7 Certaines conclusions

Jae Kwang Kim et Changbao Wu

Précédent

Les méthodes de rééchantillonnage offrent une alternative asymptotiquement équivalente aux méthodes de linéarisation, mais sont plus commodes et plus souples sur le plan opérationnel. Nous nous sommes concentrés sur des paramètres de population qui sont des fonctions lisses des moyennes ou des totaux. Nos résultats théoriques et nos études par simulation limitées montrent que les stratégies proposées pour construire des poids de rééchantillonnage parcimonieux et efficaces donnent de bons résultats pour l'estimation de la variance et les intervalles de confiance. Néanmoins, un certain nombre de problèmes doivent être étudiés plus en profondeur. Premièrement, pour des paramètres complexes tels que les coefficients de corrélation de population, les estimateurs de la variance par rééchantillonnage parcimonieux ne sont pas très stables. Deuxièmement, d'autres preuves de l'efficacité des stratégies proposées pour les grandes enquêtes complexes conjuguées à l'utilisation de poids bootstrap ou jackknife généraux sont nécessaires. Troisièmement, il n'est pas certain que les poids de rééchantillonnage parcimonieux seront efficaces pour des paramètres qui sont des fonctions non lisses des moyennes ou des totaux, tels que les quantiles de population, pour lesquels on sait que les intervalles de confiance de la théorie normale sont inefficaces (Sitter et Wu 2001).

Une autre question importante est celle de l'application éventuelle des méthodes proposées à des paramètres et à des estimateurs définis au moyen d'équations d'estimation. Soit θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGae8 hUdehaaa@3B54@  défini comme étant la solution de

U N (θ)= i=1 N u i ( y i , x i ;θ) =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaBaaaleaacaWGobaabeaakiaacIcaiiqacqWF4oqCcaGGPaGaeyyp a0ZaaabCaeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadM hadaWgaaWcbaGaamyAaaqabaGccaGGSaacbmGaa4hEamaaBaaaleaa caWGPbaabeaakiaacUdacqWF4oqCcaGGPaaaleaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9Gqabiaa9bdacaGG Uaaaaa@52B6@ (7.1)

Soit θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGaf8 hUdeNbaKaaaaa@3B64@  obtenu en résolvant une version fondée sur l'échantillon de (7.1) donnée par

U n (θ)= iS w i u i ( y i , x i ;θ) =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaBaaaleaacaWGUbaabeaakiaacIcaiiqacqWF4oqCcaGGPaGaeyyp a0ZaaabuaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBa aaleaacaWGPbaabeaakiaacIcacaWG5bWaaSbaaSqaaiaadMgaaeqa aOGaaiilaGqadiaa+HhadaWgaaWcbaGaamyAaaqabaGccaGG7aGae8 hUdeNaaiykaaWcbaGaamyAaiabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae0NeXpfabeqdcqGHris5aOGaeyypa0 dcbeGaaWhmaiaac6caaaa@5F28@ (7.2)

Les analyses par la régression ou par la régression logistique en utilisant des données d'enquête complexes peuvent être considérées comme des cas particuliers de forme générale donnés par (7.1) et (7.2). La variance de type sandwich habituelle de θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGaf8 hUdeNbaKaaaaa@3B64@  est donnée par

V( θ ^ ) { U N (θ) θ } 1 V{ U n (θ)} { U N (θ) θ } 1     (7.3) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcaiiqacuWF4oqCgaqcaiaacMcacqWIqjIqdaGadaqaamaalaaa baGaeyOaIyRaamyvamaaBaaaleaacaWGobaabeaakiaacIcacqWF4o qCcaGGPaaabaGaeyOaIyRae8hUdehaaaGaay5Eaiaaw2haamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaadAfacaGG7bGaamyvamaaBaaale aacaWGUbaabeaakiaacIcacqWF4oqCcaGGPaGaaiyFamaacmaabaWa aSaaaeaacqGHciITcaWGvbWaaSbaaSqaaiaad6eaaeqaaOGaaiikai ab=H7aXjaacMcaaeaacqGHciITcqWF4oqCaaaacaGL7bGaayzFaaWa aWbaaSqabeaacqGHsislcaaIXaaaaaaa@61CF@

Nous pouvons maintenant obtenir un estimateur de la variance v( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODai aacIcaiiqacuWF4oqCgaqcaiaacMcaaaa@3DB8@  si nous remplaçons U N (θ)/θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOaIy RaamyvamaaBaaaleaacaWGobaabeaakiaacIcaiiqacqWF4oqCcaGG PaGaai4laiabgkGi2kab=H7aXbaa@43C0@  par U n (θ)/θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOaIy RaamyvamaaBaaaleaacaWGUbaabeaakiaacIcaiiqacqWF4oqCcaGG PaGaai4laiabgkGi2kab=H7aXbaa@43E0@  à θ= θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGae8 hUdeNae8xpa0Jaf8hUdeNbaKaaaaa@3E14@  et estimons V{ U n (θ)} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacUhacaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaGGabiab=H7a XjaacMcacaGG9baaaa@418B@  en appliquant la méthode d'estimation de la variance par rééchantillonnage à U ^ n = iS w i u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyvay aajaWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaabeaeaacaWG3bWa aSbaaSqaaiaadMgaaeqaaGqadOGaa8xDamaaBaaaleaacaWGPbaabe aaaeaacaWGPbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiuaacqGFse=uaeqaniabggHiLdaaaa@509B@  avec u i = u i ( y i , x i ; θ ^ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbmGaa8 xDamaaBaaaleaacaWGPbaabeaakiabg2da9iaadwhadaWgaaWcbaGa amyAaaqabaGccaGGOaGaamyEamaaBaaaleaacaWGPbaabeaakiaacY cacaWF4bWaaSbaaSqaaiaadMgaaeqaaOGaai4oaGGabiqb+H7aXzaa jaGaaiykaiaac6caaaa@4866@  Pour des discussions détaillées des équations d'estimation et de l'échantillonnage, consulter entre autres, Binder (1983), Skinner (1989), et Godambe et Thompson (2009).

Arriver à une estimation efficace de la variance en utilisant un nombre limité de jeux de poids de rééchantillonnage est un problème de recherche important du point de vue tant théorique que pratique. Les poids de rééchantillonnage entièrement efficaces conçus en suivant la procédure décrite à la section 2 peuvent être traités comme des jeux de poids initiaux si la taille de l'échantillon n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaa aa@3A8B@  est grande. En principe, les stratégies que nous proposons à la section 3 pour produire des poids de rééchantillonnage parcimonieux et efficaces peuvent être combinées avec d'autres jeux de poids de rééchantillonnage initiaux, y compris les poids bootstrap (Shao 1996) ou les poids jackknife avec suppression d'un groupe (Kott 2001). On devrait également inclure autant de variables pertinentes que possible dans l'étape de calage, afin que les poids de rééchantillonnage calés finaux ne soient pas seulement parcimonieux, mais également efficaces pour l'obtention d'estimateurs de la variance pour une grande classe d'estimateurs. Des extensions de la méthode proposée afin de traiter les poids calés ou les corrections de la non-réponse sont en cours d'étude.

Remerciements

Nous remercions deux examinateurs anonymes et le rédacteur associé de leurs commentaires très utiles. Les présents travaux ont pour origine les discussions initiales entre le premier auteur J.K. Kim et le professeur Randy Sitter de la Simon Fraser University qui a disparu en mer tragiquement durant une expédition en kayak en 2007. Les auteurs souhaitent dédier le présent article à la mémoire du professeur Sitter qui était également le superviseur de la thèse de doctorat du deuxième auteur C. Wu. Les travaux de recherche de J.K. Kim ont été financés en partie par une entente de coopération entre le Natural Resources Conservation Service du US Department of Agriculture et la Iowa State University. Les travaux de recherche de C. Wu ont été financés par des subventions du Conseil de recherches en sciences naturelles et en génie du Canada et du réseau des mathématiques et des technologies de l'information et des systèmes complexes (MITACS).

Annexe

A  Preuve du théorème 2

En vertu de l'hypothèse (4.2), nous avons

max 1kL c k ( t ^ y (k) t ^ y ) 2 = O p ( L 1 n 1 N 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGRbGaeyiz ImQaamitaaqabaGccaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiikai qadshagaqcamaaDaaaleaacaWG5baabaGaaiikaiaadUgacaGGPaaa aOGaeyOeI0IabmiDayaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykam aaCaaaleqabaGaaGOmaaaakiabg2da9iaad+eadaWgaaWcbaGaamiC aaqabaGccaGGOaGaamitamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGobWaaWbaaSqa beaacaaIYaaaaOGaaiykaiaacYcaaaa@5AF6@

qui, combiné à (4.3), implique que

max 1kL ( μ ^ y (k) μ ^ y )= o p (1), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGRbGaeyiz ImQaamitaaqabaGccaGGOaGafqiVd0MbaKaadaqhaaWcbaGaamyEaa qaaiaacIcacaWGRbGaaiykaaaakiabgkHiTiqbeY7aTzaajaWaaSba aSqaaiaadMhaaeqaaOGaaiykaiabg2da9iaad+gadaWgaaWcbaGaam iCaaqabaGccaGGOaGaaGymaiaacMcacaGGSaaaaa@5302@ (A.1)

μ ^ y (k) = N 1 t ^ y (k) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaakiab g2da9iaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWG0bGbaK aadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaaaaa@4711@  et μ ^ y = N 1 t ^ y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamyEaaqabaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOGabmiDayaajaWaaSbaaSqaaiaadMhaae qaaOGaaiOlaaaa@4339@  Soit g( μ y )=f(N μ y ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zai aacIcacqaH8oqBdaWgaaWcbaGaamyEaaqabaGccaGGPaGaeyypa0Ja amOzaiaacIcacaWGobGaeqiVd02aaSbaaSqaaiaadMhaaeqaaOGaai ykaiaac6caaaa@4680@  Nous pouvons écrire

θ ^ (k) θ ^ =g( μ ^ y (k) )g( μ ^ y )= g ˙ ( μ ^ y )( μ ^ y (k) μ ^ y )+ Q nk ( μ ^ y (k) μ ^ y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUde NbaKaadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiabgkHiTiqb eI7aXzaajaGaeyypa0Jaam4zaiaacIcacuaH8oqBgaqcamaaDaaale aacaWG5baabaGaaiikaiaadUgacaGGPaaaaOGaaiykaiabgkHiTiaa dEgacaGGOaGafqiVd0MbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPa Gaeyypa0Jabm4zayaacaGaaiikaiqbeY7aTzaajaWaaSbaaSqaaiaa dMhaaeqaaOGaaiykaiaacIcacuaH8oqBgaqcamaaDaaaleaacaWG5b aabaGaaiikaiaadUgacaGGPaaaaOGaeyOeI0IafqiVd0MbaKaadaWg aaWcbaGaamyEaaqabaGccaGGPaGaey4kaSIaamyuamaaBaaaleaaca WGUbGaam4AaaqabaGccaGGOaGafqiVd0MbaKaadaqhaaWcbaGaamyE aaqaaiaacIcacaWGRbGaaiykaaaakiabgkHiTiqbeY7aTzaajaWaaS baaSqaaiaadMhaaeqaaOGaaiykaiaacYcaaaa@6F23@

g ˙ (μ)=g(μ)/μ, Q nk = g ˙ ( μ k * ) g ˙ ( μ ^ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4zay aacaGaaiikaiabeY7aTjaacMcacqGH9aqpcqGHciITcaWGNbGaaiik aiabeY7aTjaacMcacaGGVaGaeyOaIyRaeqiVd0Maaiilaiaadgfada WgaaWcbaGaamOBaiaadUgaaeqaaOGaeyypa0Jabm4zayaacaGaaiik aiabeY7aTnaaDaaaleaacaWGRbaabaGaaiOkaaaakiaacMcacqGHsi slceWGNbGbaiaacaGGOaGafqiVd0MbaKaadaWgaaWcbaGaamyEaaqa baGccaGGPaaaaa@5885@  et μ k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aa0baaSqaaiaadUgaaeaacaGGQaaaaaaa@3D19@  est un point intérieur sur le segment de droite compris entre μ ^ (k) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaaaaa@3DD4@  et μ ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaacaGGUaaaaa@3C10@  En vertu de (A.1), nous avons

max 1kL ( μ k * μ ^ y )= o p (1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGRbGaeyiz ImQaamitaaqabaGccaGGOaGaeqiVd02aa0baaSqaaiaadUgaaeaaca GGQaaaaOGaeyOeI0IafqiVd0MbaKaadaWgaaWcbaGaamyEaaqabaGc caGGPaGaeyypa0Jaam4BamaaBaaaleaacaWGWbaabeaakiaacIcaca aIXaGaaiykaiaac6caaaa@514B@ (A.2)

Définissons

D δ ={ μ| max k μ k * μ <δet max k g ˙ ( μ k * ) g ˙ (μ) >ϵ }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiram aaBaaaleaacqaH0oazaeqaaOGaeyypa0Zaaiqaaeaadaabcaqaaiab eY7aTbGaayjcSdWaaCbeaeaaciGGTbGaaiyyaiaacIhaaSqaaiaadU gaaeqaaOWaauWaaeaacqaH8oqBdaqhaaWcbaGaam4AaaqaaiaacQca aaGccqGHsislcqaH8oqBaiaawMa7caGLkWoacqGH8aapcqaH0oazca aMe8UaaeyzaiaabshaaiaawUhaamaaciaabaGaaGPaVpaaxababaGa ciyBaiaacggacaGG4baaleaacaWGRbaabeaakmaafmaabaGabm4zay aacaGaaiikaiabeY7aTnaaDaaaleaacaWGRbaabaGaaiOkaaaakiaa cMcacqGHsislceWGNbGbaiaacaGGOaGaeqiVd0MaaiykaaGaayzcSl aawQa7aiabg6da+mrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8x9dipacaGL9baacaGGUaaaaa@776C@

Par construction, nous avons, pour tout ϵ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF1pG8cqGH+aGp caaIWaaaaa@4753@  et δ>0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdq MaeyOpa4JaaGimaiaacYcaaaa@3DAF@

P{ max k g ˙ ( μ k * ) g ˙ ( μ ^ y ) >ϵ }P( μ ^ y D δ )+P( max k μ k * μ ^ y δ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiuam aacmqabaWaaCbeaeaaciGGTbGaaiyyaiaacIhaaSqaaiaadUgaaeqa aOWaauWaaeaaceWGNbGbaiaacaGGOaGaeqiVd02aa0baaSqaaiaadU gaaeaacaGGQaaaaOGaaiykaiabgkHiTiqadEgagaGaaiaacIcacuaH 8oqBgaqcamaaBaaaleaacaWG5baabeaakiaacMcaaiaawMa7caGLkW oacqGH+aGptuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=v=aYdGaay5Eaiaaw2haaiabgsMiJkaadcfacaGGOaGafqiVd0 MbaKaadaWgaaWcbaGaamyEaaqabaGccqGHiiIZcaWGebWaaSbaaSqa aiabes7aKbqabaGccaGGPaGaey4kaSIaamiuamaabmqabaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaadUgaaeqaaOWaauWaaeaacqaH 8oqBdaqhaaWcbaGaam4AaaqaaiaacQcaaaGccqGHsislcuaH8oqBga qcamaaBaaaleaacaWG5baabeaaaOGaayzcSlaawQa7aiabgwMiZkab es7aKbGaayjkaiaawMcaaiaac6caaaa@7DDF@

En vertu de la continuité de g ˙ (μ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4zay aacaGaaiikaiabeY7aTjaacMcaaaa@3D9C@  à μ= μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiVd0 Maeyypa0JaeqiVd02aaSbaaSqaaiaadMhaaeqaaaaa@3F34@  et du fait que μ ^ y = μ y + o p (1), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamyEaaqabaGccqGH9aqpcqaH8oqBdaWgaaWc baGaamyEaaqabaGccqGHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqaaO GaaiikaiaaigdacaGGPaGaaiilaaaa@4647@  nous avons que, pour tout ϵ>0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF1pG8cqGH+aGp caaIWaGaaiilaaaa@4803@  il existe un δ=δ(ϵ)>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdq Maeyypa0JaeqiTdqMaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGae8x9diVaaiykaiabg6da+iaaicdaaaa@4CFC@   tel que P( μ ^ y D δ )=o(1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiuai aacIcacuaH8oqBgaqcamaaBaaaleaacaWG5baabeaakiabgIGiolaa dseadaWgaaWcbaGaeqiTdqgabeaakiaacMcacqGH9aqpcaWGVbGaai ikaiaaigdacaGGPaGaaiOlaaaa@47A8@  Cela, conjugué à (A.2), implique que

max k g ˙ ( μ k * ) g ˙ ( μ ^ y ) = o p (1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeae aaciGGTbGaaiyyaiaacIhaaSqaaiaadUgaaeqaaOWaauWaaeaaceWG NbGbaiaacaGGOaGaeqiVd02aa0baaSqaaiaadUgaaeaacaGGQaaaaO GaaiykaiabgkHiTiqadEgagaGaaiaacIcacuaH8oqBgaqcamaaBaaa leaacaWG5baabeaakiaacMcaaiaawMa7caGLkWoacqGH9aqpcaWGVb WaaSbaaSqaaiaadchaaeqaaOGaaiikaiaaigdacaGGPaGaaiOlaaaa @52BF@ (A.3)

Maintenant, nous avons

k=1 L c k ( θ ^ (k) θ ^ ) 2 = A n + B n +2 C n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWGJbWaaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaI XaaabaGaamitaaqdcqGHris5aOGaaiikaiqbeI7aXzaajaWaaWbaaS qabeaacaGGOaGaam4AaiaacMcaaaGccqGHsislcuaH4oqCgaqcaiaa cMcadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGbbWaaSbaaSqaai aad6gaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaWGUbaabeaakiab gUcaRiaaikdacaWGdbWaaSbaaSqaaiaad6gaaeqaaOGaaGzaVlaacY caaaa@5634@ (A.4)

A n = k=1 L c k { g ˙ ( μ ^ y )( μ ^ y (k) μ ^ y ) } 2 , B n = k=1 L c k { Q nk ( μ ^ y (k) μ ^ y ) } 2   et C n = k=1 L c k g ˙ ( μ ^ y ) ( μ ^ y (k) μ ^ y ) 2 Q nk . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGceaabbeaaca WGbbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaabmaeaacaWGJbWa aSbaaSqaaiaadUgaaeqaaOGaai4EaiqadEgagaGaaiaacIcacuaH8o qBgaqcamaaBaaaleaacaWG5baabeaakiaacMcacaGGOaGafqiVd0Mb aKaadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaakiabgk HiTiqbeY7aTzaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykaaWcbaGa am4Aaiabg2da9iaaigdaaeaacaWGmbaaniabggHiLdGccaGG9bWaaW baaSqabeaacaaIYaaaaOGaaiilaaqaaiaadkeadaWgaaWcbaGaamOB aaqabaGccqGH9aqpdaaeWaqaaiaadogadaWgaaWcbaGaam4Aaaqaba GccaGG7bGaamyuamaaBaaaleaacaWGUbGaam4AaaqabaaabaGaam4A aiabg2da9iaaigdaaeaacaWGmbaaniabggHiLdGccaGGOaGafqiVd0 MbaKaadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaakiab gkHiTiqbeY7aTzaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykaiaac2 hadaahaaWcbeqaaiaaikdaaaGccaqGGaGaaeiiaiaabwgacaqG0baa baGaam4qamaaBaaaleaacaWGUbaabeaakiabg2da9maaqadabaGaam 4yamaaBaaaleaacaWGRbaabeaakiqadEgagaGaaiaacIcacuaH8oqB gaqcamaaBaaaleaacaWG5baabeaakiaacMcacaGGOaGafqiVd0MbaK aadaqhaaWcbaGaamyEaaqaaiaacIcacaWGRbGaaiykaaaakiabgkHi TiqbeY7aTzaajaWaaSbaaSqaaiaadMhaaeqaaOGaaiykamaaCaaale qabaGaaGOmaaaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaadYeaa0Ga eyyeIuoakiaadgfadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaaiOlaa aaaa@9489@

Notons que (4.4) implique que

k=1 L c k ( μ ^ y (k) μ ^ y ) 2 /V( μ ^ y )=1+ o p (1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWGJbWaaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaI XaaabaGaamitaaqdcqGHris5aOGaaiikaiqbeY7aTzaajaWaa0baaS qaaiaadMhaaeaacaGGOaGaam4AaiaacMcaaaGccqGHsislcuaH8oqB gaqcamaaBaaaleaacaWG5baabeaakiaacMcadaahaaWcbeqaaiaaik daaaGccaGGVaGaamOvaiaacIcacuaH8oqBgaqcamaaBaaaleaacaWG 5baabeaakiaacMcacqGH9aqpcaaIXaGaey4kaSIaam4BamaaBaaale aacaWGWbaabeaakiaacIcacaaIXaGaaiykaiaac6caaaa@5A3F@ (A.5)

En vertu des arguments de linéarisation classique, nous avons A n /V( θ ^ )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyqam aaBaaaleaacaWGUbaabeaakiaac+cacaWGwbGaaiikaiqbeI7aXzaa jaGaaiykaiabgkziUkaaigdaaaa@42DC@  en probabilité. En outre, en vertu de (A.3) et (A.5), nous avons B n /V( θ ^ )= o p (1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqam aaBaaaleaacaWGUbaabeaakiaac+cacaWGwbGaaiikaiqbeI7aXzaa jaGaaiykaiabg2da9iaad+gadaWgaaWcbaGaamiCaaqabaGccaGGOa GaaGymaiaacMcaaaa@456E@  et C n /V( θ ^ )= o p (1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4qam aaBaaaleaacaWGUbaabeaakiaac+cacaWGwbGaaiikaiqbeI7aXzaa jaGaaiykaiabg2da9iaad+gadaWgaaWcbaGaamiCaaqabaGccaGGOa GaaGymaiaacMcacaGGUaaaaa@4621@  Cela établit (4.5).

B  Preuve du théorème 3

En combinant (3.10) et (3.11) et en ignorant les termes d'ordre plus faible, nous avons

v 0 ( t ^ y ) v C ( t ^ y ) β ^ v 0 ( t ^ z ) β ^ β ^ v 1 ( t ^ z ) β ^ β v 0 ( t ^ z )β β v 1 ( t ^ z )β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIWaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaGaeyOeI0IaamODamaaBaaaleaacaWGdbaabe aakiaacIcaceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaGa eSiuIiecceGaf8NSdiMbaKGbauaacaWG2bWaaSbaaSqaaiaaicdaae qaaOGaaiikaiqadshagaqcamaaBaaaleaaieWacaGF6baabeaakiaa cMcacuWFYoGygaqcaiabgkHiTiqb=j7aIzaafyaajaGaamODamaaBa aaleaacaaIXaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGaa4NE aaqabaGccaGGPaGaf8NSdiMbaKaacqWIqjIqcuWFYoGygaqbaiaadA hadaWgaaWcbaGaaGimaaqabaGccaGGOaGabmiDayaajaWaaSbaaSqa aiaa+PhaaeqaaOGaaiykaiab=j7aIjabgkHiTiqb=j7aIzaafaGaam ODamaaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaKaadaWgaaWc baGaa4NEaaqabaGccaGGPaGae8NSdiMaaiOlaaaa@6E05@

β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGae8 NSdigaaa@3B3F@  est la limite de probabilité de β ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacceGaf8 NSdiMbaKaacaGGUaaaaa@3C01@  En vertu de (4.6), nous avons

E * { v 0 ( t ^ z )}= v 1 ( t ^ z ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaCaaaleqabaGaaiOkaaaakiaacUhacaWG2bWaaSbaaSqaaiaaicda aeqaaOGaaiikaiqadshagaqcamaaBaaaleaaieWacaWF6baabeaaki aacMcacaGG9bGaeyypa0JaamODamaaBaaaleaacaaIXaaabeaakiaa cIcaceWG0bGbaKaadaWgaaWcbaGaa8NEaaqabaGccaGGPaGaaiilaa aa@4A06@ (B.1)

E * () MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaCaaaleqabaGaaiOkaaaakiaacIcacqGHflY1caGGPaaaaa@3EEA@  désigne l'espérance sous la sélection aléatoire de L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitam aaBaaaleaacaaIWaaabeaaaaa@3B4F@  jeux de poids conditionnellement aux L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitaa aa@3A69@  jeux de poids. De même, en vertu de (3.11), nous avons

v 1 ( t ^ y ) v C ( t ^ y ) v 1 ( t ^ e ) v 0 ( t ^ e ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODam aaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGa amyEaaqabaGccaGGPaGaeyOeI0IaamODamaaBaaaleaacaWGdbaabe aakiaacIcaceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaGa eSiuIiKaamODamaaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaK aadaWgaaWcbaGaamyzaaqabaGccaGGPaGaeyOeI0IaamODamaaBaaa leaacaaIWaaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGaamyzaa qabaGccaGGPaGaaiOlaaaa@5355@

En vertu de (4.6) de nouveau, nous avons

E * { v 0 ( t ^ e )}= v 1 ( t ^ e ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyram aaCaaaleqabaGaaiOkaaaakiaacUhacaWG2bWaaSbaaSqaaiaaicda aeqaaOGaaiikaiqadshagaqcamaaBaaaleaacaWGLbaabeaakiaacM cacaGG9bGaeyypa0JaamODamaaBaaaleaacaaIXaaabeaakiaacIca ceWG0bGbaKaadaWgaaWcbaGaamyzaaqabaGccaGGPaGaaiOlaaaa@49DA@ (B.2)

Soit d ^ 1 = v C ( t ^ y ) v 1 ( t ^ y ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmizay aajaWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamODamaaBaaaleaa caWGdbaabeaakiaacIcaceWG0bGbaKaadaWgaaWcbaGaamyEaaqaba GccaGGPaGaeyOeI0IaamODamaaBaaaleaacaaIXaaabeaakiaacIca ceWG0bGbaKaadaWgaaWcbaGaamyEaaqabaGccaGGPaGaaiilaaaa@4936@  nous avons E( d ^ 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcaceWGKbGbaKaadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyyp a0JaaGimaaaa@3F65@  en vertu de (B.2), ce qui prouve (4.7). En outre, de nouveau en vertu de (B.2), nous avons Cov{ d ^ 1 , v 1 ( t ^ y )}=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaae4qai aab+gacaqG2bGaai4EaiqadsgagaqcamaaBaaaleaacaaIXaaabeaa kiaacYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshaga qcamaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyypa0JaaGim aiaac6caaaa@48D7@  Donc, nous avons

V{ v C ( t ^ y )}=V{ v 1 ( t ^ y )}+V( d ^ 1 )V{ v 1 ( t ^ y )}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacUhacaWG2bWaaSbaaSqaaiaadoeaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyypa0JaamOvai aacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaey4kaSIaamOvai aacIcaceWGKbGbaKaadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyyz ImRaamOvaiaacUhacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiikai qadshagaqcamaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaaiOl aaaa@5B3A@ (B.3)

De la même façon, nous pouvons également prouver que V{ v 0 ( t ^ y )}V{ v C ( t ^ y )}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacUhacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaeyyzImRaamOvai aacUhacaWG2bWaaSbaaSqaaiaadoeaaeqaaOGaaiikaiqadshagaqc amaaBaaaleaacaWG5baabeaakiaacMcacaGG9bGaaiOlaaaa@4CD6@

Bibliographie

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Revue Internationale de Statistique, 51, 279-292.

Breidt, F.J., et Chauvet, G. (2011). Improved variance estimation for balanced samples drawn via the cube method. Journal of Statistical Planning and Inference, 141, 411-425.

Campbell, C. (1980). A different view of the finite population estimation. Proceedings of the Section on Survey Research Methods, American Statistical Association, 319-324.

Deville, J.-C. (1999). Estimation de variance pour des statistiques et des estimateurs complexes : linéarisation et techniques des résidus. Techniques d'enquête, 25, 2, 219-230.

Deville, J.-C., et Tillé, Y. (2005). Variance approximation under balanced sampling. Journal of Statistical Planning and Inference, 128, 411-425.

Dippo, C.S., Fay, R.E. et Morganstein, D.H. (1984). Computing variances from complex samples with replicate weights. Proceedings of the Section on Survey Research Methods, American Statistical Association, Washington, DC, 489-494.

Fay, R.E. (1984). Some properties of estimators of variance based on replication methods. Proceedings of the Section on Survey Research Methods, American Statistical Association, Washington, DC, 495-500.

Fay, R.E., et Dippo, C.S. (1989). Theory and application of replicate weighting for variance calculations. Proceedings of the Section on Survey Research Methods, American Statistical Association, Washington, DC, 212-217.

Fuller, W.A. (1998). Replication variance estimation for two phase samples. Statistica Sinica, 8, 1153-1164.

Fuller, W.A. (2009a). Sampling Statistics. Hoboken, New Jersey : John Wiley & Sons, Inc.

Fuller, W.A. (2009b). Some design properties of a rejective sampling procedure. Biometrika, 96, 933-944.

Godambe, V.P., et Thompson, M.E. (2009). Estimating functions and survey sampling. Dans Handbook of Statistics, (Éds., D. Pfeffermann et C.R. Rao), Sample Surveys: Inference and Analysis, Hollande du Nord, Vol. 29B, 83-101.

Gross, S. (1980). Median estimation in sample surveys. Proceedings of the Section on Survey Research Methods, American Statistical Association, Washington, DC, 181-184.

Isaki, C.T., et Fuller, W.A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77, 89-96.

Jang, D., et Eltinge, J.L. (2009). Utilisation des variances à l'intérieur des unités primaires d'échantillonnage pour évaluer la stabilité d'un estimateur classique de variance fondé sur le plan de sondage. Techniques d'enquête, 35, 2, 255-266.

Kim, J.K., Navarro, A. et Fuller, W.A. (2006). Replication variance estimation for two-phase stratified sampling. Journal of the American Statistical Association, 101, 312-320.

Kott, P.S. (2001). The delete-a-group jackknife. Journal of Official Statistics, 17, 521-526.

Krewski, D., et Rao, J.N.K. (1981). Inference from stratified samples: Properties of the linearization, jackknife and balanced repeated replication methods. Annals of Statistics, 9, 1010-1019.

Lu, W.W., Brick, J.M. et Sitter, R.R. (2006). Algorithms for constructing combining strata variance estimators. Journal of the American Statistical Association, 101, 1680-1692.

Lu, W.W., et Sitter, R.R. (2008). Disclosure risk and replication-based variance estimation. Statistica Sinica, 18, 1669-1687.

McCarthy, P.J., et Snowden, C.B. (1985). The Bootstrap and Finite Population Sampling. Vital and Health Statistics, Sér. 2, No. 95, Public Health Service Publication 85-1369, U.S. Government Printing Office, Washington, DC.

Preston, J. (2009). Bootstrap rééchelonné pour l'échantillonnage stratifié à plusieurs degrés. Techniques d'enquête, 35, 2, 247-254.

Rao, J.N.K. (1965). On two simple schemes of unequal probability sampling without replacement. Journal of the Indian Statistical Association, 3, 173-180.

Rao, J.N.K., et Wu, C.F.J. (1988). Resampling inference with complex survey data. Journal of the American Statistical Association, 83, 231-241.

Rust, K.F., et Kalton, G. (1987). Strategies for collapsing strata for variance estimation. Journal of Official Statistics, 3, 69-81.

Rust, K.F., et Rao, J.N.K. (1996). Variance estimation for complex surveys using replication techniques. Statistical Methods in Medical Research, 5, 283-310.

Sampford, M.R. (1967). On sampling without replacement with unequal probabilities of selection. Biometrika, 54, 499-513.

Shao, J. (1996). Resampling methods in sample surveys (avec discussion). Statistics, 27, 203-254.

Shao, J. (2003). Impact of the bootstrap on sample surveys. Statistical Science, 18, 191-198.

Shao, J., et Tu, D. (1995). The Jackknife and Bootstrap. New York : Springer.

Sitter, R.R. (1992). A resampling procedure for complex survey data. Journal of the American Statistical Association, 87, 755-765.

Sitter, R.R., et Wu, C. (2001). A note on Woodruff confidence intervals for quantiles. Statistics and Probability Letters, 52, 353-358.

Skinner, C.J. (1989). Domain means, regression and multivariate analysis. Dans Analysis of Complex Surveys, (Éds., C.J. Skinner, D. Holt et T.M. Smith), New York : John Wiley & Sons, Inc., 59-88.

Tillé, Y. (2006). Sampling Algorithms. Springer Science + Business Media, Inc.

Wolter, K.M. (2007). Introduction to Variance Estimation (2e Édition). New York : Springer-Verlag.

Wu, C. (2004). Some algorithmic aspects of the empirical likelihood method in survey sampling. Statistica Sinica, 14, 1057-1067.

Wu, C. (2005). Algorithmes et codes R pour la méthode de la pseudo-vraisemblance empirique dans les sondages. Techniques d'enquête, 31, 2, 261-266.

Précédent

Date de modification :