2. Théorie de base

Jae-kwang Kim, Seunghwan Park et Seo-young Kim

Précédent | Suivant

À la présente section, nous commençons par présenter la théorie de base qui sous-tend la combinaison de l'information pour l'estimation sur petits domaines. Nous examinons d'abord le cas simple de la combinaison de deux enquêtes. Supposons qu'il existe deux enquêtes,  A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36AD@  et  B, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaamOqaiaacY caaaa@375E@  réalisées selon deux plans d'échantillonnage probabiliste distincts. Les deux enquêtes ne sont pas forcément indépendantes. À partir de l'enquête  A, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaamyqaiaacY caaaa@375D@  nous obtenons un estimateur sans biais sous le plan X ^ h,a = i A h w ia x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qcamaaBaaaleaacaWGObGaaGilaiaadggaaeqaaOGaeyypa0Zaaabe aeqaleaacaWGPbGaeyicI4SaamyqamaaBaaabaGaamiAaaqabaaabe qdcqGHris5aOGaam4DamaaBaaaleaacaWGPbGaamyyaaqabaGccaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaa@4900@  et l'estimateur de sa variance V ^ ( X ^ h ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadAfaga qcamaabmaabaGabmiwayaajaWaaSbaaSqaaiaadIgaaeqaaaGccaGL OaGaayzkaaGaaiOlaaaa@3E33@  À partir de l'enquête  B, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaamOqaiaacY caaaa@375E@  nous obtenons un estimateur sans biais sous le plan Y ^ 1h = i B h w ib y 1i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaaIXaGaamiAaaqabaGccqGH9aqpdaaeqaqabSqa aiaadMgacqGHiiIZcaWGcbWaaSbaaeaacaWGObaabeaaaeqaniabgg HiLdGccaWG3bWaaSbaaSqaaiaadMgacaWGIbaabeaakiaadMhadaWg aaWcbaGaaGymaiaadMgaaeqaaaaa@48DE@  de Y 1h = i U h y 1i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMfada WgaaWcbaGaaGymaiaadIgaaeqaaOGaeyypa0ZaaabeaeqaleaacaWG PbGaeyicI4SaamyvamaaBaaabaGaamiAaaqabaaabeqdcqGHris5aO GaamyEamaaBaaaleaacaaIXaGaamyAaaqabaGccaGGUaaaaa@4696@  L'erreur d'échantillonnage de ( X ^ h , Y ^ 1 h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GabmiwayaajaWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiqadMfagaqc amaaBaaaleaacaaIXaGaamiAaaqabaaakiaawIcacaGLPaaaaaa@4018@  peut être exprimée par le modèle d'erreur d'échantillonnage

( X ^ h Y ^ 1h )=( X h Y 1h )+( N h a h N h b h )(2.1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeaabiqaaaqaaiqadIfagaqcamaaBaaaleaacaWGObaabeaaaOqa aiqadMfagaqcamaaBaaaleaacaaIXaGaamiAaaqabaaaaaGccaGLOa GaayzkaaGaeyypa0ZaaeWaaeaafaqaaeGabaaabaGaamiwamaaBaaa leaacaWGObaabeaaaOqaaiaadMfadaWgaaWcbaGaaGymaiaadIgaae qaaaaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeaabiqaaaqa aiaad6eadaWgaaWcbaGaamiAaaqabaGccaWGHbWaaSbaaSqaaiaadI gaaeqaaaGcbaGaamOtamaaBaaaleaacaWGObaabeaakiaadkgadaWg aaWcbaGaamiAaaqabaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7ca aMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIXaGaaiykaaaa @5C83@

et a h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaGaamiAaaqabaaaaa@3AFC@  et b h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkgada WgaaWcbaGaamiAaaqabaaaaa@3AFD@  représentent les erreurs d'échantillonnage associées à X ^ h / N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GabmiwayaajaWaaSbaaSqaaiaadIgaaeqaaaGcbaGaamOtamaaBaaa leaacaWGObaabeaaaaaaaa@3D0F@  et à Y ^ 1 h / N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GabmywayaajaWaaSbaaSqaaiaaigdacaWGObaabeaaaOqaaiaad6ea daWgaaWcbaGaamiAaaqabaaaaaaa@3DCB@  telles que

( a h b h ) [ ( 0 0 ) , ( V ( a h ) Cov ( a h , b h ) Cov ( a h , b h ) V ( b h ) ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeGabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeqabiqaaaqaaiaadggadaWgaaWcbaGaamiAaaqabaaakeaacaWG IbWaaSbaaSqaaiaadIgaaeqaaaaaaOGaayjkaiaawMcaaebbfv3ySL gzGueE0jxyaGqbaiab=XJi6maadmaabaWaaeWaaeaafaqabeGabaaa baGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaGilamaabmaaba qbaeqabiGaaaqaaiaadAfadaqadaqaaiaadggadaWgaaWcbaGaamiA aaqabaaakiaawIcacaGLPaaaaeaacaqGdbGaae4BaiaabAhadaqada qaaiaadggadaWgaaWcbaGaamiAaaqabaGccaaISaGaamOyamaaBaaa leaacaWGObaabeaaaOGaayjkaiaawMcaaaqaaiaaboeacaqGVbGaae ODamaabmaabaGaamyyamaaBaaaleaacaWGObaabeaakiaaiYcacaWG IbWaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaaabaGaamOvam aabmaabaGaamOyamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMca aaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaIUaaaaa@6744@

Le paramètre d'intérêt est le total de population X h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIfada WgaaWcbaGaamiAaaqabaaaaa@3AF3@  de x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhaaa a@39FA@  dans le domaine h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaca GGUaaaaa@3A9C@

Partant de (1.1), nous obtenons le modèle au niveau du domaine qui suit :

Y 1h = N h β 0 + β 1 X h + e ˜ 1h ,(2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMfada WgaaWcbaGaaGymaiaadIgaaeqaaOGaeyypa0JaamOtamaaBaaaleaa caWGObaabeaakiabek7aInaaBaaaleaacaaIWaaabeaakiabgUcaRi abek7aInaaBaaaleaacaaIXaaabeaakiaadIfadaWgaaWcbaGaamiA aaqabaGccqGHRaWkceWGLbGbaGaadaWgaaWcbaGaaGymaiaadIgaae qaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa ikdacaGGUaGaaGOmaiaacMcaaaa@5671@

( N h , X h , Y 1h , e ˜ 1h )= i U h ( 1, x i , y 1i , e 1i ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaamOtamaaBaaaleaacaWGObaabeaakiaaiYcacaWGybWaaSbaaSqa aiaadIgaaeqaaOGaaGilaiaadMfadaWgaaWcbaGaaGymaiaadIgaae qaaOGaaGilaiqadwgagaacamaaBaaaleaacaaIXaGaamiAaaqabaaa kiaawIcacaGLPaaacqGH9aqpdaaeqaqabSqaaiaadMgacqGHiiIZca WGvbWaaSbaaeaacaWGObaabeaaaeqaniabggHiLdGcdaqadaqaaiaa igdacaaISaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaWG5b WaaSbaaSqaaiaaigdacaWGPbaabeaakiaaiYcacaWGLbWaaSbaaSqa aiaaigdacaWGPbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@5A5E@  Nous pouvons exprimer (2.2) en fonction de la moyenne de population

Y ¯ 1h = β 0 + X ¯ h β 1 + e ¯ 1h ,(2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qeamaaBaaaleaacaaIXaGaamiAaaqabaGccqGH9aqpcqaHYoGydaWg aaWcbaGaaGimaaqabaGccqGHRaWkceWGybGbaebadaWgaaWcbaGaam iAaaqabaGccqaHYoGydaWgaaWcbaGaaGymaaqabaGccqGHRaWkceWG LbGbaebadaWgaaWcbaGaaGymaiaadIgaaeqaaOGaaGilaiaaywW7ca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4maiaa cMcaaaa@54B5@

( X ¯ h , Y ¯ 1h , e ¯ 1h )= N h 1 i U h ( x i , y 1i , e 1i ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GabmiwayaaraWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiqadMfagaqe amaaBaaaleaacaaIXaGaamiAaaqabaGccaaISaGabmyzayaaraWaaS baaSqaaiaaigdacaWGObaabeaaaOGaayjkaiaawMcaaiabg2da9iaa d6eadaqhaaWcbaGaamiAaaqaaiabgkHiTiaaigdaaaGcdaaeqaqabS qaaiaadMgacqGHiiIZcaWGvbWaaSbaaeaacaWGObaabeaaaeqaniab ggHiLdGcdaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaISa GaamyEamaaBaaaleaacaaIXaGaamyAaaqabaGccaaISaGaamyzamaa BaaaleaacaaIXaGaamyAaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@5A19@  Si nous utilisons un modèle d'erreurs emboîtées

e 1hi = ε h + u hi (2.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwgada WgaaWcbaGaaGymaiaadIgacaWGPbaabeaakiabg2da9iabew7aLnaa BaaaleaacaWGObaabeaakiabgUcaRiaadwhadaWgaaWcbaGaamiAai aadMgaaeqaaOGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGOmaiaac6cacaaI0aGaaiykaaaa@4FBA@

ε h ( 0, σ e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLn aaBaaaleaacaWGObaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=XJi 6maabmaabaGaaGimaiaaiYcacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaaakiaawIcacaGLPaaaaaa@4819@  et u h i ( 0, σ u 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhada WgaaWcbaGaamiAaiaadMgaaeqaaebbfv3ySLgzGueE0jxyaGqbaOGa e8hpIOZaaeWaaeaacaaIWaGaaGilaiabeo8aZnaaDaaaleaacaWG1b aabaGaaGOmaaaaaOGaayjkaiaawMcaaiaacYcaaaa@491A@  alors e ¯ 1 h ( 0, σ e , h 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadwgaga qeamaaBaaaleaacaaIXaGaamiAaaqabaqeeuuDJXwAKbsr4rNCHbac faGccqWF8iIodaqadaqaaiaaicdacaaISaGaeq4Wdm3aa0baaSqaai aadwgacaaISaGaamiAaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGG Saaaaa@4A82@   σ e,h 2 = σ e 2 + σ u 2 / N h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGLbGaaGilaiaadIgaaeaacaaIYaaaaOGaeyypa0Ja eq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaOGaey4kaSYaaSGbae aacqaHdpWCdaqhaaWcbaGaamyDaaqaaiaaikdaaaaakeaacaWGobWa aSbaaSqaaiaadIgaaeqaaaaakiaac6caaaa@4A36@  Le modèle d'erreurs emboîtées, dont l'usage est assez fréquent en estimation sur petits domaines (par exemple, Battese, Harter et Fuller 1988), repose sur l'hypothèse que Cov( e 1hi , e 1hj )= σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaboeaca qGVbGaaeODamaabmaabaGaamyzamaaBaaaleaacaaIXaGaamiAaiaa dMgaaeqaaOGaaGilaiaadwgadaWgaaWcbaGaaGymaiaadIgacaWGQb aabeaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaaleaacaWG LbaabaGaaGOmaaaaaaa@49F6@  pour i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHGjsUcaWGQbGaaiOlaaaa@3D53@  Comme N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaaqabaaaaa@3AE9@  est souvent assez grand, nous pouvons supposer sans risque que e ¯ 1h ( 0, σ e,h 2 = σ e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadwgaga qeamaaBaaaleaacaaIXaGaamiAaaqabaqeeuuDJXwAKbsr4rNCHbac faGccqWF8iIodaqadaqaaiaaicdacaaISaGaeq4Wdm3aa0baaSqaai aadwgacaaISaGaamiAaaqaaiaaikdaaaGccqGH9aqpcqaHdpWCdaqh aaWcbaGaamyzaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGUaaaaa@4F2A@  Le modèle (2.2) est appelé modèle d'erreur structurel parce qu'il décrit la relation structurelle entre les deux variables latentes Y 1 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMfada WgaaWcbaGaaGymaiaadIgaaeqaaaaa@3BAF@  et  X h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIfada WgaaWcbaGaamiAaaqabaGccaGGUaaaaa@3BAF@  Les deux modèles, (2.1) et (2.2), sont souvent mentionnés dans la littérature traitant des modèles d'erreur de mesure (Fuller 1987). Donc, le modèle pour l'estimation sur petits domaines peut être considéré comme un modèle d'erreur de mesure, comme l'a suggéré Fuller (1991) qui a été le premier à utiliser l'approche du modèle d'erreur de mesure dans la modélisation au niveau de l'unité pour l'estimation sur petits domaines.

Maintenant, si nous définissons ( y ¯ 1h , x ¯ h )= N h 1 ( Y ^ 1h , X ^ h ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GabmyEayaaraWaaSbaaSqaaiaaigdacaWGObaabeaakiaaiYcaceWG 4bGbaebadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacqGH9a qpcaWGobWaa0baaSqaaiaadIgaaeaacqGHsislcaaIXaaaaOWaaeWa aeaaceWGzbGbaKaadaWgaaWcbaGaaGymaiaadIgaaeqaaOGaaGilai qadIfagaqcamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaa cYcaaaa@4CD8@  en combinant (2.1) et (2.3), nous obtenons

( y ¯ 1h x ¯ h )=( β 0 β 1 0 1 )( 1 X ¯ h )+( b h + e ¯ 1h a h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeaabiqaaaqaaiqadMhagaqeamaaBaaaleaacaaIXaGaamiAaaqa baaakeaaceWG4bGbaebadaWgaaWcbaGaamiAaaqabaaaaaGccaGLOa GaayzkaaGaeyypa0ZaaeWaaeaafaqaaeGacaaabaGaeqOSdi2aaSba aSqaaiaaicdaaeqaaaGcbaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaa GcbaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaWaaeWaaeaafaqa aeGabaaabaGaaGymaaqaaiqadIfagaqeamaaBaaaleaacaWGObaabe aaaaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaauaabeqaceaaaeaa caWGIbWaaSbaaSqaaiaadIgaaeqaaOGaey4kaSIabmyzayaaraWaaS baaSqaaiaaigdacaWGObaabeaaaOqaaiaadggadaWgaaWcbaGaamiA aaqabaaaaaGccaGLOaGaayzkaaaaaa@57A8@

qui peut également s'écrire sous la forme

( y ¯ 1h β 0 x ¯ h )=( β 1 1 ) X ¯ h +( b h + e ¯ 1h a h ).(2.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeaabiqaaaqaaiqadMhagaqeamaaBaaaleaacaaIXaGaamiAaaqa baGccqGHsislcqaHYoGydaWgaaWcbaGaaGimaaqabaaakeaaceWG4b GbaebadaWgaaWcbaGaamiAaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaafaqaaeGabaaabaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGymaaaaaiaawIcacaGLPaaaceWGybGbaebadaWgaaWc baGaamiAaaqabaGccqGHRaWkdaqadaqaauaabeqaceaaaeaacaWGIb WaaSbaaSqaaiaadIgaaeqaaOGaey4kaSIabmyzayaaraWaaSbaaSqa aiaaigdacaWGObaabeaaaOqaaiaadggadaWgaaWcbaGaamiAaaqaba aaaaGccaGLOaGaayzkaaGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaGynaiaacMcaaaa@618C@

Donc, quand tous les paramètres du modèle (2.5) sont connus, le meilleur estimateur de X ¯ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qeamaaBaaaleaacaWGObaabeaaaaa@3B0B@  peut être calculé par

X ¯ ^ h = { ( β 1 ,1 ) V h 1 ( β 1 ,1 ) } 1 ( β 1 ,1 ) V h 1 ( y ¯ 1h β 0 , x ¯ h ) (2.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qegaqcamaaBaaaleaacaWGObaabeaakiabg2da9maacmaabaWaaeWa aeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaaISaGaaGymaaGaay jkaiaawMcaaiaadAfadaqhaaWcbaGaamiAaaqaaiabgkHiTiaaigda aaGcdaqadaqaaiabek7aInaaBaaaleaacaaIXaaabeaakiaaiYcaca aIXaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIOaaaacaGL 7bGaayzFaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacq aHYoGydaWgaaWcbaGaaGymaaqabaGccaaISaGaaGymaaGaayjkaiaa wMcaaiaadAfadaqhaaWcbaGaamiAaaqaaiabgkHiTiaaigdaaaGcda qadaqaaiqadMhagaqeamaaBaaaleaacaaIXaGaamiAaaqabaGccqGH sislcqaHYoGydaWgaaWcbaGaaGimaaqabaGccaaISaGabmiEayaara WaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa kiadacUHYaIOaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGOmaiaac6cacaaI2aGaaiykaaaa@749F@

V h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAfada WgaaWcbaGaamiAaaqabaaaaa@3AF1@  est la matrice de variance-covariance de  ( b h + e ¯ 1 h , a h ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaamOyamaaBaaaleaacaWGObaabeaakiabgUcaRiqadwgagaqeamaa BaaaleaacaaIXaGaamiAaaqabaGccaaISaGaamyyamaaBaaaleaaca WGObaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGGBOmGika aiaac6caaaa@46E2@  La variance de X ¯ ^ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qegaqcamaaBaaaleaacaWGObaabeaaaaa@3B1A@  est donnée par  { ( β 1 ,1 ) V h 1 ( β 1 ,1 ) } 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaacmaaba WaaeWaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaaISaGaaGym aaGaayjkaiaawMcaaiaadAfadaqhaaWcbaGaamiAaaqaaiabgkHiTi aaigdaaaGcdaqadaqaaiabek7aInaaBaaaleaacaaIXaaabeaakiaa iYcacaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIOaa aacaGL7bGaayzFaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiOl aaaa@4F9D@  L'estimateur en (2.6) peut être appelé estimateur par les moindres carrés généralisés (MCG), parce qu'il s'appuie sur la méthode des moindres carrés généralisés de la théorie des modèles linéaires. La méthode MCG est utile parce qu'elle est optimale et qu'elle permet d'incorporer naturellement des sources d'information supplémentaires. Par exemple, si un autre estimateur y ¯ 2 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaBaaaleaacaaIYaGaamiAaaqabaaaaa@3BE8@  de  Y ¯ 2 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qeamaaBaaaleaacaaIYaGaamiAaaqabaaaaa@3BC8@  est également disponible et satisfait

Y ¯ 2h = γ 0 + γ 1 X ¯ h + e ¯ 2h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qeamaaBaaaleaacaaIYaGaamiAaaqabaGccqGH9aqpcqaHZoWzdaWg aaWcbaGaaGimaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaaGymaa qabaGcceWGybGbaebadaWgaaWcbaGaamiAaaqabaGccqGHRaWkceWG LbGbaebadaWgaaWcbaGaaGOmaiaadIgaaeqaaaaa@48B9@

et

y ¯ 2h = Y ¯ 2h + c h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaBaaaleaacaaIYaGaamiAaaqabaGccqGH9aqpceWGzbGbaeba daWgaaWcbaGaaGOmaiaadIgaaeqaaOGaey4kaSIaam4yamaaBaaale aacaWGObaabeaakiaaiYcaaaa@436F@

alors le modèle MCG étendu s'écrit

( y ¯ 2h γ 0 y ¯ 1h β 0 x ¯ h )=( γ 1 β 1 1 ) X ¯ h +( c h + e ¯ 2h b h + e ¯ 1h a h )(2.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeaabmqaaaqaaiqadMhagaqeamaaBaaaleaacaaIYaGaamiAaaqa baGccqGHsislcqaHZoWzdaWgaaWcbaGaaGimaaqabaaakeaaceWG5b GbaebadaWgaaWcbaGaaGymaiaadIgaaeqaaOGaeyOeI0IaeqOSdi2a aSbaaSqaaiaaicdaaeqaaaGcbaGabmiEayaaraWaaSbaaSqaaiaadI gaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeaabmqa aaqaaiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiabek7aInaaBa aaleaacaaIXaaabeaaaOqaaiaaigdaaaaacaGLOaGaayzkaaGabmiw ayaaraWaaSbaaSqaaiaadIgaaeqaaOGaey4kaSYaaeWaaeaafaqabe WabaaabaGaam4yamaaBaaaleaacaWGObaabeaakiabgUcaRiqadwga gaqeamaaBaaaleaacaaIYaGaamiAaaqabaaakeaacaWGIbWaaSbaaS qaaiaadIgaaeqaaOGaey4kaSIabmyzayaaraWaaSbaaSqaaiaaigda caWGObaabeaaaOqaaiaadggadaWgaaWcbaGaamiAaaqabaaaaaGcca GLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGOmaiaac6cacaaI3aGaaiykaaaa@6FBB@

et l'estimateur MCG peut être obtenu par

X ¯ ^ h2 = { ( γ 1 , β 1 ,1 ) V h2 1 ( γ 1 , β 1 ,1 ) } 1 ( γ 1 , β 1 ,1 ) V h2 1 ( y ¯ 2h γ 0 , y ¯ 1h β 0 , x ¯ h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qegaqcamaaBaaaleaacaWGObGaaGOmaaqabaGccqGH9aqpdaGadaqa amaabmaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabek 7aInaaBaaaleaacaaIXaaabeaakiaaiYcacaaIXaaacaGLOaGaayzk aaGaamOvamaaDaaaleaacaWGObGaaGOmaaqaaiabgkHiTiaaigdaaa Gcdaqadaqaaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH YoGydaWgaaWcbaGaaGymaaqabaGccaaISaGaaGymaaGaayjkaiaawM caamaaCaaaleqabaGccWaGGBOmGikaaaGaay5Eaiaaw2haamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaGaeq4SdC2aaSbaaSqaai aaigdaaeqaaOGaaGilaiabek7aInaaBaaaleaacaaIXaaabeaakiaa iYcacaaIXaaacaGLOaGaayzkaaGaamOvamaaDaaaleaacaWGObGaaG OmaaqaaiabgkHiTiaaigdaaaGcdaqadaqaaiqadMhagaqeamaaBaaa leaacaaIYaGaamiAaaqabaGccqGHsislcqaHZoWzdaWgaaWcbaGaaG imaaqabaGccaaISaGabmyEayaaraWaaSbaaSqaaiaaigdacaWGObaa beaakiabgkHiTiabek7aInaaBaaaleaacaaIWaaabeaakiaaiYcace WG4bGbaebadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaOGamai4gkdiIcaaaaa@7C9F@

V h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAfada WgaaWcbaGaamiAaiaaikdaaeqaaaaa@3BAD@  est la matrice de variance-covariance de ( c h + e ¯ 2 h , b h + e ¯ 1 h , a h ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba Gaam4yamaaBaaaleaacaWGObaabeaakiabgUcaRiqadwgagaqeamaa BaaaleaacaaIYaGaamiAaaqabaGccaaISaGaamOyamaaBaaaleaaca WGObaabeaakiabgUcaRiqadwgagaqeamaaBaaaleaacaaIXaGaamiA aaqabaGccaaISaGaamyyamaaBaaaleaacaWGObaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGccWaGGBOmGikaaiaac6caaaa@4D66@  La variance de l'estimateur MCG est { ( γ 1 , β 1 ,1 ) V h 2 1 ( γ 1 , β 1 ,1 ) } 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaacmaaba WaaeWaaeaacqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOS di2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaigdaaiaawIcacaGLPa aacaWGwbWaa0baaSqaaiaadIgacaaIYaaabaGaeyOeI0IaaGymaaaa kmaabmaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabek 7aInaaBaaaleaacaaIXaaabeaakiaaiYcacaaIXaaacaGLOaGaayzk aaWaaWbaaSqabeaakiadacUHYaIOaaaacaGL7bGaayzFaaWaaWbaaS qabeaacqGHsislcaaIXaaaaOGaaiOlaaaa@56F5@  Si y ¯ 2 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaBaaaleaacaaIYaGaamiAaaqabaaaaa@3BE8@  est indépendant de ( x ¯ h , y ¯ 1 h ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GabmiEayaaraWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiqadMhagaqe amaaBaaaleaacaaIXaGaamiAaaqabaaakiaawIcacaGLPaaacaGGSa aaaa@4118@  le gain d'efficacité, en termes de variance relative, qui découle de l'incorporation de y ¯ 2 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaBaaaleaacaaIYaGaamiAaaqabaaaaa@3BE8@  dans l'estimateur MCG peut s'exprimer sous la forme

V( X ¯ ^ h2 )V( X ¯ ^ h ) V( X ¯ ^ h ) = { V( y ¯ 2h / γ 1 ) } 1 { V( X ¯ ^ h ) } 1 + { V( y ¯ 2h / γ 1 ) } 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaaba GaamOvamaabmaabaGabmiwayaaryaajaWaaSbaaSqaaiaadIgacaaI YaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadAfadaqadaqaaiqadI fagaqegaqcamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaaqa aiaadAfadaqadaqaaiqadIfagaqegaqcamaaBaaaleaacaWGObaabe aaaOGaayjkaiaawMcaaaaacqGH9aqpcqGHsisldaWcaaqaamaacmaa baGaamOvamaabmaabaWaaSGbaeaaceWG5bGbaebadaWgaaWcbaGaaG OmaiaadIgaaeqaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaaa aOGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaeyOeI0 IaaGymaaaaaOqaamaacmaabaGaamOvamaabmaabaGabmiwayaaryaa jaWaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaay zFaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey4kaSYaaiWaaeaa caWGwbWaaeWaaeaadaWcgaqaaiqadMhagaqeamaaBaaaleaacaaIYa GaamiAaaqabaaakeaacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaaGc caGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacqGHsislca aIXaaaaaaakiaaiYcaaaa@6CBA@

V( y ¯ 2h / γ 1 )=V ( c h + e ¯ 2h )/ γ 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAfada qadaqaamaalyaabaGabmyEayaaraWaaSbaaSqaaiaaikdacaWGObaa beaaaOqaaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaaakiaawIcaca GLPaaacqGH9aqpcaWGwbWaaSGbaeaadaqadaqaaiaadogadaWgaaWc baGaamiAaaqabaGccqGHRaWkceWGLbGbaebadaWgaaWcbaGaaGOmai aadIgaaeqaaaGccaGLOaGaayzkaaaabaGaeq4SdC2aa0baaSqaaiaa igdaaeaacaaIYaaaaaaakiaac6caaaa@4E59@  Le gain est important si la variance d'échantillonnage de y ¯ 2 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga qeamaaBaaaleaacaaIYaGaamiAaaqabaaaaa@3BE8@  ainsi que la variance du modèle V ( e ¯ 2 h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAfada qadaqaaiqadwgagaqeamaaBaaaleaacaaIYaGaamiAaaqabaaakiaa wIcacaGLPaaaaaa@3E42@  sont faibles. Si γ 1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo7aNn aaBaaaleaacaaIXaaabeaakiabg2da9iaaicdacaGGSaaaaa@3E05@  alors le gain est nul.

Remarque 1 Notons que le modèle (2.5) peut également s'écrire

( β 1 1 ( y ¯ 1h β 0 ) x ¯ h )=( 1 1 ) X ¯ h +( ( b h + e ¯ 1h )/ β 1 a h ).(2.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba qbaeqabiqaaaqaaiabek7aInaaDaaaleaacaaIXaaabaGaeyOeI0Ia aGymaaaakmaabmaabaGabmyEayaaraWaaSbaaSqaaiaaigdacaWGOb aabeaakiabgkHiTiabek7aInaaBaaaleaacaaIWaaabeaaaOGaayjk aiaawMcaaaqaaiqadIhagaqeamaaBaaaleaacaWGObaabeaaaaaaki aawIcacaGLPaaacqGH9aqpdaqadaqaauaabaqaceaaaeaacaaIXaaa baGaaGymaaaaaiaawIcacaGLPaaaceWGybGbaebadaWgaaWcbaGaam iAaaqabaGccqGHRaWkdaqadaqaauaabeqaceaaaeaadaWcgaqaamaa bmaabaGaamOyamaaBaaaleaacaWGObaabeaakiabgUcaRiqadwgaga qeamaaBaaaleaacaaIXaGaamiAaaqabaaakiaawIcacaGLPaaaaeaa cqaHYoGydaWgaaWcbaGaaGymaaqabaaaaaGcbaGaamyyamaaBaaale aacaWGObaabeaaaaaakiaawIcacaGLPaaacaaIUaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaI4aGaaiykaa aa@69AE@

L'estimateur MCG obtenu à partir de (2.8), qui est le même que l'estimateur MCG obtenu à partir de (2.5), peut être exprimé sous la forme

X ¯ ^ h = α h x ¯ h +( 1 α h ) x ˜ h (2.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qegaqcamaaBaaaleaacaWGObaabeaakiabg2da9iabeg7aHnaaBaaa leaacaWGObaabeaakiqadIhagaqeamaaBaaaleaacaWGObaabeaaki abgUcaRmaabmaabaGaaGymaiabgkHiTiabeg7aHnaaBaaaleaacaWG ObaabeaaaOGaayjkaiaawMcaaiqadIhagaacamaaBaaaleaacaWGOb aabeaakiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikda caGGUaGaaGyoaiaacMcaaaa@5577@

x ˜ h = β 1 1 ( y ¯ 1h β 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIhaga acamaaBaaaleaacaWGObaabeaakiabg2da9iabek7aInaaDaaaleaa caaIXaaabaGaeyOeI0IaaGymaaaakmaabmaabaGabmyEayaaraWaaS baaSqaaiaaigdacaWGObaabeaakiabgkHiTiabek7aInaaBaaaleaa caaIWaaabeaaaOGaayjkaiaawMcaaaaa@4868@  et

α h = V( x ˜ h )Cov( x ¯ h , x ˜ h ) V( x ¯ h )+V( x ˜ h )2Cov( x ¯ h , x ˜ h ) = σ e,h 2 +V( b h ) β 1 Cov( a h , b h ) σ e,h 2 +V( b h )+ β 1 2 V( a h )2 β 1 Cov( a h , b h ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabaqGcm aaaeaacqaHXoqydaWgaaWcbaGaamiAaaqabaaakeaacqGH9aqpaeaa daWcaaqaaiaadAfadaqadaqaaiqadIhagaacamaaBaaaleaacaWGOb aabeaaaOGaayjkaiaawMcaaiabgkHiTiaaboeacaqGVbGaaeODamaa bmaabaGabmiEayaaraWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiqadI hagaacamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaaqaaiaa dAfadaqadaqaaiqadIhagaqeamaaBaaaleaacaWGObaabeaaaOGaay jkaiaawMcaaiabgUcaRiaadAfadaqadaqaaiqadIhagaacamaaBaaa leaacaWGObaabeaaaOGaayjkaiaawMcaaiabgkHiTiaaikdacaqGdb Gaae4BaiaabAhadaqadaqaaiqadIhagaqeamaaBaaaleaacaWGObaa beaakiaaiYcaceWG4bGbaGaadaWgaaWcbaGaamiAaaqabaaakiaawI cacaGLPaaaaaaabaaabaGaeyypa0dabaWaaSaaaeaacqaHdpWCdaqh aaWcbaGaamyzaiaaiYcacaWGObaabaGaaGOmaaaakiabgUcaRiaadA fadaqadaqaaiaadkgadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGL PaaacqGHsislcqaHYoGydaWgaaWcbaGaaGymaaqabaGccaqGdbGaae 4BaiaabAhadaqadaqaaiaadggadaWgaaWcbaGaamiAaaqabaGccaaI SaGaamOyamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaaqaai abeo8aZnaaDaaaleaacaWGLbGaaGilaiaadIgaaeaacaaIYaaaaOGa ey4kaSIaamOvamaabmaabaGaamOyamaaBaaaleaacaWGObaabeaaaO GaayjkaiaawMcaaiabgUcaRiabek7aInaaDaaaleaacaaIXaaabaGa aGOmaaaakiaadAfadaqadaqaaiaadggadaWgaaWcbaGaamiAaaqaba aakiaawIcacaGLPaaacqGHsislcaaIYaGaeqOSdi2aaSbaaSqaaiaa igdaaeqaaOGaae4qaiaab+gacaqG2bWaaeWaaeaacaWGHbWaaSbaaS qaaiaadIgaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaamiAaaqabaaa kiaawIcacaGLPaaaaaGaaGilaaaaaaa@9A4F@

L'estimateur x ˜ h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIhaga acamaaBaaaleaacaWGObaabeaakiaacYcaaaa@3BDC@  lorsqu'il est calculé en utilisant le paramètre estimé β ^ =( β ^ 0 , β ^ 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaGaeyypa0ZaaeWaaeaacuaHYoGygaqcamaaBaaaleaacaaIWaaa beaakiaaiYcacuaHYoGygaqcamaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaiaacYcaaaa@43E6@  est appelé estimateur synthétique, et l'estimateur optimal en (2.9) est souvent appelé estimateur composite. On peut montrer qu'en ignorant l'effet de l'estimation de β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIj aacYcaaaa@3B4E@  la variance de l'estimateur composite est égale à

V( X ¯ ^ h X ¯ h )= α h V( x ¯ h )+( 1 α h )Cov( x ¯ h , x ˜ h )(2.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAfada qadaqaaiqadIfagaqegaqcamaaBaaaleaacaWGObaabeaakiabgkHi TiqadIfagaqeamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaai abg2da9iabeg7aHnaaBaaaleaacaWGObaabeaakiaadAfadaqadaqa aiqadIhagaqeamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaai abgUcaRmaabmaabaGaaGymaiabgkHiTiabeg7aHnaaBaaaleaacaWG ObaabeaaaOGaayjkaiaawMcaaiaaboeacaqGVbGaaeODamaabmaaba GabmiEayaaraWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiqadIhagaac amaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaicda caGGPaaaaa@651E@

et, comme α h < 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGObaabeaatCvAUfKttLearyWrPrgz5vhCGmfDKbac faGccqWF8aapcaaIXaGaaiilaaaa@44D8@  l'estimateur composite est plus efficace que l'estimateur direct.

Précédent | Suivant

Date de modification :