4 Validité

Jae Kwang Kim et Changbao Wu

Précédent | Suivant

À la présente section, nous présentons une discussion générale de la validité de l'estimateur de la variance par rééchantillonnage. Soit θ=f( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde Naeyypa0JaamOzaiaacIcacaWG0bWaaSbaaSqaaiaadMhaaeqaaOGa aiykaaaa@40C5@  un paramètre de population finie, qui est une fonction lisse du total de population t y = i=1 N y i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDam aaBaaaleaacaWG5baabeaakiabg2da9maaqadabaGaamyEamaaBaaa leaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0 GaeyyeIuoakiaac6caaaa@4518@  Nous supposons que θ ^ =f( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaacqGH9aqpcaWGMbGaaiikaiqadshagaqcamaaBaaaleaacaWG 5baabeaakiaacMcaaaa@40E5@  est utilisé pour estimer θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde Naaiilaaaa@3BFE@  où t ^ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDay aajaWaaSbaaSqaaiaadMhaaeqaaaaa@3BCB@  est l'estimateur de Horvitz-Thompson de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDam aaBaaaleaacaWG5baabeaaaaa@3BBB@  défini en (2.1). L'estimateur de la variance par rééchantillonnage de θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaaaaa@3B5E@  est formé par

v R ( θ ^ )= k=1 L c k ( θ ^ (k) θ ^ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGsbaabeaakiaacIcacuaH4oqCgaqcaiaacMcacqGH 9aqpdaaeWbqaaiaadogadaWgaaWcbaGaam4AaaqabaaabaGaam4Aai abg2da9iaaigdaaeaacaWGmbaaniabggHiLdGccaGGOaGafqiUdeNb aKaadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiabgkHiTiqbeI 7aXzaajaGaaiykamaaCaaaleqabaGaaGOmaaaakiaacYcaaaa@5181@ (4.1)

θ ^ (k) =f( t ^ y (k) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiabg2da9iaa dAgacaGGOaGabmiDayaajaWaa0baaSqaaiaadMhaaeaacaGGOaGaam 4AaiaacMcaaaGccaGGPaaaaa@45AF@  et t ^ y (k) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDay aajaWaa0baaSqaaiaadMhaaeaacaGGOaGaam4AaiaacMcaaaaaaa@3E15@  est la k e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aam aaCaaaleqabaGaaeyzaaaaaaa@3B9D@  réplique de t ^ y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDay aajaWaaSbaaSqaaiaadMhaaeqaaOGaaiOlaaaa@3C87@

Pour explorer les propriétés asymptotiques de l'estimateur de la variance par rééchantillonnage (4.1), nous émettons l'hypothèse d'une série de populations finies et d'échantillons, telle que décrite dans Isaki et Fuller (1982). Les populations finies et les plans d'échantillonnage satisfont les conditions de régularité qui suivent.

C1. Pour toute caractéristique de la population u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xDamaaBaaaleaacaWGPbaabeaaaaa@3BB4@  avec moment d'ordre deux borné,

iS w i u i u i i=1 N u i u i = O p ( n 1/2 N). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabuae aacaWG3bWaaSbaaSqaaiaadMgaaeqaaGqadOGaa8xDamaaBaaaleaa caWGPbaabeaakiqa=vhagaqbamaaBaaaleaacaWGPbaabeaakiabgk HiTmaaqahabaGaa8xDamaaBaaaleaacaWGPbaabeaakiqa=vhagaqb amaaBaaaleaacaWGPbaabeaakiabg2da9iaad+eadaWgaaWcbaGaam iCaaqabaGccaGGOaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaiaa c+cacaaIYaaaaOGaamOtaiaacMcacaGGUaaaleaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoaaSqaaiaadMgacqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab+jr8tbqab0 GaeyyeIuoaaaa@6512@

C2. Les poids de sondage sont uniformément bornés. Autrement dit, K 1 < N 1 n w i < K 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4sam aaBaaaleaacaaIXaaabeaakiabgYda8iaad6eadaahaaWcbeqaaiab gkHiTiaaigdaaaGccaWGUbGaam4DamaaBaaaleaacaWGPbaabeaaki abgYda8iaadUeadaWgaaWcbaGaaGOmaaqabaaaaa@44DE@  pour tout i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaa aa@3A86@  et tout n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBai aacYcaaaa@3B3B@  où K 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4sam aaBaaaleaacaaIXaaabeaaaaa@3B4F@  et K 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4sam aaBaaaleaacaaIYaaabeaaaaa@3B50@  sont des constantes fixes.

C3. nV( N 1 t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBai aadAfacaGGOaGaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakiqa dshagaqcamaaBaaaleaacaWG5baabeaakiaacMcaaaa@41AE@ est borné.

C4. Pour tout y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaa aa@3A96@  avec moment d'ordre quatre borné, l'estimateur de la variance par rééchantillonnage v R ( t ^ y )= k=1 L c k ( t ^ y (k) t ^ y ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGsbaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaGaeyypa0ZaaabmaeaacaWGJbWaaSbaaSqaai aadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaamitaaqdcqGH ris5aOGaaiikaiqadshagaqcamaaDaaaleaacaWG5baabaGaaiikai aadUgacaGGPaaaaOGaeyOeI0IabmiDayaajaWaaSbaaSqaaiaadMha aeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaaa@51B6@  satisfait

E[ { c k ( t ^ y (k) t ^ y ) 2 } 2 ]<K L 2 {V( t ^ y )} 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyrai aacUfacaGG7bGaam4yamaaBaaaleaacaWGRbaabeaakiaacIcaceWG 0bGbaKaadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaaki abgkHiTiqadshagaqcamaaBaaaleaacaWG5baabeaakiaacMcadaah aaWcbeqaaiaaikdaaaGccaGG9bWaaWbaaSqabeaacaaIYaaaaOGaai yxaiabgYda8iaadUeacaWGmbWaaWbaaSqabeaacqGHsislcaaIYaaa aOGaai4EaiaadAfacaGGOaGabmiDayaajaWaaSbaaSqaaiaadMhaae qaaOGaaiykaiaac2hadaahaaWcbeqaaiaaikdaaaaaaa@56FF@ (4.2)

pour un certain K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4sai aacYcaaaa@3B18@  uniformément en k=1,,L, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aai abg2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaadYeacaGGSaaaaa@404C@

max k c k 1 =O(L), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaadUgaaeqaaOGaam4yamaaDaaa leaacaWGRbaabaGaeyOeI0IaaGymaaaakiabg2da9iaad+eacaGGOa GaamitaiaacMcacaGGSaaaaa@460A@ (4.3)

et

E[ { v R ( t ^ y ) V( t ^ y ) 1 } 2 ]=o(1).    (4.4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aadmaabaWaaiWaaeaadaWcaaqaaiaadAhadaWgaaWcbaGaamOuaaqa baGccaGGOaGabmiDayaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykaa qaaiaadAfacaGGOaGabmiDayaajaWaaSbaaSqaaiaadMhaaeqaaOGa aiykaaaacqGHsislcaaIXaaacaGL7bGaayzFaaWaaWbaaSqabeaaca aIYaaaaaGccaGLBbGaayzxaaGaeyypa0Jaam4BaiaacIcacaaIXaGa aiykaiaac6caaaa@4FFF@

La condition (4.2) fait en sorte qu'aucune réplique particulière ne domine les autres. La condition (4.3) contrôle l'ordre des facteurs c k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yam aaBaaaleaacaWGRbaabeaakiaaygW7caGGUaaaaa@3DE2@  La condition (4.4) implique que v R ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGsbaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F36@  est un estimateur convergent de V( t ^ y ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcaceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaGaaiOl aaaa@3EBB@  Les conditions (4.2) à (4.4) ont également été utilisées dans Kim, Navarro et Fuller (2006).

En utilisant les conditions de régularité susmentionnées, le théorème suivant prouve la convergence de l'estimateur de la variance par rééchantillonnage de la forme (4.1).

Théorème 2. Soit θ=f( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde Naeyypa0JaamOzaiaacIcacaWG0bWaaSbaaSqaaiaadMhaaeqaaOGa aiykaaaa@40C5@  le paramètre d'intérêt et θ ^ =f( t ^ y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaacqGH9aqpcaWGMbGaaiikaiqadshagaqcamaaBaaaleaacaWG 5baabeaakiaacMcacaGGSaaaaa@4195@  où f() MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzai aacIcacqGHflY1caGGPaaaaa@3E26@  est une fonction lisse avec une dérivée continue à t y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDam aaBaaaleaacaWG5baabeaakiaaygW7caGGUaaaaa@3E01@  Sous les conditions de régularité susmentionnées, l'estimateur de la variance v R ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGsbaabeaakiaacIcacuaH4oqCgaqcaiaacMcaaaa@3EBF@  dans (4.1) satisfait

v R ( θ ^ ) V( θ ^ ) =1+ o p (1).    (4.5) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaiikaiqbeI7aXzaajaGa aiykaaqaaiaadAfacaGGOaGafqiUdeNbaKaacaGGPaaaaiabg2da9i aaigdacqGHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqaaOGaaiikaiaa igdacaGGPaGaaiOlaaaa@4A51@

Preuve. Voir l'annexe A.

Nous prouvons maintenant la validité de l'estimateur amélioré de la variance v C ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGdbaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F27@  proposé à la section 3.2. Pour simplifier, nous supposons que v 1 ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F1A@  est un estimateur entièrement efficace de la variance V( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcaceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaaaaa@3E09@  pour t ^ y = iS w i y i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDay aajaWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaabeaeaacaWG3bWa aSbaaSqaaiaadMgaaeqaaOGaamyEamaaBaaaleaacaWGPbaabeaaki aac6caaSqaaiaadMgacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbaiab=jr8tbqab0GaeyyeIuoaaaa@5189@  Nous supposons aussi que v 0 ( t ^ y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIWaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaGaaiilaaaa@3FC9@  défini en (3.4), satisfait

E * { v 0 ( t ^ y )}= v 1 ( t ^ y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaCaaaleqabaGaaiOkaaaakiaacUhacaWG2bWaaSbaaSqaaiaaicda aeqaaOGaaiikaiqadshagaqcamaaBaaaleaacaWG5baabeaakiaacM cacaGG9bGaeyypa0JaamODamaaBaaaleaacaaIXaaabeaakiaacIca ceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaGaaiilaaaa@4A00@ (4.6)

E * () MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaCaaaleqabaGaaiOkaaaakiaacIcacqGHflY1caGGPaaaaa@3EEA@  désigne l'espérance sous la sélection aléatoire des L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitam aaBaaaleaacaaIWaaabeaaaaa@3B4F@  répliques pour les L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitaa aa@3A69@  jeux de poids de rééchantillonnage entièrement efficaces, comme il est discuté à la section 3.1. Si v 1 ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F1A@  est asymptotiquement sans biais, alors v 0 ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIWaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F19@  est également asymptotiquement sans biais en vertu de (4.6). Pour le jackknife avec suppression d'un groupe, la condition (4.6) peut être interprétée comme E{ v 0 ( t ^ y )}=E{ v 1 ( t ^ y )} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyrai aacUhacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyypa0Jaamyrai aacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9baaaa@4B35@  et V{ v 0 ( t ^ y )}V{ v 1 ( t ^ y )}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacUhacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyyzImRaamOvai aacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaaiOlaaaa@4CC9@

Théorème  3. Supposons que l'estimateur de la variance initial v 0 ( t ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIWaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaaaaa@3F19@  défini en (3.4) satisfait (4.6). Supposons que l'estimateur amélioré de la variance v C ( t ^ y )= k=1 L 0 c k0 ( t ^ yc (k) t ^ y ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGdbaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaGaeyypa0ZaaabmaeaacaWGJbWaaSbaaSqaai aadUgacaaIWaaabeaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaadYea daWgaaadbaGaaGimaaqabaaaniabggHiLdGccaGGOaGabmiDayaaja Waa0baaSqaaiaadMhacaWGJbaabaGaaiikaiaadUgacaGGPaaaaOGa eyOeI0IabmiDayaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykamaaCa aaleqabaGaaGOmaaaaaaa@5430@  est calculé en utilisant les poids de rééchantillonnage calés comme il est décrit à la section 3.2, avec le choix de τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiXdq 3aaSbaaSqaaiaadMgaaeqaaaaa@3C77@  satisfaisant Cov( t ^ e , t ^ z )0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaae4qai aab+gacaqG2bGaaiikaiqadshagaqcamaaBaaaleaacaWGLbaabeaa kiaacYcaceWG0bGbaKaadaWgaaWcbaacbmGaa8NEaaqabaGccaGGPa GaeSiuIiecbeGaa4hmaiaac6caaaa@4571@  En ignorant les termes d'ordre faible, nous avons

E{ v C ( t ^ y )}=E{ v 1 ( t ^ y )} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyrai aacUhacaWG2bWaaSbaaSqaaiaadoeaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyypa0Jaamyrai aacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9baaaa@4B43@ (4.7)

et

V{ v 1 ( t ^ y )}V{ v C ( t ^ y )}V{ v 0 ( t ^ y )}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyizImQaamOvai aacUhacaWG2bWaaSbaaSqaaiaadoeaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyizImQaamOvai aacUhacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaaiOlaaaa@56D7@ (4.8)

Preuve. Voir l'annexe B.

Pour un paramètre général θ=f( t y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde Naeyypa0JaamOzaiaacIcacaWG0bWaaSbaaSqaaiaadMhaaeqaaOGa aiykaiaacYcaaaa@4175@  nous posons que θ ^ c (k) =f( t ^ yc (k) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaadaqhaaWcbaGaam4yaaqaaiaacIcacaWGRbGaaiykaaaakiab g2da9iaadAgacaGGOaGabmiDayaajaWaa0baaSqaaiaadMhacaWGJb aabaGaaiikaiaadUgacaGGPaaaaOGaaiykaaaa@477F@  et calculons v C ( θ ^ )= k=1 L 0 c k0 ( θ ^ c (k) θ ^ ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGdbaabeaakiaacIcacuaH4oqCgaqcaiaacMcacqGH 9aqpdaaeWaqaaiaadogadaWgaaWcbaGaam4Aaiaaicdaaeqaaaqaai aadUgacqGH9aqpcaaIXaaabaGaamitamaaBaaameaacaaIWaaabeaa a0GaeyyeIuoakiaacIcacuaH4oqCgaqcamaaDaaaleaacaWGJbaaba GaaiikaiaadUgacaGGPaaaaOGaeyOeI0IafqiUdeNbaKaacaGGPaWa aWbaaSqabeaacaaIYaaaaOGaaiOlaaaa@53BD@  La validité de v C ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaWGdbaabeaakiaacIcacuaH4oqCgaqcaiaacMcaaaa@3EB0@  peut être établie en combinant les résultats des théorèmes 2 et 3.

Précédent | Suivant

Date de modification :