4 Étude de la courbe de consommation moyenne d'électricité

Hervé Cardot, Alain Dessertaine, Camelia Goga, Étienne Josserand et Pauline Lardin

Précédent | Suivant

Nous disposons d'une population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvaa aa@3ADA@  composée de N=15069 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2 da9iaaigdacaaI1aGaaGimaiaaiAdacaaI5aaaaa@3B86@  courbes de consommation électrique mesurées toutes les demi-heures pendant deux semaines consécutives. Nous avons D=336 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaaiodacaaIZaGaaGOnaaaa@39FF@  points de mesure pour chaque semaine et nous souhaitons estimer la courbe moyenne de consommation de la deuxième semaine. On note Y k =( Y k ( t 1 ),, Y k ( t D ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCywaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaamyw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiaaiYcacqWIMaYscaaISaGaamyw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca WGebaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaiYcaaaa@4A50@  la consommation d'électricité de l'individu kU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aai abgIGiolaadwfaaaa@3D4E@  mesurée la deuxième semaine et X k =( X k ( t 1 ),, X k ( t D ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaamiw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiaaiYcacqWIMaYscaaISaGaamiw amaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaaca WGebaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@4997@  sa consommation au cours de la première semaine. La consommation moyenne de chaque individu k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaa aa@3AF0@  durant la première semaine, x k = d=1 D X k ( t d )/D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiabg2da9maaqadabaGaamiwamaaBaaaleaa caWGRbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGKbaabeaaaO GaayjkaiaawMcaaiaac+cacaWGebaaleaacaWGKbGaeyypa0JaaGym aaqaaiaadseaa0GaeyyeIuoakiaaiYcaaaa@4674@  qui est une information simple et peu coûteuse à transmettre, sera utilisée comme information auxiliaire. Cette variable (réelle) qui est connue pour tous les éléments k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaa aa@3AF0@  de la population est fortement liée à la courbe de consommation courante. On note sur la figure 4.1 que la consommation courante en chaque t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaa aa@3AF9@  est quasiment proportionnelle à la consommation moyenne de la semaine précédente.

Figure 4.1 : Représentation de la consommation à un instant t

Description de la figure 4.1

Figure 4.1 : Représentation de la consommation à un instant t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EF@  en fonction de la consommation moyenne de la semaine précédente.

4.1  Description des stratégies utilisées

Nous considérons des échantillons de taille fixe n=1500 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaaigdacaaI1aGaaGimaiaaicdaaaa@3ADD@  obtenus selon différents plans de sondage. Les stratégies présentées sont répétées I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C4@  fois afin d'évaluer et de comparer leurs performances.

1. ÉASSR et estimateur de Horvitz-Thompson.

La mise en œuvre de ce plan est simple, l'estimateur de Horvitz-Thompson de la courbe moyenne est donné par (2.6) et l'estimateur de sa covariance par (2.7).

2. Sondage stratifié STRAT et estimateur de Horvitz-Thompson.

Le plan stratifié est très efficace si les strates sont homogènes par rapport à la variable d'intérêt. Dans ce travail, nous avons utilisé l'algorithme des k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@  -means afin de constituer les strates et nous avons considéré H=10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 da9iaaigdacaaIWaaaaa@393E@  strates. Une première stratification (STRAT 1) a été effectuée à partir de la classification des trajectoires discrétisées X k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCiway aafaWaaSbaaSqaaiaadUgaaeqaaaaa@3C09@  de la première semaine. Une seconde stratification, qui utilise uniquement l'information agrégée x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabmabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaaaaa@3813@  a également été considérée. Elle est notée STRAT 2.

Les tailles des strates N h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaBaaaleaacaWGObaabeaaaaa@3BEC@  obtenues en utilisant les deux stratifications ainsi que les tailles n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3C0C@  optimales, selon (2.5), des échantillons à sélectionner dans chaque strate sont données dans les tableaux 4.1 et 4.2. Dans les deux cas, les strates sont numérotées en ordre croissant par rapport à la consommation moyenne de chaque strate. Plus précisement, la strate 1 correspond aux faibles consommateurs et la strate 10 est composée des 10 plus gros consommateurs d'électricité. Notons que la première stratification, qui nécessite de connaître la consommation d'électricité à chaque instant de mesure t, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDai aacYcaaaa@3BA9@  exige plus d'information que la deuxième stratification. La courbe moyenne est construite en utilisant (2.3) et sa covariance est estimée par (2.4).

Tableau 4.1
STRAT 1 : stratification à partir des courbes. Les strates sont construites à partir des courbes de la semaine 1. L'allocation n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3B9D@ optimale est calculée à partir des courbes de la semaine 1.

Sommaire du tableau
Le tableau montre la stratification à partir des courbes. Les données sont présentées selon h (titres de rangée) et 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (figurant comme en-tête de colonne).
h 1 2 3 4 5 6 7 8 9 10
N h 3 866 4 769 623 2 690 664 1 251 806 328 62 10
n h 212 345 87 242 117 179 172 101 35 10

 

Tableau 4.2
STRAT 2 : stratification à partir de la consommation moyenne x k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakiaac6caaaa@3C66@ L'allocation optimale n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3B9D@ est calculée à partir de la consommation moyenne de la semaine 1.

Sommaire du tableau
Le tableau montre la stratification à partir de la consommation moyenne x k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakiaac6caaaa@3C66@ . Les données sont présentées selon h (titres de rangée) et 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (figurant comme en-tête de colonne).
h 1 2 3 4 5 6 7 8 9 10
N h 3 257 4 236 3 139 1 937 1 189 731 415 125 30 10
n h 260 293 248 204 159 133 111 56 26 10

3. Sondage πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  et estimateur de Horvitz-Thompson.

Nous avons utilisé l'algorithme du cube proposé par Deville et Tillé (2004) et Chauvet et Tillé (2006) où les probabilités d'inclusion sont proportionnelles à x k , kU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiYcacaqGGaGaam4AaiabgIGiolaadwfa aaa@3CC0@ . Afin d'avoir un plan de sondage proche de l'entropie maximale, un tri aléatoire de la population est effectué avant le tirage de l'échantillon s. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cai aai6caaaa@3BB0@  La covariance de l'estimateur de la moyenne est estimée à l'aide de la formule (2.9). L'algorithme du cube est disponible sous R dans le package sampling, fonction samplecube et une macro SAS est disponible sur le site web de l'INSEE (Institut National de Statistique et des Etudes Economiques).

4. ÉASSR et estimateur MA.

L'estimateur μ ^ MA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaaaa@3D8A@  assisté par le modèle ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG haaa@3BC3@  est construit à l'aide de l'information auxiliaire donnée par x k =( 1, x k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEaGGaai ab=jdiIoaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaaGym aiaaiYcacaWG4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaa aaaa@3FC3@  où x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbaabeaaaaa@3C19@  est la consommation moyenne de la semaine précédente. Dans ces conditions, μ ^ MA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiVd0 MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaaaa@3D8A@  est la somme sur toute la population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvaa aa@3ADA@  des valeurs estimées Y ^ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aajaWaaSbaaSqaaiaadUgaaeqaaaaa@3C0A@  par le modèle (voir formule (2.13)). La covariance de l'estimateur de la moyenne est estimée à l'aide de la formule (2.15).

4.2  Erreur d'estimation de la courbe moyenne

L'erreur d'estimation de la courbe moyenne μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37AC@  aux instants t 1 ,, t 336 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDam aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamiDamaa BaaaleaacaaIZaGaaG4maiaaiAdaaeqaaOGaaGilaaaa@4297@  est évaluée selon le critère

R 2 ( μ ^ )= 1 336 i=1 336 ( μ ^ ( t i )μ( t i ) ) 2 1 T 0 T ( μ ^ ( t )μ( t ) ) 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIYaaabeaakmaabmaabaGafqiVd0MbaKaaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaGaaG4maiaaiAdaaa WaaabCaeqaleaacaWGPbGaeyypa0JaaGymaaqaaiaaiodacaaIZaGa aGOnaaqdcqGHris5aOWaaeWaaeaacuaH8oqBgaqcamaabmaabaGaam iDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgkHiTiab eY7aTnaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaysW7 cqGHijYUcaaMe8+aaSaaaeaacaaIXaaabaGaamivaaaadaWdXaqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGcdaqadaqaaiqbeY7aTzaa jaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaeqiVd02aae WaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacaaIUaaaaa@6D39@

Les résultats sont présentés dans le tableau 4.3 pour I=10000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaGimaiaaicdacaaIWaaaaa@3B6D@  simulations (réplications). Ils montrent clairement que, pour cette étude, la prise en compte de la consommation totale de la semaine précédente permet d'améliorer de manière importante la précision de l'estimation de la moyenne par rapport à l'échantillonnage aléatoire simple sans remise en divisant l'erreur quadratique moyenne R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3BBF@  par 5. Parmi les différentes stratégies, les plus performantes semblent être celles qui prennent en compte l'information auxiliaire via les probabilités d'inclusion (STRAT, πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  et systématique proportionnel à la taille).

Tableau 4.3
Erreur quadratique R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3B50@ d'estimation de la moyenne μ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiVd0 Maaiilaaaa@3BF7@ avec I=10000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaa@3C1D@ réplications.

Sommaire du tableau
Le tableau montre l'erreur quadratique R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOuam aaBaaaleaacaaIYaaabeaaaaa@3B50@ d'estimation de la moyenne μ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiVd0 Maaiilaaaa@3BF7@ avec I=10000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaa@3C1D@ réplications.. Les données sont présentées selon stratégie (titres de rangée) et moyenne, 1erquartile, médiane, 3eme (figurant comme en-tête de colonne).
Stratégie moyenne 1 er quartile médiane 3 emequartile
 ÉASSR 40,53 10,82 22,16 51,09
 STRAT (1)  5,78 3,68 5,08 7,07
 STRAT (2)  6,49 4,03 5,48 7,88
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 7,06 3,99 5,52 8,16
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaey OeI0IaamiCaiaadohaaaa@3A8D@ systématique 6,73 3,85 5,20 8,07
MA 8,29 5,24 7,14 10,06

4.3  Taux de couverture et largeur des bandes de confiance

La construction des bandes de confiance de niveau 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiabeg7aHbaa@393D@  nécessite le calcul des quantiles d'ordre 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiabeg7aHbaa@393D@  du supremum de processus gaussiens.

Pour ne pas privilégier une méthode de construction de bande de confiance par rapport à l'autre, nous avons appliqué les deux algorithmes sur un même échantillon et nous avons considéré le même nombre M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C8@  de processus. Ce nombre M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C8@  varie d'un estimateur à l'autre en raison des temps de calculs nécessaires pour les approches de type bootstrap (voir Section 4.4).

Figure 4.2 : Exemples de
bande de confiance.

Description de la figure 4.2

Figure 4.2 : Exemples de bande de confiance.

Le taux de couverture empirique est la proportion de fois, parmi les I=2000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaaIWaGaaGimaiaaicdaaaa@3AB4@  réplications, où la vraie courbe moyenne μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37AC@  se trouve, pour tous les instants t, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY caaaa@37A5@  à l'intérieur de la bande de confiance construite à partir d'une estimation μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aaaaa@37BC@ . Nous avons représenté sur la figure 4.2 deux exemples de bandes de confiance (courbes grises continues) construites à partir des courbes estimées (courbes grises pointillées). Sur la figure 4.2(A), nous constatons que la vraie courbe moyenne sur la population (courbe noir continue) est à l'intérieur de la bande de confiance à chaque instant. À l'opposé, sur la figure 4.2(B), nous constatons que la courbe moyenne de la population est en général surestimée et qu'il existe quelques instants (indiqués par les flèches) où la courbe observée sort de la bande de confiance. Les taux de couverture empiriques sont présentés dans le tableau 4.4.

Les deux méthodes de construction des bandes de confiance donnent des taux de couverture similaires et assez proches des taux nominaux souhaités (95 % et 99 %). Les résultats semblent cependant légèrement moins satisfaisants pour les plans πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  et pour l'approche MA pour lesquels la variance de l'estimateur est complexe et plus difficile à estimer précisément.

Tableau 4.4
Taux de couverture empirique (en %), pour I=2000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B64@ réplications.

Sommaire du tableau
Le tableau montre le taux de couverture empirique (en %), pour I=2000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B64@ réplications. Les données sont présentées selon méthodes (titres de rangée) et nombre M de processus, bootstrap, processus Gaussien (figurant comme en-tête de colonne).
Méthodes Nombre M de processus Bootstrap Processus Gaussien
α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@ α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@
ÉASSR 5 000 94,95 98,85 94,80 98,70
STRAT (1) 5 000 93,92 98,34 94,09 98,43
STRAT (2) 5 000 94,3 98,45 94 98,55
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 1 000 94,73 98,77 93,87 98,61
MA 5 000 94,3 98,5 92,85 98,15

Un autre indicateur intéressant est la largeur moyenne de la bande de confiance,

1 336 i=1 336 2 c α σ ^ ( t i ) 1 T 0 T 2 c α σ ^ ( t )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaG4maiaaiodacaaI2aaaamaaqahabaGaaGOmaiaadoga daWgaaWcbaGaeqySdegabeaakiqbeo8aZzaajaWaaeWaaeaacaWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaaiodacaaIZaGaaGOnaaqdcqGHris5aOGaaG jbVlabgIKi7kaaysW7daWcaaqaaiaaigdaaeaacaWGubaaamaapeda beWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiaaikdacaWGJbWaaS baaSqaaiabeg7aHbqabaGccuaHdpWCgaqcamaabmaabaGaamiDaaGa ayjkaiaawMcaaiaadsgacaWG0baaaa@5D08@

dont les valeurs sont présentées dans le tableau 4.5. Les deux méthodes fournissent des bandes de confiance dont les largeurs sont similaires. On note également que l'utilisation de la variable auxiliaire permet de diminuer sensiblement la largeur moyenne des bandes, celle-ci étant divisée par deux si on considère un des plans stratifiés plutôt qu'un plan d'ÉASSR.

Figure 4.3 : Échantillonnage aléatoire simple sans remise. Largeur des bandes de confiance ponctuelles, globales par simulations de processus et avec Bonferroni

Description de la figure 4.3

Figure 4.3 : Échantillonnage aléatoire simple sans remise. Largeur des bandes de confiance ponctuelles, globales par simulations de processus et avec Bonferroni ( α=0,05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaacYcacaaIWaGaaGynaaaa@3B7E@ ).

Figure 4.4 : Sondage stratifié (STRAT 1). Largeur des
bandes de confiance ponctuelles, globales par simulations de processus et avec
Bonferroni

Description de la figure 4.4

Figure 4.4 : Sondage stratifié (STRAT 1). Largeur des bandes de confiance ponctuelles, globales par simulations de processus et avec Bonferroni (avec α=0,05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaacYcacaaIWaGaaGynaaaa@3B7E@ ).

Les figures 4.3 et 4.4 présentent les largeurs des bandes de confiance pour un niveau α=0,05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaacYcacaaIWaGaaGynaaaa@3B7E@ , pour chaque instant, selon qu'elles soient ponctuelles ( c α =1,96 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacqaHXoqyaeqaaOGaeyypa0JaaGymaiaacYcacaaI5aGaaGOn aaaa@3CA7@  ), estimées par simulations de processus gaussiens ou bien obtenues en considérant l'approche basée sur l'inégalité de Bonferroni appliquée en chaque point de mesure. On a alors, dans ce dernier cas, c α =3,793048 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacqaHXoqyaeqaaOGaeyypa0JaaG4maiaacYcacaaI3aGaaGyo aiaaiodacaaIWaGaaGinaiaaiIdaaaa@3FA1@ , le quantile d'ordre 10,05/( 336×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaaicdacaGGSaGaaGimaiaaiwdacaGGVaWaaeWaaeaacaaIZaGa aG4maiaaiAdacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@41CA@  d'une loi N( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm aabaGaaGimaiaaiYcacaaIXaaacaGLOaGaayzkaaaaaa@3A7D@ . Les bandes obtenues par Bonferroni sont conservatives et considèrent en quelque sorte le pire des cas en termes d'information, celui de l'indépendance des intervalles ponctuels. On peut remarquer que l'approche par simulation permet de réduire sensiblement la largeur moyenne des bandes en comparaison avec Bonferroni lorsque le plan ne permet pas de prendre en compte toute l'information temporelle des données (figure 4.3). À l'opposé, pour le plan stratifié (figure 4.4) qui permet une estimation précise de la courbe moyenne, la bande de confiance construite par simulation est proche de celle de Bonferroni, ce qui s'interprète intuitivement comme le fait que quasiment toute l'information a été capturée par le plan de sondage.

Tableau 4.5
Largeur moyenne des bandes de confiance, pour I=2000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B5C@ réplications.

Sommaire du tableau
Le tableau montre la largeur moyenne des bandes de confiance, pour I=2000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamysaiabg2 da9iaaikdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3B5C@ réplications.. Les données sont présentées selon méthodes (titres de rangée) et nombre M de processus, bootstrap, processus Gaussien (figurant comme en-tête de colonne).
Méthodes Nombre M de processus Bootstrap Processus Gaussien
α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@ α=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaaaa@3BA0@ α=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegeaa aaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaaaaa@3B9C@
ÉASSR 5 000 35,98 43,35 35,99 43,19
STRAT (1) 5 000 16,64 18,92 16,62 18,88
STRAT (2) 5 000 17,58 19,99 17,55 19,94
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 1 000 17,85 20,31 17,62 19,93
MA 5 000 19,88 22,65 19,75 22,44

4.4 Temps de calcul

Les temps de calcul avec la méthode par bootstrap sont largement supérieurs, de l'ordre d'un facteur de 1 à 1000, à ceux de la méthode par simulations de processus gaussiens (voir tableau 4.6). Cette différence importante provient du fait que les méthodes de bootstrap nécessitent de répéter tout le processus d'estimation pour chaque échantillon bootstrapé : construction de la population fictive, tirage d'un nouvel échantillon, calcul de l'estimateur. On remarque également que les plans qui font intervenir de l'information auxiliaire sont moins rapides que le plan d'ÉASSR même si utilisés individuellement leur temps de calcul reste tout à fait raisonnable.

Tableau 4.6
Temps d'exécution d'une simulation en secondes pour M=5000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaacbeGaa8 xtaiabg2da9iaaiwdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3F0D@ réplications. Les stratégies ÉASSR, MA et STRAT ont été programmés avec R et πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8qq0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiWda NaamiCaiaadohaaaa@3D9D@ avec SAS.

Sommaire du tableau
Le tableau montre Temps d'exécution d'une simulation en secondes pour M=5000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaacbeGaa8 xtaiabg2da9iaaiwdacaGGSaGaaGimaiaaicdacaaIWaaaaa@3F0D@ réplications. Les stratégies ÉASSR, MA et STRAT ont été programmés avec R et πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8qq0lf9 Fve9Fve9vapdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeqiWda NaamiCaiaadohaaaa@3D9D@ avec SAS. Les données sont présentées selon stratégie (titres de rangée) et bootstrap, processus gaussiens (figurant comme en-tête de colonne).
Stratégie Bootstrap Processus gaussiens
 ÉASSR  1 170,6 1,0
 STRAT  1 839,5 1,4
πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ 5 020,0 7,3
MA 3 156 1,4

Précédent | Suivant

Date de modification :