Remarque concernant l’estimation par régression lorsque la taille de la population est inconnue 2. Estimateurs par régression

Sous des conditions générales de régularité (Isaki et Fuller 1982; Montanari 1987), une approximation de l’estimateur par régression (1.1) est

Y ˜ REG  =  Y ^ π + ( X X ^ π ) Τ B , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaabkfacaqGfbGaae4raaqabaGccaaI9aGabmywayaa jaWaaSbaaSqaaiabec8aWbqabaGccqGHRaWkdaqadaqaaiaahIfacq GHsislceWHybGbaKaadaWgaaWcbaGaeqiWdahabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyiPdqfaaOGaaCOqaiaaiYcacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaGG Paaaaa@5401@

B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqaaaa@37F7@ est la limite en probabilité de B ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja aaaa@3807@ lorsque la taille de l’échantillon et celle de la population tendent vers l’infini. Pour de grands échantillons, la variance de l’estimateur par régression (1.1) peut être étudiée avec (2.1). Notons que Y ˜ REG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaabkfacaqGfbGaae4raaqabaaaaa@3AAC@ est sans biais sous le plan de sondage p ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaam4CaaGaayjkaiaawMcaaaaa@3AA2@ et peut être réexprimé sous la forme :

Y ˜ REG = X Τ B + i s d i E i , ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaabkfacaqGfbGaae4raaqabaGccaaI9aGaaCiwamaa CaaaleqabaGaeyiPdqfaaOGaaCOqaiabgUcaRmaaqafabeWcbaGaam yAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8UaamizamaaBaaa leaacaWGPbaabeaakiaadweadaWgaaWcbaGaamyAaaqabaGccaaISa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6ca caaIYaGaaiykaaaa@56E5@

E i = y i x i Τ B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaai2dacaWG5bWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaeyiPdqfaaOGaaC Oqaiaac6caaaa@421A@

Une approximation de la variance par rapport au plan de Y ^ REG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabkfacaqGfbGaae4raaqabaaaaa@3AAD@ peut être donnée par

AV p ( Y ^ REG ) = i U j U Δ i j E i π i E j π j , ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabA fadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqadMfagaqcamaaBaaa leaacaqGsbGaaeyraiaabEeaaeqaaaGccaGLOaGaayzkaaGaaGypam aaqafabeWcbaGaamyAaiabgIGiolaadwfaaeqaniabggHiLdGcdaae qbqabSqaaiaadQgacqGHiiIZcaWGvbaabeqdcqGHris5aOGaaGPaVl abfs5aenaaBaaaleaacaWGPbGaamOAaaqabaGcdaWcaaqaaiaadwea daWgaaWcbaGaamyAaaqabaaakeaacqaHapaCdaWgaaWcbaGaamyAaa qabaaaaOWaaSaaaeaacaWGfbWaaSbaaSqaaiaadQgaaeqaaaGcbaGa eqiWda3aaSbaaSqaaiaadQgaaeqaaaaakiaaiYcacaaMf8UaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiodacaGGPaaa aa@6587@

Δ i j = π i j π i π j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMgacaWGQbaabeaakiaai2dacqaHapaCdaWgaaWcbaGa amyAaiaadQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqaaiaadMgaae qaaOGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaa@45E2@ et π i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGQbaabeaaaaa@3AF2@ est la probabilité d’inclusion du second ordre pour les unités i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@381A@ et j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiaac6 caaaa@38CD@ Notons que B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqaaaa@37F7@  peut être estimée selon l’approche assistée par modèle (Särndal, Swensson et Wretman 1992) et l’approche de la variance optimale (Montanari 1987). Les deux méthodes permettent d’obtenir des estimateurs approximativement sans biais. Dans le cas de l’approche assistée par modèle, les propriétés de base (biais et variance) sont valides même lorsque le modèle n’est pas spécifié correctement. Sous l’approche de la variance optimale, aucune hypothèse n’est formulée au sujet de la variable d’intérêt.

L’estimateur assisté par modèle de Särndal et coll. (1992) suppose un modèle de travail entre la variable d’intérêt ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG5baacaGLOaGaayzkaaaaaa@39B3@ et les variables auxiliaires ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WH4baacaGLOaGaayzkaaGaaiOlaaaa@3A68@ Le modèle de travail est désigné par m y i  =  x i Τ β + ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiaaiQ dacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaahIhadaqhaaWc baGaamyAaaqaaiabgs6aubaakiaahk7acqGHRaWkcqaH1oqzdaWgaa WcbaGaamyAaaqabaaaaa@4459@ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@386A@ est un vecteur de p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@3821@ paramètres inconnus, E m ( ε i | x i ) = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaakmaabmaabaWaaqGaaeaacqaH1oqzdaWgaaWc baGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiEamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaiaai2dacaaIWaGaaiilaaaa @4674@ V m ( ε i | x i ) = σ i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbaabeaakmaabmaabaWaaqGaaeaacqaH1oqzdaWgaaWc baGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiEamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaiaai2dacqaHdpWCdaqhaaWc baGaamyAaaqaaiaaikdaaaGccaGGSaaaaa@496F@ et Cov m ( ε i , ε j | x i , x j ) = 0, i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaae4qaiaab+ gacaqG2bWaaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaadaabcaqaaiab ew7aLnaaBaaaleaacaWGPbaabeaakiaaiYcacqaH1oqzdaWgaaWcba GaamOAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiEamaaBaaaleaa caWGPbaabeaakiaaiYcacaWH4bWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaGaaGypaiaaicdacaaISaGaamyAaiabgcMi5kaadQga caGGUaaaaa@5315@ Sous cette approche, B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqaaaa@37F7@ dans l’équation (2.1) est l’estimateur des moindres carrés ordinaires de β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@386A@ dans la population et est donné par

B GREG = ( i U c i x i x i Τ ) 1 ( i U c i x i y i ) , ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqamaaBa aaleaacaqGhbGaaeOuaiaabweacaqGhbaabeaakiaai2dadaqadaqa amaaqafabeWcbaGaamyAaiabgIGiolaadwfaaeqaniabggHiLdGcca aMc8Uaam4yamaaBaaaleaacaWGPbaabeaakiaahIhadaWgaaWcbaGa amyAaaqabaGccaWH4bWaa0baaSqaaiaadMgaaeaacqGHKoavaaaaki aawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqa amaaqafabeWcbaGaamyAaiabgIGiolaadwfaaeqaniabggHiLdGcca aMc8Uaam4yamaaBaaaleaacaWGPbaabeaakiaahIhadaWgaaWcbaGa amyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa ikdacaGGUaGaaGinaiaacMcaaaa@6951@

c i = σ i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbaabeaakiaai2dacqaHdpWCdaqhaaWcbaGaamyAaaqa aiabgkHiTiaaikdaaaGccaGGUaaaaa@3F42@ Cela donne l’estimateur suivant pour le total Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@380A@

Y ^ GREG = Y ^ π + ( X X ^ π ) Τ B ^ GREG , ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEeaaeqaaOGaaGypaiqa dMfagaqcamaaBaaaleaacqaHapaCaeqaaOGaey4kaSYaaeWaaeaaca WHybGaeyOeI0IabCiwayaajaWaaSbaaSqaaiabec8aWbqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiabgs6aubaakiqahkeagaqcamaaBa aaleaacaqGhbGaaeOuaiaabweacaqGhbaabeaakiaaiYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiwdaca GGPaaaaa@5847@

B ^ GREG = ( i s c i d i x i x i Τ ) 1 ( i s c i d i x i y i ) . ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEeaaeqaaOGaaGypamaa bmaabaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oakiaaykW7caWGJbWaaSbaaSqaaiaadMgaaeqaaOGaamizamaaBaaa leaacaWGPbaabeaakiaahIhadaWgaaWcbaGaamyAaaqabaGccaWH4b Waa0baaSqaaiaadMgaaeaacqGHKoavaaaakiaawIcacaGLPaaadaah aaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaamaaqafabeWcbaGaam yAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8Uaam4yamaaBaaa leaacaWGPbaabeaakiaadsgadaWgaaWcbaGaamyAaaqabaGccaWH4b WaaSbaaSqaaiaadMgaaeqaaOGaamyEamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaacIcacaaIYaGaaiOlaiaaiAdacaGGPaaaaa@6DBB@

L’estimateur optimal de Montanari (1987), obtenu en minimisant la variance par rapport au plan de

Y ˜ REG = Y ^ π + ( X X ^ π ) Τ B , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaabkfacaqGfbGaae4raaqabaGccaaI9aGabmywayaa jaWaaSbaaSqaaiabec8aWbqabaGccqGHRaWkdaqadaqaaiaahIfacq GHsislceWHybGbaKaadaWgaaWcbaGaeqiWdahabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyiPdqfaaOGaaCOqaiaaiYcaaaa@48B9@

est

Y ˜ OPT = Y ^ π + ( X X ^ π ) Τ B OPT , ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaab+eacaqGqbGaaeivaaqabaGccaaI9aGabmywayaa jaWaaSbaaSqaaiabec8aWbqabaGccqGHRaWkdaqadaqaaiaahIfacq GHsislceWHybGbaKaadaWgaaWcbaGaeqiWdahabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyiPdqfaaOGaaCOqamaaBaaaleaacaqGpb GaaeiuaiaabsfaaeqaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@56CE@

B OPT = { V ( X ^ π ) } 1 Cov ( X ^ π , Y ^ π ) = ( i U j U Δ i j x i π i x j Τ π j ) 1 ( i U j U Δ i j x i π i y j π j ) . ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaahkeadaWgaaWcbaGaae4taiaabcfacaqGubaabeaaaOqaaiaa i2dadaGadaqaaiaadAfadaqadaqaaiqahIfagaqcamaaBaaaleaacq aHapaCaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaae4qaiaab+gacaqG2bWaaeWaaeaace WHybGbaKaadaWgaaWcbaGaeqiWdahabeaakiaaiYcaceWGzbGbaKaa daWgaaWcbaGaeqiWdahabeaaaOGaayjkaiaawMcaaaqaaaqaaiaai2 dadaqadaqaamaaqafabeWcbaGaamyAaiabgIGiolaadwfaaeqaniab ggHiLdGcdaaeqbqabSqaaiaadQgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaaGPaVlabfs5aenaaBaaaleaacaWGPbGaamOAaaqabaGcdaWc aaqaaiaahIhadaWgaaWcbaGaamyAaaqabaaakeaacqaHapaCdaWgaa WcbaGaamyAaaqabaaaaOWaaSaaaeaacaWH4bWaa0baaSqaaiaadQga aeaacqGHKoavaaaakeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWa aeaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aO WaaabuaeqaleaacaWGQbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaa ykW7cqqHuoardaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaaca WH4bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaa dMgaaeqaaaaakmaalaaabaGaamyEamaaBaaaleaacaWGQbaabeaaaO qaaiabec8aWnaaBaaaleaacaWGQbaabeaaaaaakiaawIcacaGLPaaa caaIUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaik dacaGGUaGaaGioaiaacMcaaaa@971D@

L’estimateur optimal pour le total Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@380A@ est estimé par

Y ^ OPT = Y ^ π + ( X X ^ π ) Τ B ^ OPT , ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaab+eacaqGqbGaaeivaaqabaGccaaI9aGabmywayaa jaWaaSbaaSqaaiabec8aWbqabaGccqGHRaWkdaqadaqaaiaahIfacq GHsislceWHybGbaKaadaWgaaWcbaGaeqiWdahabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyiPdqfaaOGabCOqayaajaWaaSbaaSqaai aab+eacaqGqbGaaeivaaqabaGccaaISaGaaGzbVlaaywW7caaMf8Ua aGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaI5aGaaiykaaaa@56E1@

B ^ OPT = ( i s j s Δ i j π i j x i π i x j Τ π j ) 1 ( i s j s Δ i j π i j x i π i y j π j ) . ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaaiaab+eacaqGqbGaaeivaaqabaGccaaI9aWaaeWaaeaa daaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaa buaeqaleaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaalaaa baGaeuiLdq0aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabec8aWn aaBaaaleaacaWGPbGaamOAaaqabaaaaOWaaSaaaeaacaWH4bWaaSba aSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMgaaeqaaa aakmaalaaabaGaaCiEamaaDaaaleaacaWGQbaabaGaeyiPdqfaaaGc baGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaabuaeqaleaa caWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaaqafabeWcbaGaam OAaiabgIGiolaadohaaeqaniabggHiLdGcdaWcaaqaaiabfs5aenaa BaaaleaacaWGPbGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGaam yAaiaadQgaaeqaaaaakmaalaaabaGaaCiEamaaBaaaleaacaWGPbaa beaaaOqaaiabec8aWnaaBaaaleaacaWGPbaabeaaaaGcdaWcaaqaai aadMhadaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGa amOAaaqabaaaaaGccaGLOaGaayzkaaGaaGOlaiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaicdacaGG Paaaaa@881F@

Il est à noter que, pour que nous puissions calculer les vecteurs de régression, la première composante qui les définit doit être inversible. Nous pouvons nous assurer qu’elle l’est en réduisant le nombre de variables auxiliaires qui entrent dans la régression si l’efficience de l’estimateur par régression qui en découle n’en souffre pas trop. Par contre, si la perte d’efficience est importante, nous pouvons inverser ces matrices singulières en utilisant des inverses généralisés.

Comme il est mentionné dans l’introduction, les totaux de population ne sont pas nécessairement connus pour toutes les composantes du vecteur auxiliaire x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEaiaac6 caaaa@38DF@ La régression utilise normalement les variables auxiliaires pour lesquelles un total de population correspondant est connu. En décomposant x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbaabeaaaaa@3947@ en ( 1, x i * Τ ) Τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaGilaiaahIhadaqhaaWcbaGaamyAaaqaaiaaiQcacqGHKoav aaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgs6aubaaaaa@403B@ x i * = ( x 2i ,, x pi ) Τ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaDa aaleaacaWGPbaabaGaaiOkaaaakiaai2dadaqadaqaaiaadIhadaWg aaWcbaGaaGOmaiaadMgaaeqaaOGaaGilaiablAciljaaiYcacaWG4b WaaSbaaSqaaiaadchacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyiPdqfaaOGaaiilaaaa@473F@ Singh et Raghunath (2011) ont proposé un estimateur semblable au GREG qui suppose une régression fondée sur une ordonnée à l’origine et la variable x * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaaGOkaaaakiaacYcaaaa@39C8@ même si seul le total de population de x * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaaGOkaaaaaaa@390E@ est connu.

Si N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@37FF@ est inconnu et que le total de population de x * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaaGOkaaaaaaa@390E@ est connu, leur estimateur est

Y ^ SREG = Y ^ π + ( X * X ^ π * ) Τ B ^ 2 , GREG , ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaOGaaGypaiqa dMfagaqcamaaBaaaleaacqaHapaCaeqaaOGaey4kaSYaaeWaaeaaca WHybWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IabCiwayaajaWaa0ba aSqaaiabec8aWbqaaiaaiQcaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgs6aubaakiqahkeagaqcamaaBaaaleaacaaIYaGaaiilaiaa bEeacaqGsbGaaeyraiaabEeaaeqaaOGaaGilaiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaigdacaGG Paaaaa@5C16@

X * = i U x i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiwamaaCa aaleqabaGaaGOkaaaakiaai2dadaaeqaqabSqaaiaadMgacqGHiiIZ caWGvbaabeqdcqGHris5aOGaaGPaVlaahIhadaqhaaWcbaGaamyAaa qaaiaaiQcaaaaaaa@4354@ et X ^ π * = i s d i x i * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCiwayaaja Waa0baaSqaaiabec8aWbqaaiaaiQcaaaGccaaI9aWaaabeaeqaleaa caWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWGKbWaaS baaSqaaiaadMgaaeqaaOGaaCiEamaaDaaaleaacaWGPbaabaGaaGOk aaaakiaac6caaaa@4808@ Le vecteur de régression des coefficients estimés B ^ 2 , GREG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaaiaaikdacaGGSaGaae4raiaabkfacaqGfbGaae4raaqa baaaaa@3CD0@ est obtenu à partir de B ^ GREG = ( B ^ 1 , G R E G , B ^ 2 , GREG Τ ) Τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEeaaeqaaOGaaGypamaa bmaabaGabmOqayaajaWaaSbaaSqaaiaaigdacaGGSaGaai4raiaack facaGGfbGaai4raaqabaGccaaISaGabCOqayaajaWaa0baaSqaaiaa ikdacaGGSaGaae4raiaabkfacaqGfbGaae4raaqaaiabgs6aubaaaO GaayjkaiaawMcaamaaCaaaleqabaGaeyiPdqfaaaaa@4D0A@ donné par (2.6). La variance approximative par rapport au plan de Y ^ SREG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaaaa@3B83@ prend la même forme que l’équation (2.3), où E i = y i x i * Τ B 2 , GREG , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaai2dacaWG5bWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaaGOkaiabgs6aub aakiaahkeadaWgaaWcbaGaaGOmaiaacYcacaqGhbGaaeOuaiaabwea caqGhbaabeaakiaacYcaaaa@479F@ et

B 2, GREG = { i U c i ( x i * X ¯ N * ) ( x i * X ¯ N * ) Τ } 1 i U c i ( x i * X ¯ N * ) y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqamaaBa aaleaacaaIYaGaaGilaiaabEeacaqGsbGaaeyraiaabEeaaeqaaOGa aGypamaacmaabaWaaabuaeqaleaacaWGPbGaeyicI4Saamyvaaqab0 GaeyyeIuoakiaaykW7caWGJbWaaSbaaSqaaiaadMgaaeqaaOWaaeWa aeaacaWH4bWaa0baaSqaaiaadMgaaeaacaaIQaaaaOGaeyOeI0IabC iwayaaraWaa0baaSqaaiaad6eaaeaacaaIQaaaaaGccaGLOaGaayzk aaWaaeWaaeaacaWH4bWaa0baaSqaaiaadMgaaeaacaaIQaaaaOGaey OeI0IabCiwayaaraWaa0baaSqaaiaad6eaaeaacaaIQaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacqGHKoavaaaakiaawUhacaGL9baada ahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqabSqaaiaadMgacqGH iiIZcaWGvbaabeqdcqGHris5aOGaaGPaVlaadogadaWgaaWcbaGaam yAaaqabaGcdaqadaqaaiaahIhadaqhaaWcbaGaamyAaaqaaiaaiQca aaGccqGHsislceWHybGbaebadaqhaaWcbaGaamOtaaqaaiaaiQcaaa aakiaawIcacaGLPaaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaaa@6FB3@

et X ¯ N * = i U x i * / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCiwayaara Waa0baaSqaaiaad6eaaeaacaaIQaaaaOGaaGypamaalyaabaWaaabe aeqaleaacaWGPbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaaykW7ca WH4bWaa0baaSqaaiaadMgaaeaacaaIQaaaaaGcbaGaamOtaaaacaGG Uaaaaa@45E4@

Nous pouvons obtenir les propriétés de (2.11) en notant que

Y ^ SREG Y = Y ^ π Y + ( X * X ^ π * ) Τ B ^ 2 , GREG = Y ^ π Y + ( X * X ^ π * ) Τ B 2 , GREG + ( X * X ^ π * ) Τ ( B ^ 2 , GREG B 2 , GREG ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiqadMfagaqcamaaBaaaleaacaqGtbGaaeOuaiaabweacaqGhbaa keqaaiabgkHiTiaadMfaaeaacaaI9aGabmywayaajaWaaSbaaSqaai abec8aWbqabaGccqGHsislcaWGzbGaey4kaSYaaeWaaeaacaWHybWa aWbaaSqabeaacaaIQaaaaOGaeyOeI0IabCiwayaajaWaa0baaSqaai abec8aWbqaaiaaiQcaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gs6aubaakiqahkeagaqcamaaBaaaleaacaaIYaGaaiilaiaabEeaca qGsbGaaeyraiaabEeaaOqabaaabaaabaGaaGypaiqadMfagaqcamaa BaaaleaacqaHapaCaeqaaOGaeyOeI0IaamywaiabgUcaRmaabmaaba GaaCiwamaaCaaaleqabaGaaGOkaaaakiabgkHiTiqahIfagaqcamaa DaaaleaacqaHapaCaeaacaaIQaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacqGHKoavaaGccaWHcbWaaSbaaSqaaiaaikdacaGGSaGaae4r aiaabkfacaqGfbGaae4raaqabaGccqGHRaWkdaqadaqaaiaahIfada ahaaWcbeqaaiaaiQcaaaGccqGHsislceWHybGbaKaadaqhaaWcbaGa eqiWdahabaGaaGOkaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey iPdqfaaOWaaeWaaeaaceWHcbGbaKaadaWgaaWcbaGaaGOmaiaacYca caqGhbGaaeOuaiaabweacaqGhbaakeqaaiabgkHiTiaahkeadaWgaa WcbaGaaGOmaiaacYcacaqGhbGaaeOuaiaabweacaqGhbaabeaaaOGa ayjkaiaawMcaaiaai6caaaaaaa@8183@

Étant donné que B ^ 2, GREG B 2, GREG = O p ( n 1 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaaiaaikdacaaISaGaae4raiaabkfacaqGfbGaae4raaqa baGccqGHsislcaWHcbWaaSbaaSqaaiaaikdacaaISaGaae4raiaabk facaqGfbGaae4raaqabaGccaaI9aGaam4tamaaBaaaleaacaWGWbaa beaakmaabmaabaGaamOBamaaCaaaleqabaGaeyOeI0YaaSGbaeaaca aIXaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4B64@ sous certaines conditions de régularité examinées dans Fuller (2009, chapitre 2), le dernier terme est d’ordre plus faible. Ainsi, en ignorant les termes d’ordre plus faible, nous obtenons l’approximation

Y ^ SREG Y i s d i E i i U E i , ( 2.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaOGaeyOeI0Ia amywaiabgwKianaaqafabeWcbaGaamyAaiabgIGiolaadohaaeqani abggHiLdGccaaMc8UaamizamaaBaaaleaacaWGPbaabeaakiaadwea daWgaaWcbaGaamyAaaqabaGccqGHsisldaaeqbqabSqaaiaadMgacq GHiiIZcaWGvbaabeqdcqGHris5aOGaaGPaVlaadweadaWgaaWcbaGa amyAaaqabaGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGOmaiaac6cacaaIXaGaaGOmaiaacMcaaaa@6042@

E i = y i x i * Τ B 2, GREG . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaai2dacaWG5bWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaaGOkaiabgs6aub aakiaahkeadaWgaaWcbaGaaGOmaiaaiYcacaqGhbGaaeOuaiaabwea caqGhbaabeaakiaac6caaaa@47A7@ Par conséquent, Y ^ SREG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaaaa@3B83@ est approximativement sans biais sous le plan. Nous pouvons calculer la variance asymptotique en utilisant

V { i s d i E i i U E i } = E { ( i s d i E i i U E i ) 2 } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaacm aabaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa kiaaykW7caWGKbWaaSbaaSqaaiaadMgaaeqaaOGaamyramaaBaaale aacaWGPbaabeaakiabgkHiTmaaqafabeWcbaGaamyAaiabgIGiolaa dwfaaeqaniabggHiLdGccaaMc8UaamyramaaBaaaleaacaWGPbaabe aaaOGaay5Eaiaaw2haaiaai2dacaWGfbWaaiWaaeaadaqadaqaamaa qafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8 UaamizamaaBaaaleaacaWGPbaabeaakiaadweadaWgaaWcbaGaamyA aaqabaGccqGHsisldaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbaabe qdcqGHris5aOGaaGPaVlaadweadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baaca aIUaaaaa@6B29@

Comme nous pouvons le voir, la variance asymptotique peut être assez importante à moins que i U E i = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaaykW7caWGfbWa aSbaaSqaaiaadMgaaeqaaOGaaGypaiaaicdacaGGUaaaaa@4212@

Remarque 2.1 Si y i = a + b x i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaWGHbGaey4kaSIaamOyaiaadIha daWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@3F95@  nous avons Y ^ SREG Y = ( N ^ π N ) a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaOGaeyOeI0Ia amywaiaai2dadaqadaqaaiqad6eagaqcamaaBaaaleaacqaHapaCae qaaOGaeyOeI0IaamOtaaGaayjkaiaawMcaaiaadggacaGGSaaaaa@45D4@  ce qui implique que V ( Y ^ SREG ) = a 2 V ( N ^ π ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEea aeqaaaGccaGLOaGaayzkaaGaaGypaiaadggadaahaaWcbeqaaiaaik daaaGccaWGwbWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGaeqiWdaha beaaaOGaayjkaiaawMcaaiaac6caaaa@467D@  Cela signifie que si V ( N ^ π ) > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmOtayaajaWaaSbaaSqaaiabec8aWbqabaaakiaawIcacaGL PaaacaaI+aGaaGimaiaacYcaaaa@3E98@  nous pouvons accroître artificiellement a 2 V ( N ^ π ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGOmaaaakiaadAfadaqadaqaaiqad6eagaqcamaaBaaa leaacqaHapaCaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@3EEF@  la variance de Y ^ SREG , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaOGaaiilaaaa @3C3D@  en choisissant des valeurs élevées de a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6 caaaa@38C4@

Il est à noter que l’estimateur par régression optimal obtenu en utilisant x * = ( x 2 , , x p ) Τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaaGOkaaaakiaai2dadaqadaqaaiaadIhadaWgaaWcbaGa aGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaam iCaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgs6aubaaaaa@43C1@ est lui aussi approximativement sans biais sous le plan, car

Y ^ OPT * Y = Y ^ π Y + ( X * X ^ π * ) Τ B ^ OPT * = Y ^ π Y + ( X * X ^ π * ) Τ B OPT * + ( X * X ^ π * ) Τ ( B ^ OPT * B OPT * ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiqadMfagaqcamaaDaaaleaacaqGpbGaaeiuaiaabsfaaeaacaGG QaaaaOGaeyOeI0Iaamywaaqaaiaai2daceWGzbGbaKaadaWgaaWcba GaeqiWdahabeaakiabgkHiTiaadMfacqGHRaWkdaqadaqaaiaahIfa daahaaWcbeqaaiaaiQcaaaGccqGHsislceWHybGbaKaadaqhaaWcba GaeqiWdahabaGaaGOkaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eyiPdqfaaOGabCOqayaajaWaa0baaSqaaiaab+eacaqGqbGaaeivaa qaaiaacQcaaaaakeaaaeaacaaI9aGabmywayaajaWaaSbaaSqaaiab ec8aWbqabaGccqGHsislcaWGzbGaey4kaSYaaeWaaeaacaWHybWaaW baaSqabeaacaaIQaaaaOGaeyOeI0IabCiwayaajaWaa0baaSqaaiab ec8aWbqaaiaaiQcaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgs 6aubaakiaahkeadaqhaaWcbaGaae4taiaabcfacaqGubaabaGaaiOk aaaakiabgUcaRmaabmaabaGaaCiwamaaCaaaleqabaGaaGOkaaaaki abgkHiTiqahIfagaqcamaaDaaaleaacqaHapaCaeaacaaIQaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacqGHKoavaaGcdaqadaqaaiqahk eagaqcamaaDaaaleaacaqGpbGaaeiuaiaabsfaaeaacaGGQaaaaOGa eyOeI0IaaCOqamaaDaaaleaacaqGpbGaaeiuaiaabsfaaeaacaGGQa aaaaGccaGLOaGaayzkaaGaaGilaaaaaaa@7BA7@

B OPT * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOqamaaDa aaleaacaqGpbGaaeiuaiaabsfaaeaacaGGQaaaaaaa@3B4E@ est obtenu en remplaçant x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbaabeaaaaa@3947@ par x i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiEamaaDa aaleaacaWGPbaabaGaaGOkaaaaaaa@39FC@ dans l’équation (2.8). Étant donné que B ^ OPT * B OPT * = O p ( n 1 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja Waa0baaSqaaiaab+eacaqGqbGaaeivaaqaaiaaiQcaaaGccqGHsisl caWHcbWaa0baaSqaaiaab+eacaqGqbGaaeivaaqaaiaaiQcaaaGcca aI9aGaam4tamaaBaaaleaacaWGWbaabeaakmaabmaabaGaamOBamaa CaaaleqabaGaeyOeI0YaaSGbaeaacaaIXaaabaGaaGOmaaaaaaaaki aawIcacaGLPaaaaaa@4880@ sous certaines conditions de régularité examinées dans Fuller (2009, chapitre 2), en ignorant les termes d’ordre plus faible, nous obtenons

Y ^ OPT * Y Y ^ π Y + ( X * X ^ π * ) Τ B OPT * . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaab+eacaqGqbGaaeivaaqaaiaacQcaaaGccqGHsisl caWGzbGaeyyrIaKabmywayaajaWaaSbaaSqaaiabec8aWbqabaGccq GHsislcaWGzbGaey4kaSYaaeWaaeaacaWHybWaaWbaaSqabeaacaaI QaaaaOGaeyOeI0IabCiwayaajaWaa0baaSqaaiabec8aWbqaaiaaiQ caaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgs6aubaakiaahkea daqhaaWcbaGaae4taiaabcfacaqGubaabaGaaiOkaaaakiaai6caaa a@5283@

La variance asymptotique de Y ^ OPT * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaab+eacaqGqbGaaeivaaqaaiaacQcaaaaaaa@3B71@ est plus faible que celle de Y ^ SREG , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGsbGaaeyraiaabEeaaeqaaOGaaiilaaaa @3C3D@ car l’estimateur optimal minimise la variance asymptotique dans la classe d’estimateurs de la forme

Y ^ B = Y ^ π + ( X * X ^ π * ) Τ B ^ ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaadkeaaeqaaOGaaGypaiqadMfagaqcamaaBaaaleaa cqaHapaCaeqaaOGaey4kaSYaaeWaaeaacaWHybWaaWbaaSqabeaaca aIQaaaaOGaeyOeI0IabCiwayaajaWaa0baaSqaaiabec8aWbqaaiaa iQcaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgs6aubaakiqahk eagaqcaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikda caGGUaGaaGymaiaaiodacaGGPaaaaa@5419@

indexée par B ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOqayaaja GaaiOlaaaa@38B9@

Date de modification :