2. Pondération par calage en une étape

Phillip S. Kott et Dan Liao

Précédent | Suivant

2.1 Pondération par calage et non-réponse totale

En l’absence de non-réponse (ou d’erreurs de base de sondage), la pondération par calage est une méthode d’ajustement des poids d’échantillonnage en vue de créer un ensemble de poids { w k ; k S } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaGadeqaai aadEhadaWgaaWcbaGaam4AaaqabaGccaGG7aGaam4AaiabgIGiolaa dofaaiaawUhacaGL9baacaGGSaaaaa@4174@  asymptotiquement proche des poids de sondage originaux, d k = 1 / π k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaeqiW da3aaSbaaSqaaiaadUgaaeqaaOGaaiilaaaaaaa@3FDE@  qui satisfont à un ensemble d’équations de calage (une pour chaque composante de z k ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaOGaaiykaiaacQdaaaa@3BF9@

S w k z k = U z k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadEhadaWgaaWcbaGaam4AaaqabaGccaWH6bWaaSbaaSqaaiaadUga aeqaaaqaaiaadofaaeqaniabggHiLdGccqGH9aqpdaaeqaqaaiaahQ hadaWgaaWcbaGaam4AaaqabaGccaGGSaaaleaacaWGvbaabeqdcqGH ris5aaaa@45FB@

S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@393D@  désigne l’échantillon, π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaam4Aaaqabaaaaa@3B3E@  désigne la probabilité de sélection dans l’échantillon de l’unité k , U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaai ilaiaaykW7caWGvbaaaa@3C6A@  désigne la population de taille N , z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaai ilaiaaykW7caaMc8UaaCOEamaaBaaaleaacaWGRbaabeaaaaa@3F1D@  est un vecteur comprenant P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@393A@  composantes ayant chacune un total de population connu, et A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaamyqaaqabaaaaa@3AFB@  signifie k A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaam4AaiabgIGiolaadgeaaeqaaOGaaiOlaaaa@3E2B@

Kott (2009) décrit un ensemble prudent de conditions faibles sous lesquelles t y = S w k y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeyyeIu+aaSbaaSqaaiaadofa aeqaaOGaam4DamaaBaaaleaacaWGRbaabeaakiaadMhadaWgaaWcba Gaam4Aaaqabaaaaa@4286@  est un estimateur quasi sans biais du total de population T y = U y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeyyeIu+aaSbaaSqaaiaadwfa aeqaaOGaamyEamaaBaaaleaacaWGRbaabeaaaaa@4046@  (c’est-à-dire que le biais relatif de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaaaa@3A88@  est asymptotiquement nul). Fait plus important, on suppose que chaque probabilité π k N / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai abec8aWnaaBaaaleaacaWGRbaabeaakiaad6eaaeaacaWGUbaaaaaa @3D24@  possède une borne inférieure positive égale à N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3938@  et que la taille d’échantillon (prévue), n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbGaai ilaaaa@3A08@  devient arbitrairement grande (nous ajoutons entre parenthèses le terme « prévue » au cas où la taille d’échantillon est aléatoire).

En outre, on suppose que les quatre premiers moments de population centrés de chaque composante de z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaaaa@3A84@  possèdent une borne supérieure, tandis que N 1 U z k z k T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyeIu+aaSbaaSqaaiaadwfa aeqaaOGaaCOEamaaBaaaleaacaWGRbaabeaakiaahQhadaqhaaWcba Gaam4Aaaqaaiaadsfaaaaaaa@42ED@  converge vers une matrice définie positive.

L’utilisation de la pondération par calage aura tendance à réduire l’erreur quadratique moyenne par rapport à l’estimateur à facteur d’extension (expansion estimator), t y E = S d k y k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaa0 baaSqaaiaadMhaaeaacaWGfbaaaOGaeyypa0JaeyyeIu+aaSbaaSqa aiaadofaaeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiaadMhada WgaaWcbaGaam4AaaqabaGccaGGSaaaaa@43F7@  quand y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadUgaaeqaaaaa@3A7F@  est corrélée à certaines composantes de z k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaOGaaiOlaaaa@3B40@  Cependant, il ne faut pas perdre de vue que, dans la plupart des enquêtes, les variables étudiées y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadUgaaeqaaaaa@3A7F@  sont nombreuses.

Un moyen simple de calculer les poids de calage consiste à le faire linéairement en utilisant la formule suivante :

w k = d k [ 1 + ( U z j S d j z j ) T ( S d j z j z j T ) 1 z k ] = d k [ 1 + g T z k ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGada aabaGaam4DamaaBaaaleaacaWGRbaabeaaaOqaaiabg2da9aqaaiaa dsgadaWgaaWcbaGaam4AaaqabaGcdaWadaqaaiaaigdacqGHRaWkda qadaqaamaaqababaGaaCOEamaaBaaaleaacaWGQbaabeaaaeaacaWG vbaabeqdcqGHris5aOGaeyOeI0YaaabeaeaacaWGKbWaaSbaaSqaai aadQgaaeqaaOGaaCOEamaaBaaaleaacaWGQbaabeaaaeaacaWGtbaa beqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaO WaaeWaaeaadaaeqaqaaiaadsgadaWgaaWcbaGaamOAaaqabaGccaWH 6bWaaSbaaSqaaiaadQgaaeqaaOGaaCOEamaaDaaaleaacaWGQbaaba GaamivaaaaaeaacaWGtbaabeqdcqGHris5aaGccaGLOaGaayzkaaWa aWbaaSqabeaacqGHsislcaaIXaaaaOGaaCOEamaaBaaaleaacaWGRb aabeaaaOGaay5waiaaw2faaaqaaaqaaiabg2da9aqaaiaadsgadaWg aaWcbaGaam4AaaqabaGcdaWadaqaaiaaigdacqGHRaWkcaWHNbWaaW baaSqabeaacaWGubaaaOGaaCOEamaaBaaaleaacaWGRbaabeaaaOGa ay5waiaaw2faaiaac6caaaaaaa@6B7A@

Fuller et coll. (1994) et plus tard Lundström et Särndal (1999) ont soutenu que ce calage linéaire peut aussi être utilisé pour traiter la non-réponse totale. L’échantillon S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@393D@  est remplacé par l’échantillon de répondants R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbGaai ilaaaa@39EC@  tandis que

g = [ ( 1 θ ) ( U z j R d j z j ) T + θ ( S d j z j R d j z j ) T ] ( R d j z j z j T ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbGaey ypa0ZaamWaaeaadaqadaqaaiaaigdacqGHsislcqaH4oqCaiaawIca caGLPaaadaqadaqaamaaqababaGaaCOEamaaBaaaleaacaWGQbaabe aaaeaacaWGvbaabeqdcqGHris5aOGaeyOeI0YaaabeaeaacaWGKbWa aSbaaSqaaiaadQgaaeqaaOGaaCOEamaaBaaaleaacaWGQbaabeaaae aacaWGsbaabeqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaa caWGubaaaOGaey4kaSIaeqiUde3aaeWaaeaadaaeqaqaaiaadsgada WgaaWcbaGaamOAaaqabaGccaWH6bWaaSbaaSqaaiaadQgaaeqaaaqa aiaadofaaeqaniabggHiLdGccqGHsisldaaeqaqaaiaadsgadaWgaa WcbaGaamOAaaqabaGccaWH6bWaaSbaaSqaaiaadQgaaeqaaaqaaiaa dkfaaeqaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiaads faaaaakiaawUfacaGLDbaadaqadaqaamaaqababaGaamizamaaBaaa leaacaWGQbaabeaakiaahQhadaWgaaWcbaGaamOAaaqabaGccaWH6b Waa0baaSqaaiaadQgaaeaacaWGubaaaaqaaiaadkfaaeqaniabggHi LdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca GGSaaaaa@7260@

selon que l’échantillon de répondants est calé sur la population ( θ = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai abeI7aXjabg2da9iaaicdaaiaawIcacaGLPaaaaaa@3D65@  ou calé sur l’échantillon original ( θ = 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai abeI7aXjabg2da9iaaigdaaiaawIcacaGLPaaacaGGUaaaaa@3E18@  Dans l’un et l’autre cas, l’estimation est quasi sans biais sous le quasi-plan d’échantillonnage qui traite la réponse comme une deuxième phase d’échantillonnage aléatoire à condition que la probabilité de réponse de chaque unité soit de la forme :

p k = 1 / ( 1 + γ T z k ) , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaWaaeWa beaacaaIXaGaey4kaSIaaC4SdmaaCaaaleqabaGaamivaaaakiaahQ hadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaaGaaiilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG ymaiaacMcaaaa@4FED@

et g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbaaaa@3955@  est un estimateur convergent du vecteur de paramètres inconnus γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHZoaaaa@39A4@  dans l’équation (2.1).

Le problème en ce qui concerne la fonction de réponse donnée par l’équation (2.1) est que l’estimateur implicite de p k , p ^ k = 1 / ( 1 + g T z k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadUgaaeqaaOGaaiilaiqadchagaqcamaaBaaaleaacaWG Rbaabeaakiabg2da9maalyaabaGaaGymaaqaamaabmqabaGaaGymai abgUcaRiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaaaaaaa@4682@  peut être négatif. Une forme non linéaire de la pondération par calage permettant d’éviter cette possibilité a été proposée par Kott et Liao (2012) qui se sont fondés sur la forme exponentielle généralisée de Folsom et Singh (2000). Cette forme de calage fait appel à la méthode de Newton (approximations itératives du développement en série de Taylor) pour trouver un g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbaaaa@3955@  tel que l’équation de calage (à partir d’ici, nous utilisons le terme équation de calage pour faire référence au vecteur des équations de calage des composantes):

R w k z k = R d k α ( g T z k ) z k = ( 1 θ ) U z k + θ S d k z k ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadEhadaWgaaWcbaGaam4AaaqabaGccaWH6bWaaSbaaSqaaiaadUga aeqaaaqaaiaadkfaaeqaniabggHiLdGccqGH9aqpdaaeqaqaaiaads gadaWgaaWcbaGaam4AaaqabaGccqaHXoqydaqadeqaaiaahEgadaah aaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqaaiaadUgaaeqaaaGcca GLOaGaayzkaaGaaCOEamaaBaaaleaacaWGRbaabeaaaeaacaWGsbaa beqdcqGHris5aOGaeyypa0ZaaeWabeaacaaIXaGaeyOeI0IaeqiUde hacaGLOaGaayzkaaWaaabeaeaacaWH6bWaaSbaaSqaaiaadUgaaeqa aOGaey4kaSIaeqiUde3aaabeaeaacaWGKbWaaSbaaSqaaiaadUgaae qaaOGaaCOEamaaBaaaleaacaWGRbaabeaaaeaacaWGtbaabeqdcqGH ris5aOGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmai aac6cacaaIYaGaaiykaaWcbaGaamyvaaqab0GaeyyeIuoaaaa@6E3A@

est vérifiée, où θ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIWaaaaa@3BDB@  ou 1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaaGymaiaacY caaaa@3752@

α ( g T z k ) = + exp ( g T z k ) 1 + exp ( g T z k ) / u , ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqWIte cBcqGHRaWkciGGLbGaaiiEaiaacchadaqadeqaaiaahEgadaahaaWc beqaaiaadsfaaaGccaWH6bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOa GaayzkaaaabaGaaGymaiabgUcaRmaalyaabaGaciyzaiaacIhacaGG WbWaaeWabeaacaWHNbWaaWbaaSqabeaacaWGubaaaOGaaCOEamaaBa aaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaqaaiaadwhaaaaaaiaa cYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaai OlaiaaiodacaGGPaaaaa@62A2@

, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBca GGSaaaaa@3A46@  la borne inférieure de α ( ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiabgwSixdGaayjkaiaawMcaaiaacYcaaaa@3E88@  est non négative (de sorte que les poids de calage sont également non négatifs), et la borne supérieure de α ( ) , u > , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiabgwSixdGaayjkaiaawMcaaiaacYcacaWG1bGaeyOpa4Ja eS4eHWMaaiilaaaa@426B@  peut être finie ou infinie.

Bien que la fonction d’ajustement des poids α ( g T z k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@3FB7@  puisse prendre d’autres formes raisonnables, nous nous limiterons aux fonctions de la forme de l’équation (2.3). Il s’agit d’une généralisation du ratissage (raking) où = 0 , u = , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBcq GH9aqpcaaIWaGaaiilaiaadwhacqGH9aqpcqGHEisPcaGGSaaaaa@4027@  ainsi que de l’estimation implicite d’un modèle de réponse logistique, où = 1 , u = . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBcq GH9aqpcaaIXaGaaiilaiaadwhacqGH9aqpcqGHEisPcaGGUaaaaa@402A@  Dans l’algorithme d’ajustement proportionnel itératif original de Deming et Stephan (1940) pour le ratissage, les composantes de z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaaaa@3A84@  ont été restreintes à des fonctions indicatrices. Nous utilisons ici le terme « ratissage » de manière plus générale pour désigner une pondération par calage avec une fonction d’ajustement des poids de la forme α ( g T z k ) = exp ( g T z k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhaca GGWbWaaeWabeaacaWHNbWaaWbaaSqabeaacaWGubaaaOGaaCOEamaa BaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@49FD@

Quand < 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBcq GH8aapcaaIXaGaaiilaaaa@3C05@  l’équation (2.3) devient l’ajustement par calage généralisé introduit dans Deville et Särndal (1992) et discuté plus en détail dans Deville, Särndal et Sautory (1993). Le calage généralisé permet non seulement que les composantes de z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaaaa@3A84@  soient continues, mais aussi que l’étendue des α ( g T z k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@3FB6@  soit contrainte entre une valeur positive MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBaa a@3996@  et une valeur (possiblement) finie u . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bGaai Olaaaa@3A11@

Deville et Särndal (1992) posaient comme condition que α ( 0 ) = α ( 0 ) = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcuaHXoqygaqbamaa bmqabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigdacaGGUaaaaa@43B0@  Puisqu’ils ne s’intéressaient pas à des échantillons avec non-réponse (ou à des bases de sondage incorrectes), g T z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbWaaW baaSqabeaacaWGubaaaOGaaCOEamaaBaaaleaacaWGRbaabeaaaaa@3C84@  devait converger vers 0 et α ( g T z k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH6bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@3FB6@  vers 1 quand la taille d’échantillon (prévue) devenait arbitrairement grande. Cependant, lorsqu’on ajuste les poids de sondage pour corriger la non-réponse, poser que 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqWItecBcq GHLjYScaaIXaaaaa@3C17@  est une stratégie plus raisonnable afin que la probabilité de réponse estimée implicite ne soit pas supérieure à 1.

Tandis que la définition originale de la pondération par calage donnée dans Deville et Särndal (1992) comprenait la minimisation des écarts dans R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbaaaa@393C@  entre les w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadUgaaeqaaaaa@3A7D@  et d k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadUgaaeqaaOGaaiilaaaa@3B24@  mesurés par une certaine fonction de perte, des formulations ultérieures (par exemple, Estevao et Särndal 2000) ont éliminé la fonction de perte de la définition. Forcer w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadUgaaeqaaaaa@3A7D@  et d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadUgaaeqaaaaa@3A6A@  à être proches a peu de sens quand la pondération par calage est utilisée pour corriger la non-réponse totale, puisque si une unité k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@3955@  échantillonnée a une probabilité relativement faible de réponse, l’écart entre w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadUgaaeqaaaaa@3A7D@  et d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadUgaaeqaaaaa@3A6A@  doit être relativement grand.

Au lieu de supposer un modèle de réponse ayant une forme fonctionnelle particulière, une autre justification de l’utilisation de la pondération par calage comme moyen d’éliminer le biais de non-réponse totale consiste à émettre l’hypothèse d’un modèle de prédiction dans lequel la variable étudiée y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadUgaaeqaaaaa@3A7F@  est elle-même une variable aléatoire telle que E ( y k | z k ) = z k T β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbWaae WabeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOWaaqqabeaacaWH6bWa aSbaaSqaaiaadUgaaeqaaaGccaGLhWoaaiaawIcacaGLPaaacqGH9a qpcaWH6bWaa0baaSqaaiaadUgaaeaacaWGubaaaOGaaCOSdaaa@45E0@  pour un β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoaaaa@39A3@  inconnu, que l’unité k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@3955@  soit échantillonnée ou non ou qu’elle réponde ou non quand elle est échantillonnée. Kott (2006) et d’autres ont observé que l’estimateur pondéré par calage de T y = U y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeyyeIu+aaSbaaSqaaiaadwfa aeqaaOGaamyEamaaBaaaleaacaWGRbaabeaaaaa@4046@  sera quasi sans biais sous le modèle de prédiction quand le calage est effectué sur la population (quand θ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIWaaaaa@3BDB@  dans l’équation (2.2)), et sous la combinaison du modèle de prédiction et du mécanisme de sélection de l’échantillon original quand le calage est effectué sur l’échantillon original (quand θ = 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIXaGaaiykaiaac6caaaa@3D3B@

La propriété faisant qu’un estimateur pondéré par calage est dans un certain sens quasi sans biais quand un modèle hypothétique de réponse ou un modèle hypothétique de prédiction est vérifié a été appelée « double protection contre le biais de non-réponse » par Kim et Park (2006). Elle est appelée « double robustesse » dans la littérature biostatistique (Bang et Robins 2005) et attribuée à Robins, Rotnitzky et Zhao (1994), qui ont traité la non-réponse partielle plutôt que totale.

On suppose souvent que la distribution de y k | z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadUgaaeqaaOWaaqqabeaacaWH6bWaaSbaaSqaaiaadUga aeqaaaGccaGLhWoaaaa@3E47@  sous le modèle de prédiction est la même pour les membres de la population échantillonnés et non échantillonnés. Autrement dit, le mécanisme d’échantillonnage est considéré comme étant ignorable. En outre, on suppose souvent que la distribution de y k | z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadUgaaeqaaOWaaqqabeaacaWH6bWaaSbaaSqaaiaadUga aeqaaaGccaGLhWoaaaa@3E47@  est la même qu’un membre de la population réponde ou non quand il est échantillonné, c’est-à-dire que le mécanisme de réponse est également considéré comme étant ignorable (Little et Rubin 2002). Ici, nous faisons des hypothèses analogues plus faibles sous le modèle de prédiction, nommément que E ( y k | z k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbWaae WabeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOWaaqqabeaacaWH6bWa aSbaaSqaaiaadUgaaeqaaaGccaGLhWoaaiaawIcacaGLPaaaaaa@4099@  ne dépend pas du fait que l’unité k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@3955@  est échantillonnée ou non ou qu’elle répond ou non quand elle est échantillonnée. Disons que les mécanismes d’échantillonnage et de réponse sont considérés comme étant « ignorable au premier moment ».

2.2 Variables instrumentales

Deville (2000) a observé que l’on peut utiliser le calage avec des variables instrumentales pour corriger le biais de non-réponse possible en émettant l’hypothèse d’un modèle de réponse qui dépend de x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaOGaaiilaaaa@3B3C@

p k = [ α ( γ T x k ) ] 1 = 1 + exp ( γ T x k ) / u + exp ( γ T x k ) , ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0ZaamWaaeaacqaHXoqydaqadeqa aiaaho7adaahaaWcbeqaaiaadsfaaaGccaWH4bWaaSbaaSqaaiaadU gaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSYaaS GbaeaaciGGLbGaaiiEaiaacchadaqadeqaaiaaho7adaahaaWcbeqa aiaadsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaay zkaaaabaGaamyDaaaaaeaacqWItecBcqGHRaWkciGGLbGaaiiEaiaa cchadaqadeqaaiaaho7adaahaaWcbeqaaiaadsfaaaGccaWH4bWaaS baaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaiaacYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaisdaca GGPaaaaa@6A7C@

mais en ajustant les équations de calage avec z k : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaOGaaiOoaaaa@3B4C@

R w k z k = R d k α ( g T x k ) z k = ( 1 θ ) U z k + θ S d k z k , ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadEhadaWgaaWcbaGaam4AaaqabaGccaWH6bWaaSbaaSqaaiaadUga aeqaaaqaaiaadkfaaeqaniabggHiLdGccqGH9aqpdaaeqaqaaiaads gadaWgaaWcbaGaam4AaaqabaGccqaHXoqydaqadeqaaiaahEgadaah aaWcbeqaaiaadsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaaGcca GLOaGaayzkaaGaaCOEamaaBaaaleaacaWGRbaabeaaaeaacaWGsbaa beqdcqGHris5aOGaeyypa0ZaaeWabeaacaaIXaGaeyOeI0IaeqiUde hacaGLOaGaayzkaaWaaabeaeaacaWH6bWaaSbaaSqaaiaadUgaaeqa aOGaey4kaSIaeqiUde3aaabeaeaacaWGKbWaaSbaaSqaaiaadUgaae qaaOGaaCOEamaaBaaaleaacaWGRbaabeaaaeaacaWGtbaabeqdcqGH ris5aaWcbaGaamyvaaqab0GaeyyeIuoakiaacYcacaaMf8UaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiwdacaGGPaaa aa@6EEB@

où le g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbaaaa@3955@  satisfaisant l’équation (2.5) avec θ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIWaaaaa@3BDB@  ou 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36A2@ est un estimateur convergent du vecteur de paramètres inconnus γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHZoaaaa@39A4@  dans l’équation (2.4). Certaines conditions faibles sont nécessaires ici. Les conditions qui suivent sont suffisantes : N 1 R d k α ( γ T x k ) z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyeIu+aaSbaaSqaaiaadkfa aeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiabeg7aHnaabmqaba GaaC4SdmaaCaaaleqabaGaamivaaaakiaahIhadaWgaaWcbaGaam4A aaqabaaakiaawIcacaGLPaaacaWH6bWaaSbaaSqaaiaadUgaaeqaaa aa@4995@  est un estimateur convergent et borné pour N 1 [ ( 1 θ ) U z k + θ S d k z k ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOWaamWaaeaadaqadeqaaiaaigda cqGHsislcqaH4oqCaiaawIcacaGLPaaacqGHris5daWgaaWcbaGaam yvaaqabaGccaWH6bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaeqiU deNaeyyeIu+aaSbaaSqaaiaadofaaeqaaOGaamizamaaBaaaleaaca WGRbaabeaakiaahQhadaWgaaWcbaGaam4AaaqabaaakiaawUfacaGL DbaacaGGSaaaaa@50FF@   α ( ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiabew9aMbGaayjkaiaawMcaaaaa@3D56@  est partout deux fois dérivable, et N 1 R d k α ( ϕ ) z k x k T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyeIu+aaSbaaSqaaiaadkfa aeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiqbeg7aHzaafaWaae WabeaacqaHvpGzaiaawIcacaGLPaaacaWH6bWaaSbaaSqaaiaadUga aeqaaOGaaCiEamaaDaaaleaacaWGRbaabaGaamivaaaaaaa@49F4@  est toujours inversible et borné quand l’échantillon devient arbitrairement grand.

Soit R k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0JaaGymaaaa@3C23@  quand k R , 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey icI4SaamOuaiaacYcacaaIWaaaaa@3D1A@  autrement. Il n’est pas difficile de montrer que

g γ = ( S d k R k α ( c k ) z k x k T ) 1 { S d k R k α ( γ T x k ) z k [ ( 1 θ ) U z k + θ S d k z k ] } ( N 1 S d k R k α ( c k ) z k x k T ) 1 { N 1 S d k R k α ( γ T x k ) z k N 1 [ ( 1 θ ) U z k + θ S d k z k ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa qaaiaahEgacqGHsislcaWHZoaabaGaeyypa0dabaGaeyOeI0YaaeWa aeaadaaeqaqaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWGsbWaaS baaSqaaiaadUgaaeqaaaqaaiaadofaaeqaniabggHiLdGccuaHXoqy gaqbamaabmqabaGaam4yamaaBaaaleaacaWGRbaabeaaaOGaayjkai aawMcaaiaahQhadaWgaaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqa aiaadUgaaeaacaWGubaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaOWaaiWaaeaadaaeqaqaaiaadsgadaWgaaWcbaGa am4AaaqabaGccaWGsbWaaSbaaSqaaiaadUgaaeqaaaqaaiaadofaae qaniabggHiLdGccqaHXoqydaqadeqaaiaaho7adaahaaWcbeqaaiaa dsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaa GaaCOEamaaBaaaleaacaWGRbaabeaakiabgkHiTmaadmaabaWaaeWa beaacaaIXaGaeyOeI0IaeqiUdehacaGLOaGaayzkaaWaaabeaeaaca WH6bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaeqiUde3aaabeaeaa caWGKbWaaSbaaSqaaiaadUgaaeqaaOGaaCOEamaaBaaaleaacaWGRb aabeaaaeaacaWGtbaabeqdcqGHris5aaWcbaGaamyvaaqab0Gaeyye IuoaaOGaay5waiaaw2faaaGaay5Eaiaaw2haaaqaaaqaaaqaaiabgk HiTmaabmaabaGaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaa qababaGaamizamaaBaaaleaacaWGRbaabeaakiaadkfadaWgaaWcba Gaam4AaaqabaaabaGaam4uaaqab0GaeyyeIuoakiqbeg7aHzaafaWa aeWabeaacaWGJbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaa GaaCOEamaaBaaaleaacaWGRbaabeaakiaahIhadaqhaaWcbaGaam4A aaqaaiaadsfaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaGadaqaaiaad6eadaahaaWcbeqaaiabgkHiTiaaigda aaGcdaaeqaqaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWGsbWaaS baaSqaaiaadUgaaeqaaaqaaiaadofaaeqaniabggHiLdGccqaHXoqy daqadeqaaiaaho7adaahaaWcbeqaaiaadsfaaaGccaWH4bWaaSbaaS qaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaCOEamaaBaaaleaacaWG RbaabeaakiabgkHiTiaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaa GcdaWadaqaamaabmqabaGaaGymaiabgkHiTiabeI7aXbGaayjkaiaa wMcaamaaqababaGaaCOEamaaBaaaleaacaWGRbaabeaakiabgUcaRi abeI7aXnaaqababaGaamizamaaBaaaleaacaWGRbaabeaakiaahQha daWgaaWcbaGaam4AaaqabaaabaGaam4uaaqab0GaeyyeIuoaaSqaai aadwfaaeqaniabggHiLdaakiaawUfacaGLDbaaaiaawUhacaGL9baa aaaaaa@BEAF@

pour un certain c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadUgaaeqaaaaa@3A69@  compris entre g T x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbWaaW baaSqabeaacaWGubaaaOGaaCiEamaaBaaaleaacaWGRbaabeaaaaa@3C82@  et γ T x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHZoWaaW baaSqabeaacaWGubaaaOGaaCiEamaaBaaaleaacaWGRbaabeaakiaa cYcaaaa@3D8B@  comme l’ont démontré Kott et Liao (2012) quand x k = z k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaOGaeyypa0JaaCOEamaaBaaaleaacaWGRbaa beaakiaac6caaaa@3E6D@

Deville note également que les composantes de x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaaaa@3A82@  peuvent être des variables étudiées dont les valeurs ne sont connues que pour les répondants. Chang et Kott (2008) ont étendu la notion de la pondération par calage afin de permettre que la dimension du vecteur z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaaaa@3A84@  soit plus grande que celle du vecteur x k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaOGaaiOlaaaa@3B3E@  Nous ne traiterons ni l’une ni l’autre possibilité dans les sections qui suivent.

Kim et Shao (2013), en traitant la non-réponse non ignorable, désignent par « variables instrumentales » les composantes de z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadUgaaeqaaaaa@3A84@  qui ne sont pas entièrement des fonctions des composantes de x k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaOGaaiOlaaaa@3B3E@  Pour limiter toute confusion future, nous utiliserons donc le terme « variables du modèle » pour désigner les composantes de x k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadUgaaeqaaOGaaiOlaaaa@3B3E@

 

Précédent | Suivant

Date de modification :