 i ( ) + g 2 i ( ) + 2 g 3 i ( ) ψ i 2 B ( ) / ( + ψ i ) 2 ( 3.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGaeyyXICnacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey ypa0Jaam4zamaaBaaaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiab gwSixdGaayjkaiaawMcaaiabgUcaRiaadEgadaWgaaWcbaGaaGOmai aadMgaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGLPaaacqGHRaWk caaIYaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaGcdaqadaqaai abgwSixdGaayjkaiaawMcaaiabgkHiTiabeI8a5naaDaaaleaacaWG PbaabaGaaGOmaaaakiabgwSixpaalyaabaGaamOqamaabmaabaGaey yXICnacaGLOaGaayzkaaaabaWaaeWaaeaacqGHflY1cqGHRaWkcqaH ipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaaaaOGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaG4maiaac6cacaaI4aGaaiykaaaa@79CA@

where the argument in ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHflY1aiaawIcacaGLPaaaaaa@3AFF@ above is either σ ^ v AM .LL 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabYeacaqGmbaa baGaaGOmaaaakiaacYcaaaa@3F80@ σ ^ v AR .LL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOlaiaabYeacaqGmbaa baGaaGOmaaaaaaa@3ECB@ or σ ^ v AM .YL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabMfacaqGmbaa baGaaGOmaaaaaaa@3ED3@ under AM.LL, AR.LL and AM.YL variance estimation respectively, and under σ ^ v AR .YL 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOlaiaabMfacaqGmbaa baGaaGOmaaaakiaacQdaaaa@3FA0@

mse { θ ^ i ( σ ^ v AR .YL 2 ) } = g 1 i ( σ ^ v AR .YL 2 ) + g 2 i ( σ ^ v AR .YL 2 ) + 2 g 3 i ( σ ^ v AR .YL 2 ) . ( 3.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabgeacaqGsb GaaeOlaiaabMfacaqGmbaabaGaaGOmaaaaaOGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiabg2da9iaadEgadaWgaaWcbaGaaGymaiaadMgaae qaaOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeyqaiaa bkfacaqGUaGaaeywaiaabYeaaeaacaaIYaaaaaGccaGLOaGaayzkaa Gaey4kaSIaam4zamaaBaaaleaacaaIYaGaamyAaaqabaGcdaqadaqa aiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGbbGaaeOuaiaab6caca qGzbGaaeitaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaaI YaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaGcdaqadaqaaiqbeo 8aZzaajaWaa0baaSqaaiaadAhacaqGbbGaaeOuaiaab6cacaqGzbGa aeitaaqaaiaaikdaaaaakiaawIcacaGLPaaacaaMf8UaaGzbVlaayw W7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaiMdacaGGPaaaaa@7B4B@

Estimators (3.8) and (3.9) are unbiased up to the second order.

Remark 3.2. The sampling errors do not need to be normally distributed for the consistency and asymptotic normality of the LL and YL estimators (see, for example, Rubin-Bleuer et al. 2011).

3.3 Optimization algorithms

Given the data, the REML likelihood function may attain its maximum value at σ v 2 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGimaiaacYcaaaa@3D4D@ even when the true underlying value of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWG2baabaGaaGOmaaaaaaa@3A5F@ is positive. On the other hand, the LL and YL likelihoods always attain their maximum value at σ v 2 > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8NpaiaaicdacaGGUaaa aa@3D11@ Yet, the YL residual likelihood is very close to the REML likelihood. Empirical studies show that the scoring algorithm under AR.YL yields σ ^ v AR .YL 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGsbGaaeOlaiaabMfacaqGmbaa baGaaGOmaaaaaaa@3ED8@   in almost as large a percentage as under REML for data sets following a Fay-Herriot model with a small but non-zero true underlying variance. This happens when the scoring algorithm misses the positive maximum value of the AR.YL likelihood and outputs a zero value (see Appendix B for details). To avoid this problem, we use a grid method for optimization (Estevao 2014). In our study, we set the upper boundary of the search interval as 1,000 × σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeymaiaabY cacaqGWaGaaeimaiaabcdacqGHxdaTcqaHdpWCdaqhaaWcbaGaamOD aaqaaiaaikdaaaGccaGGSaaaaa@4120@ since we know σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ a priori. For applications with real data we suggest to obtain an initial estimate σ ^ v AM .LL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabYeacaqGmbaa baGaaGOmaaaaaaa@3EC6@ by the method of scoring and set 1,000 × σ ^ v AM .LL 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeymaiaabY cacaqGWaGaaeimaiaabcdacqGHxdaTcuaHdpWCgaqcamaaDaaaleaa caWG2bGaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaa aa@4459@ as the upper boundary. Then keep increasing the boundary until the variance estimate lies within the search interval.

Date modified: