Statistical inference based on judgment post-stratified samples in finite population Section 4. Empirical results

In this section, we look at the finite sample properties of the estimators in a small scale simulation study under wide ranges of simulation parameters. Data sets are generated from discrete normal and discrete shifted exponential populations for given population size N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaac6 caaaa@3546@ The discrete populations are constructed from the quantile function

x i = F 1 ( i N + 1 ) ; i = 1, , N , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiaai2dacaWGgbWaaWbaaSqabeaacqGHsisl caaIXaaaaOWaaeWaaeaadaWcaaqaaiaadMgaaeaacaWGobGaey4kaS IaaGymaaaaaiaawIcacaGLPaaacaaI7aGaaGzbVlaadMgacaaI9aGa aGymaiaaiYcacqWIMaYscaaISaGaamOtaiaaiYcacaaMf8UaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaigdacaGGPaaa aa@526D@

where F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@348C@ is either normal or exponential cumulative distribution functions (CDF). For discrete normal population, we used location parameter 10 and scale parameter 4. For shifted discrete exponential population, we use the CDF of standard exponential distribution to generate x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@35D8@ in equation (4.1) and then shift each x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@35D8@ by adding 10. The population size is taken to be N = 150. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaaIXaGaaGynaiaaicdacaGGUaaaaa@3841@

We used sample ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGUbaacaGLOaGaayzkaaaaaa@363D@ and set size ( H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibaacaGLOaGaayzkaaaaaa@3617@ to have integer values for n / H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGUbaabaGaamisaaaaaaa@3597@ so that a balanced ranked set sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@34B4@ can be created. Sample and set size combinations ( n , H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGUbGaaGilaiaadIeaaiaawIcacaGLPaaaaaa@37C0@ are ( 10, 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaGimaiaaiYcacaaMe8UaaGOmaaGaayjkaiaawMcaaiaacYca aaa@3A6E@ ( 15, 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaGynaiaaiYcacaaMe8UaaG4maaGaayjkaiaawMcaaiaacYca aaa@3A74@ ( 20, 4 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIYaGaaGimaiaaiYcacaaMe8UaaGinaaGaayjkaiaawMcaaiaacYca aaa@3A71@ ( 25, 5 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIYaGaaGynaiaaiYcacaaMe8UaaGynaaGaayjkaiaawMcaaiaac6ca aaa@3A79@ To control the quality of ranking information we used auxiliary variable Y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaacY caaaa@354F@ where ρ = cor ( X , Y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaabogacaqGVbGaaeOCamaabmaabaGaamiwaiaaiYcacaWGzbaa caGLOaGaayzkaaaaaa@3D0F@ with ρ = 1, 0.75. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaaigdacaaISaGaaGjbVlaaicdacaaIUaGaaG4naiaaiwdacaGG Uaaaaa@3CEA@ The value of ρ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaaigdaaaa@3703@ yields perfect ranking and the value of ρ = 0.75 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaaicdacaaIUaGaaG4naiaaiwdaaaa@393A@ creates errors in ranking. Simulation size is taken to be 3,000. Rao-Blackwellized estimators are computed from Algorithm 1 with B = 50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaaI1aGaaGimaaaa@36C8@ and bootstrap replication size 200.

The first part of the simulation investigates the efficiencies of the estimators and coverage probability of the confidence intervals of the population mean. All estimators are compared with design-2 Rao-Blackwellized estimators ( μ ˜ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aH8oqBgaacamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaa c6caaaa@38B3@ Let D ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaCiwaaGaayjkaiaawMcaaaaa@36F4@ be any one of the estimators introduced in Section 2 and 3. The relative efficiency of D ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@36CB@ with respect to μ ˜ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaG aadaWgaaWcbaGaaGOmaaqabaaaaa@366E@ is given by

R ( D ) = M S E ( D ) M S E ( μ ˜ 2 ) , ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamiraaGaayjkaiaawMcaaiaai2dadaWcaaqaaiaad2eacaWG tbGaamyramaabmaabaGaamiraaGaayjkaiaawMcaaaqaaiaad2eaca WGtbGaamyramaabmaabaGafqiVd0MbaGaadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaaGaaGilaiaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaiikaiaaisdacaGGUaGaaGOmaiaacMcaaaa@4F3B@

where M S E ( D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaado facaWGfbWaaeWaaeaacaWGebaacaGLOaGaayzkaaaaaa@3887@ is the estimated mean square error of estimator D . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaac6 caaaa@353C@ In equation (4.2), the value R ( D ) > 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamiraaGaayjkaiaawMcaaiaai6dacaaIXaaaaa@386D@ indicates that the estimator μ ˜ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaG aadaWgaaWcbaGaaGOmaaqabaaaaa@366E@ is more efficient than the estimator D . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaac6 caaaa@353C@

We consider two types of confidence intervals for the population mean. Percentile confidence interval based on bootstrap distribution is given in Section 3. The coverage probabilities of these intervals will be labeled with C a ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@39E4@ for design-0 and C a ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@39E6@ for design-2. A second type of an approximate confidence interval can be constructed from standard theory. Note that we have unbiased estimators, σ ^ r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3771@ for the variances of μ ^ r ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaWgaaWcbaGaamOCaaqabaGccaGG7aaaaa@3773@ r = 0, 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaaIWaGaaGilaiaaysW7caaIYaGaaiOlaaaa@39EA@ A 100 ( 1 γ ) % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dacaaIWaWaaeWaaeaacaaIXaGaeyOeI0Iaeq4SdCgacaGLOaGaayzk aaGaaGyjaaaa@3B77@ confidence interval for μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@3577@ is then given by

μ ^ r ± t n 1,1 γ / 2 σ ^ r ; r = 0, 2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaWgaaWcbaGaamOCaaqabaGccqGHXcqScaWG0bWaaSbaaSqaaiaa d6gacqGHsislcaaIXaGaaGilaiaaigdacqGHsisldaWcgaqaaiabeo 7aNbqaaiaaikdaaaaabeaakiqbeo8aZzaajaWaaSbaaSqaaiaadkha aeqaaOGaaG4oaiaaysW7caaMe8UaamOCaiaai2dacaaIWaGaaGilai aaysW7caaIYaGaaGilaaaa@4E4E@

where t n 1,1 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbGaeyOeI0IaaGymaiaaiYcacaaIXaGaeyOeI0Iaamyy aaqabaaaaa@3AC5@ is the a th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@36B6@ upper quantile of the t-distribution with n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@365C@ degrees of freedom. The coverage probabilities of these confidence intervals will be labeled as C b ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@39E6@ for design-0 and C b ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@39E8@ for design-2. Ahn, Lim and Wang (2014) suggested using n H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaadIeaaaa@366E@ degrees of freedom for the t- MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaGqaai aa=1kaaaa@35F1@ approximation. This selection may also work in JPS sampling in finite population setting with some increased variation due to unbalanced nature of a JPS sample. This line of work, on the other hand, is not persuaded in this paper because of the space limitation.

Table 4.1 presents the relative efficiencies of the estimators and the coverage probabilities of the confidence intervals for discrete normal populations. It is clear that Rao-Blackwellized design-2 estimator ( μ ˜ r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aH8oqBgaacamaaBaaaleaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa @383C@ outperforms all the other estimators including RSS estimators. In general RSS estimators are more efficient than JPS estimators due to random judgment class sample size vector M . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaiaac6 caaaa@3549@ This can be seen in Table 4.1 by looking at the ratio

R ( μ ^ r ) R ( μ r * ) = M S E ( μ ^ r ) M S E ( μ r * ) , r = 0, 2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGsbWaaeWaaeaacuaH8oqBgaqcamaaBaaaleaacaWGYbaabeaaaOGa ayjkaiaawMcaaaqaaiaadkfadaqadaqaaiabeY7aTnaaDaaaleaaca WGYbaabaGaaGOkaaaaaOGaayjkaiaawMcaaaaacaaI9aWaaSaaaeaa caWGnbGaam4uaiaadweadaqadaqaaiqbeY7aTzaajaWaaSbaaSqaai aadkhaaeqaaaGccaGLOaGaayzkaaaabaGaamytaiaadofacaWGfbWa aeWaaeaacqaH8oqBdaqhaaWcbaGaamOCaaqaaiaaiQcaaaaakiaawI cacaGLPaaaaaGaaGilaiaaysW7caaMc8UaamOCaiaai2dacaaIWaGa aGilaiaaysW7caaIYaGaaGOlaaaa@5874@

For r = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaaIWaGaaiilaaaa@36E9@ ρ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaaigdaaaa@3703@ and sample-set size combinations ( n , H ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGUbGaaGilaiaadIeaaiaawIcacaGLPaaacaGGSaaaaa@3870@ ( 10, 2 ) , ( 15, 3 ) , ( 20, 4 ) , ( 25, 5 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaGimaiaaiYcacaaMe8UaaGOmaaGaayjkaiaawMcaaiaaiYca daqadaqaaiaaigdacaaI1aGaaGilaiaaysW7caaIZaaacaGLOaGaay zkaaGaaGilamaabmaabaGaaGOmaiaaicdacaaISaGaaGjbVlaaisda aiaawIcacaGLPaaacaaISaWaaeWaaeaacaaIYaGaaGynaiaaiYcaca aMe8UaaGynaaGaayjkaiaawMcaaiaacYcaaaa@4E99@ these ratios are 1.267 ( 1.698 / 1.340 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaIYaGaaGOnaiaaiEdadaqadaqaamaalyaabaGaaGymaiaai6ca caaI2aGaaGyoaiaaiIdaaeaacaaIXaGaaGOlaiaaiodacaaI0aGaaG imaaaaaiaawIcacaGLPaaacaGGSaaaaa@4120@ 1.491 ( 2.117 / 1.419 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaI0aGaaGyoaiaaigdadaqadaqaamaalyaabaGaaGOmaiaai6ca caaIXaGaaGymaiaaiEdaaeaacaaIXaGaaGOlaiaaisdacaaIXaGaaG yoaaaaaiaawIcacaGLPaaacaGGSaaaaa@4119@ 1.815 ( 2.985 / 1.644 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaI4aGaaGymaiaaiwdadaqadaqaamaalyaabaGaaGOmaiaai6ca caaI5aGaaGioaiaaiwdaaeaacaaIXaGaaGOlaiaaiAdacaaI0aGaaG inaaaaaiaawIcacaGLPaaacaGGSaaaaa@4126@ 2.391 ( 3.479 / 1.455 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 cacaaIZaGaaGyoaiaaigdadaqadaqaamaalyaabaGaaG4maiaai6ca caaI0aGaaG4naiaaiMdaaeaacaaIXaGaaGOlaiaaisdacaaI1aGaaG ynaaaaaiaawIcacaGLPaaacaGGSaaaaa@4125@ respectively. It is obvious that ranked set sample estimator μ 0 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0 baaSqaaiaaicdaaeaacaaIQaaaaaaa@3712@ is more efficient that JPS estimator μ ^ 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaWgaaWcbaGaaGimaaqabaGccaGGUaaaaa@3729@ This can be explained from the fact that RSS sample uses a constant (nonrandom) sample size vector m = ( n 1 , , n H ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyBaiaai2 dadaqadaqaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOj GSKaaGilaiaad6gadaWgaaWcbaGaamisaaqabaaakiaawIcacaGLPa aacaGGUaaaaa@3E21@ Hence there is not extra variation due to randomness of M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaaaa@3497@ in JPS sample and this yields smaller variance for the estimator.

Table 4.1 (entries in columns R ( μ 0 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaIQaaaaaGccaGLOaGa ayzkaaaaaa@397C@ and R ( μ 2 * ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaaca WGsbWaaeWaaeaacqaH8oqBdaqhaaWcbaGaaGOmaaqaaiaaiQcaaaaa kiaawIcacaGLPaaaaiaawMcaaaaa@3A46@ indicates that Rao-Blackwellized JPS estimators are better than RSS estimators. In this case, there is a clear difference between Rao-Blackwellized JPS estimators and RSS sample estimators. In RSS sample, even though m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyBaaaa@34B7@ is constant, ranking information (or rank R i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaaaaa@35B2@ that belongs to each X i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaaca WGybWaaSbaaSqaaiaadMgaaeqaaaGccaGLPaaaaaa@368A@ is obtained from a particular construction of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@34B4@ sets, each of size H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaac6 caaaa@3540@ On the other hand, Rao-Blackwellized JPS estimators consider all possible constructions of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@34B4@ sets, each of size H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaac6 caaaa@3540@ Hence, the content of ranking information is richer in a Rao-Blackwellized JPS sample than the content of ranking information of an RSS sample. This increased ranking information makes Rao-Blackwellized estimators superior to RSS estimators.

Table 4.1 also presents coverage probabilities of the confidence intervals. The coverage probabilities of bootstrap percentile confidence intervals are slightly lower than the nominal value 0.95. The coverage probabilities of the confidence intervals based on t- MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaGqaai aa=1kaaaa@35F1@ distribution are reasonably close to nominal coverage probability 0.95.

Table 4.1
Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. Data sets are generated from discrete normal population with mean μ = 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaIWaaaaa@37AD@ and scale σ = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaisdaaaa@3703@
Table summary
This table displays the results of Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. Data sets are generated from discrete normal population with mean μ = 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaIWaaaaa@37AD@ and scale σ = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaisdaaaa@3703@ . The information is grouped by XXXXX (appearing as row headers), XXXXX, Relative Efficiencies, and Coverage probabilities (appearing as column headers).
n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@36E0@ H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisaaaa@36BA@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyWdihaaa@37AD@ Relative Efficiencies, R ( X ¯ 0 ) = Var ( X ¯ 0 ) / Var ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk aaGaaGypamaalyaabaGaaeOvaiaabggacaqGYbWaaeWaaeaaceWGyb GbaebadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaeaacaqG wbGaaeyyaiaabkhadaqadaqaaiqbeY7aTzaaiaWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaaaaaa@4821@ Coverage probabilities
R ( X ¯ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk aaaaaa@3A32@ R ( X ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaaaaa@3A34@ R ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaKaadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL Paaaaaa@3B03@ R ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaKaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL Paaaaaa@3B05@ R ( μ 0 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaIQaaaaaGccaGLOaGa ayzkaaaaaa@3BA8@ R ( μ 2 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGaeqiVd02aa0baaSqaaiaaikdaaeaacaaIQaaaaaGccaGLOaGa ayzkaaaaaa@3BAA@ R ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaGaadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL Paaaaaa@3B02@ C a ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C10@ C a ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C12@ C b ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C12@ C b ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C14@
10 2 1.00 2.182 2.050 1.698 1.571 1.340 1.470 1.147 0.880 0.885 0.943 0.947
15 3 1.00 3.393 3.074 2.117 1.809 1.419 1.732 1.049 0.902 0.896 0.940 0.929
20 4 1.00 5.739 5.008 2.985 2.277 1.644 2.363 1.238 0.907 0.916 0.944 0.924
25 5 1.00 7.791 6.536 3.479 2.262 1.455 2.689 1.283 0.908 0.924 0.937 0.903
10 2 0.75 2.322 2.057 2.236 1.941 1.945 1.761 1.137 0.886 0.890 0.942 0.941
15 3 0.75 3.726 3.282 3.338 2.829 2.641 2.351 1.129 0.901 0.908 0.946 0.937
20 4 0.75 5.383 4.562 4.458 3.922 3.451 2.881 1.139 0.910 0.903 0.946 0.930
25 5 0.75 7.339 6.413 6.054 4.805 4.493 3.527 1.197 0.905 0.904 0.944 0.924

Table 4.2 provides variance estimates of the mean estimators from simulation and the estimators in equations (2.5), (2.6), (2.8), and (3.2) in Sections 2 and 3. We already proved that the estimators σ ^ μ ^ r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaamOCaaqabaaaleaa caaIYaaaaOGaaiilaaaa@3A2C@ r = 0, 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaaIWaGaaGilaiaaysW7caaIYaGaaiilaaaa@39E8@ are unbiased. Entries for these variance estimators are very close to the corresponding values based on simulated variance estimates. The truncated variance estimator is almost identical to the un-truncated unbiased estimator. This shows that negative values happen rarely and there is not much difference between the truncated and un-truncated variance estimators. The bootstrap variance estimates of Rao-Blackwellized estimators are also very close to simulated variance estimates. Patterns similar to the ones we observed in Tables 4.1 and 4.2 also hold in Tables 4.3 and 4.4 for shifted exponential population.

Table 4.2
Variance estimate of the estimators. Data sets are generated from discrete normal population with mean μ = 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaIWaaaaa@37AD@ and scale σ = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaisdaaaa@3703@
Table summary
This table displays the results of Variance estimate of the estimators. Data sets are generated from discrete normal population with mean μ = 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG ypaiaaigdacaaIWaaaaa@37AD@ and scale σ = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaisdaaaa@3703@ . The information is grouped by XXXXX (appearing as row headers), XXXXX, Estimates from equations (2.5), (2.6), (2.8), (3.2) and Estimates from simulation (appearing as column headers).
n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@36E0@ H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisaaaa@36BA@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyWdihaaa@37AD@ Estimates from equations (2.5), (2.6), (2.8), (3.2) Estimates from simulation
σ ^ μ ^ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGimaaqabaaaleaa caaIYaaaaaaa@3B61@ σ ^ μ ^ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B63@ σ ˜ μ ^ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaG aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B62@ σ ^ μ ˜ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaGaadaWgaaadbaGaaGimaaqabaaaleaa caaIYaaaaaaa@3B60@ σ ^ μ ˜ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaGaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B62@ V a ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C24@ V a ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C26@ V a ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C23@ V a ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C25@
10 2 1.00 1.177 1.078 1.078 0.694 0.646 1.175 1.087 0.794 0.692
15 3 1.00 0.632 0.534 0.534 0.305 0.275 0.628 0.537 0.311 0.297
20 4 1.00 0.392 0.300 0.300 0.169 0.146 0.393 0.299 0.163 0.132
25 5 1.00 0.268 0.175 0.175 0.106 0.087 0.270 0.175 0.099 0.078
10 2 0.75 1.431 1.335 1.335 0.692 0.645 1.463 1.270 0.744 0.654
15 3 0.75 0.896 0.802 0.802 0.306 0.276 0.901 0.763 0.305 0.270
20 4 0.75 0.631 0.531 0.531 0.169 0.145 0.627 0.552 0.160 0.141
25 5 0.75 0.485 0.386 0.386 0.106 0.089 0.506 0.401 0.100 0.083
Table 4.3
Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. Data sets are generated from discrete shifted exponential population with scale σ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaigdaaaa@3700@ and shift parameter 10
Table summary
This table displays the results of Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. Data sets are generated from discrete shifted exponential population with scale σ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaigdaaaa@3700@ and shift parameter 10. The information is grouped by XXXXX (appearing as row headers), XXXXX, Relative Efficiencies, XXXXX and Coverage probabilities (appearing as column headers).
n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@36E0@ H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisaaaa@36BA@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyWdihaaa@37AD@ Relative Efficiencies, R ( X ¯ 0 ) = Var ( X ¯ 0 ) / Var ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk aaGaaGypamaalyaabaGaaeOvaiaabggacaqGYbWaaeWaaeaaceWGyb GbaebadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaeaacaqG wbGaaeyyaiaabkhadaqadaqaaiqbeY7aTzaaiaWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaaaaaa@4821@ Coverage probabilities
R ( X ¯ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk aaaaaa@3A32@ R ( X ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGabmiwayaaraWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaaaaa@3A34@ R ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaKaadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL Paaaaaa@3B03@ R ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaKaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL Paaaaaa@3B05@ R ( μ 0 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGaeqiVd02aa0baaSqaaiaaicdaaeaacaaIQaaaaaGccaGLOaGa ayzkaaaaaa@3BA8@ R ( μ 2 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGaeqiVd02aa0baaSqaaiaaikdaaeaacaaIQaaaaaGccaGLOaGa ayzkaaaaaa@3BAA@ R ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOuamaabm aabaGafqiVd0MbaGaadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL Paaaaaa@3B02@ C a ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C10@ C a ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C12@ C b ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C12@ C b ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4qamaaCa aaleqabaGaamOyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C14@
10 2 1.00 1.770 1.663 1.495 1.394 1.193 1.297 1.103 0.838 0.833 0.894 0.950
15 3 1.00 2.472 2.239 1.757 1.538 1.222 1.446 1.027 0.855 0.842 0.905 0.931
20 4 1.00 3.839 3.349 2.353 1.889 1.406 1.879 1.212 0.871 0.884 0.915 0.931
25 5 1.00 4.639 3.892 2.503 1.792 1.235 1.958 1.182 0.865 0.881 0.916 0.915
10 2 0.75 1.900 1.690 1.941 1.690 1.667 1.520 1.128 0.839 0.857 0.898 0.949
15 3 0.75 2.708 2.440 2.626 2.233 2.132 1.815 1.117 0.859 0.870 0.914 0.947
20 4 0.75 3.484 2.996 3.059 2.704 2.430 2.103 1.104 0.869 0.871 0.922 0.938
25 5 0.75 4.758 4.127 4.156 3.298 3.106 2.402 1.245 0.866 0.877 0.913 0.932
Table 4.4
Variance estimate of the estimators. Data sets are generated from discrete shifted exponential population with scale σ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaigdaaaa@3700@ and shift parameter 10
Table summary
This table displays the results of Variance estimate of the estimators. Data sets are generated from discrete shifted exponential population with scale σ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4WdmNaaG ypaiaaigdaaaa@3700@ and shift parameter 10. The information is grouped by XXXXX (appearing as row headers), XXXXX, Estimates from equations (2.5), (2.6), (2.8), (3.2) and Estimates from simulation (appearing as column headers).
n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@36E0@ H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisaaaa@36BA@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyWdihaaa@37AD@ Estimates from equations (2.5), (2.6), (2.8), (3.2) Estimates from simulation
σ ^ μ ^ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGimaaqabaaaleaa caaIYaaaaaaa@3B61@ σ ^ μ ^ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B63@ σ ˜ μ ^ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaG aadaqhaaWcbaGafqiVd0MbaKaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B62@ σ ^ μ ˜ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaGaadaWgaaadbaGaaGimaaqabaaaleaa caaIYaaaaaaa@3B60@ σ ^ μ ˜ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGafqiVd0MbaGaadaWgaaadbaGaaGOmaaqabaaaleaa caaIYaaaaaaa@3B62@ V a ( μ ^ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C24@ V a ( μ ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C26@ V a ( μ ˜ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaaaaa@3C23@ V a ( μ ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dYdcba9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOvamaaCa aaleqabaGaamyyaaaakmaabmaabaGafqiVd0MbaGaadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaaa@3C25@
10 2 1.00 0.077 0.069 0.069 0.046 0.042 0.075 0.070 0.055 0.050
15 3 1.00 0.042 0.036 0.036 0.022 0.020 0.042 0.037 0.025 0.024
20 4 1.00 0.027 0.022 0.022 0.013 0.012 0.027 0.022 0.014 0.012
25 5 1.00 0.019 0.014 0.014 0.009 0.007 0.019 0.014 0.009 0.008
10 2 0.75 0.089 0.083 0.083 0.046 0.043 0.090 0.078 0.052 0.046
15 3 0.75 0.055 0.051 0.051 0.022 0.020 0.057 0.048 0.024 0.022
20 4 0.75 0.039 0.033 0.033 0.013 0.011 0.039 0.034 0.014 0.013
25 5 0.75 0.031 0.025 0.025 0.009 0.008 0.032 0.025 0.009 0.008
Date modified: