3. Estimation de la variance de l’estimateur par calage en une étape

Phillip S. Kott et Dan Liao

Précédent | Suivant

À la présente section, nous posons que

t y = R w k y k = R d k α ( g T x k ) y k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaOGaeyypa0ZaaabeaeaacaWG3bWaaSbaaSqa aiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGRbaabeaaaeaacaWGsb aabeqdcqGHris5aOGaeyypa0ZaaabeaeaacaWGKbWaaSbaaSqaaiaa dUgaaeqaaOGaeqySde2aaeWaaeaacaWHNbWaaWbaaSqabeaacaWGub aaaOGaaCiEamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaa dMhadaWgaaWcbaGaam4AaaqabaaabaGaamOuaaqab0GaeyyeIuoaaa a@51B9@

est l’estimateur pondéré par calage de T y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMhaaeqaaOGaaiilaaaa@3B22@  où w k = d k α ( g T x k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadUgaaeqaaOGaeyypa0JaamizamaaBaaaleaacaWGRbaa beaakiabeg7aHnaabmqabaGaaC4zamaaCaaaleqabaGaamivaaaaki aahIhadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaaa@44EC@  quand k R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey icI4SaamOuaaaa@3BB0@  est le poids de calage, et w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadUgaaeqaaaaa@3A7D@  est défini de façon commode comme étant égal à 0 quand k R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey ycI8SaamOuaiaac6caaaa@3C64@  La fonction d’ajustement des poids α ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiabgwSixdGaayjkaiaawMcaaaaa@3DD8@  est définie implicitement par l’équation (2.4), et g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbaaaa@3955@  est de nouveau choisi de façon que l’équation de calage (2.5) soit vérifiée pour θ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIWaaaaa@3BDB@  ou 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaaGymaiaac6 caaaa@3754@

Nous proposons l’estimateur suivant de la variance de t y : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaOGaaiOoaaaa@3B50@

v( t y )= k,jS ( 1 π k π j π kj )[ d k ( θ z k T b+ α k e k ) ][ d j ( θ z j T b+ α j e j ) ] + kR d k ( α k 2 α k ) e k 2 ,(3.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaGa eyypa0ZaaabuaeaadaqadeqaaiaaigdacqGHsisldaWcaaqaaiabec 8aWnaaBaaaleaacaWGRbaabeaakiabec8aWnaaBaaaleaacaWGQbaa beaaaOqaaiabec8aWnaaBaaaleaacaWGRbGaamOAaaqabaaaaaGcca GLOaGaayzkaaWaamWaaeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOWa aeWaaeaacqaH4oqCcaWH6bWaa0baaSqaaiaadUgaaeaacaWGubaaaO GaaCOyaiabgUcaRiabeg7aHnaaBaaaleaacaWGRbaabeaakiaadwga daWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDb aadaWadeqaaiaadsgadaWgaaWcbaGaamOAaaqabaGcdaqadeqaaiab eI7aXjaahQhadaqhaaWcbaGaamOAaaqaaiaadsfaaaGccaWHIbGaey 4kaSIaeqySde2aaSbaaSqaaiaadQgaaeqaaOGaamyzamaaBaaaleaa caWGQbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaWcbaGaam 4AaiaacYcacaWGQbGaeyicI4Saam4uaaqab0GaeyyeIuoakiabgUca RmaaqafabaGaamizamaaBaaaleaacaWGRbaabeaakmaabmqabaGaeq ySde2aa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyOeI0IaeqySde2a aSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaamyzamaaDaaale aacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4SaamOuaaqab0Ga eyyeIuoakiaacYcacaaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaig dacaGGPaaaaa@8F03@

π k j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaam4AaiaadQgaaeqaaaaa@3C2D@  est la probabilité de sélection conjointe de k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@3955@  et j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGQbaaaa@3954@  sous le plan d’échantillonnage original, π k k = π k = 1 / d k , π k = α ( g T x k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaam4AaiaadUgaaeqaaOGaeyypa0JaeqiWda3aaSbaaSqa aiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaamizamaaBa aaleaacaWGRbaabeaaaaGccaGGSaGaeqiWda3aaSbaaSqaaiaadUga aeqaaOGaeyypa0JaeqySde2aaeWabeaacaWHNbWaaWbaaSqabeaaca WGubaaaOGaaCiEamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMca aaaa@4FF0@  quand k R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey icI4SaamOuaaaa@3BB0@  et 0 autrement,

b = [ R d k α ( g T x k ) x k z k T ] 1 R d k α ( g T x k ) x k y k , ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbGaey ypa0ZaamWabeaadaaeqaqaaiaadsgadaWgaaWcbaGaam4AaaqabaGc cuaHXoqygaqbamaabmqabaGaaC4zamaaCaaaleqabaGaamivaaaaki aahIhadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaWH4bWa aSbaaSqaaiaadUgaaeqaaOGaaCOEamaaDaaaleaacaWGRbaabaGaam ivaaaaaeaacaWGsbaabeqdcqGHris5aaGccaGLBbGaayzxaaWaaWba aSqabeaacqGHsislcaaIXaaaaOWaaabeaeaacaWGKbWaaSbaaSqaai aadUgaaeqaaOGafqySdeMbauaadaqadeqaaiaahEgadaahaaWcbeqa aiaadsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaay zkaaGaaCiEamaaBaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGa am4AaaqabaaabaGaamOuaaqab0GaeyyeIuoakiaacYcacaaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@6A3C@

et e k = y k z k T b . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaa beaakiabgkHiTiaahQhadaqhaaWcbaGaam4AaaqaaiaadsfaaaGcca WHIbGaaiOlaaaa@432C@  Nous montrerons que v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  dans l’équation (3.1) peut être quasi sans biais dans un certain sens si soit un modèle de réponse (section 3.1) soit un modèle de prédiction est vérifié (section 3.2).

L’estimateur de variance dans l’équation (5.2) de Kott (2006) est identique à v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  dans l’équation (3.1) quand θ = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcq GH9aqpcaaIWaGaaiOlaaaa@3C8D@  L’estimateur de variance dans Kim et Haziza (2014) est également similaire. Leur modèle de prédiction est plus général que le modèle de prédiction linéaire considéré ici.

Cet estimateur de variance v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  présuppose que le plan d’échantillonnage original est tel que chaque élément ne peut être tiré qu’une seule fois. À la section 3.1, nous voyons que, quand les probabilités de réponse sont indépendantes (Poisson), alors sous des hypothèses faibles, v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  est un estimateur quasi sans biais de l’erreur quadratique moyenne de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaaaa@3A88@  sous le quasi-plan d’échantillonnage, que le modèle de prédiction, E ( y k | x k , z k ) = z k T β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbWaae WabeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOWaaqqabeaacaWH4bWa aSbaaSqaaiaadUgaaeqaaaGccaGLhWoacaGGSaGaaCOEamaaBaaale aacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iaahQhadaqhaaWc baGaam4AaaqaaiaadsfaaaGccaWHYoGaaiilaaaa@4967@  soit vérifié ou non.

À la section 3.2, nous montrons que v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  est un estimateur quasi sans biais pour le modèle de prédiction combiné à la variance sous le plan d’échantillonnage original de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaaaa@3A88@  en tant qu’estimateur de T y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMhaaeqaaOGaaiilaaaa@3B22@  que le modèle de réponse donné par l’équation (2.4) soit vérifié ou non. Donc, v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  peut être appelé un « estimateur simultané des variances ».

3.1 Estimation de la variance sous le modèle de réponse

Pour simplifier l’exposé, nous supposerons que le modèle de réponse donné par l’équation (2.4) avec une borne supérieure u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1baaaa@395F@  finie est vérifié. Les conditions suffisantes pour que v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  soit un estimateur quasi sans biais de l’erreur quadratique moyenne de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaaaa@3A88@  (en vertu desquelles le biais converge vers 0 quand la taille de l’échantillon devient arbitrairement grande) sont

π k j B 0 > 0 ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaam4AaiaadQgaaeqaaOGaeyyzImRaamOqamaaBaaaleaa caaIWaaabeaakiabg6da+iaaicdacaaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaacIcacaaIZaGaaiOlaiaaiodacaGGPaaaaa@4CC0@

j = 1 N | π k j π k π j 1 | B 1 <  pour chaque  k , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWbqaam aaemqabaWaaSaaaeaacqaHapaCdaWgaaWcbaGaam4AaiaadQgaaeqa aaGcbaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaeqiWda3aaSbaaS qaaiaadQgaaeqaaaaakiabgkHiTiaaigdaaiaawEa7caGLiWoacqGH KjYOcaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaeyipaWJaeyOhIuQaae iiaiaabchacaqGVbGaaeyDaiaabkhacaqGGaGaae4yaiaabIgacaqG HbGaaeyCaiaabwhacaqGLbGaaeiiaiaadUgacaGGSaaaleaacaWGQb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaywW7caaMf8Ua aGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiykaaaa@6929@

j = 1 N ψ j r N B 2 <  où  ψ j est  y j  ou toute composante de  x j  ou  z j , tandis que  r = 1  ou  2 , ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcaaqaam aaqadabaGaeqiYdK3aa0baaSqaaiaadQgaaeaacaWGYbaaaaqaaiaa dQgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaGcbaGaamOtaa aacqGHKjYOcaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaeyipaWJaeyOh IuQaaGjbVlaabccacaqGVbGaaey+aiaabccacqaHipqEdaWgaaWcba GaamOAaaqabaGccaaMe8UaaeyzaiaabohacaqG0bGaaeiiaiaadMha daWgaaWcbaGaamOAaaqabaGccaqGGaGaae4BaiaabwhacaqGGaGaae iDaiaab+gacaqG1bGaaeiDaiaabwgacaqGGaGaae4yaiaab+gacaqG TbGaaeiCaiaab+gacaqGZbGaaeyyaiaab6gacaqG0bGaaeyzaiaabc cacaqGKbGaaeyzaiaabccacaWH4bWaaSbaaSqaaiaadQgaaeqaaOGa aeiiaiaab+gacaqG1bGaaeiiaiaahQhadaWgaaWcbaGaamOAaaqaba GccaGGSaGaaeiDaiaabggacaqGUbGaaeizaiaabMgacaqGZbGaaeii aiaabghacaqG1bGaaeyzaiaabccacaWGYbGaeyypa0JaaGymaiaabc cacaqGVbGaaeyDaiaabccacaaIYaGaaiilaiaaywW7caGGOaGaaG4m aiaac6cacaaI1aGaaiykaaaa@8B30@

et N 1 R d k α ( g T x k ) z k x k T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyeIu+aaSbaaSqaaiaadkfa aeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiqbeg7aHzaafaWaae WabeaacaWHNbWaaWbaaSqabeaacaWGubaaaOGaaCiEamaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaiaahQhadaWgaaWcbaGaam4Aaa qabaGccaWH4bWaa0baaSqaaiaadUgaaeaacaWGubaaaaaa@4C53@  est de plein rang et est bornée en probabilité quand la taille de l’échantillon devient arbitrairement grande.

En vertu de cela, de α ( ϕ ) = ( 1 α ( ϕ ) / u ) exp ( ϕ ) / [ ( 1 + exp ( ϕ ) / u ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHXoqyga qbamaabmqabaGaeqy1dygacaGLOaGaayzkaaGaeyypa0ZaaeWabeaa daWcgaqaaiaaigdacqGHsislcqaHXoqydaqadeqaaiabew9aMbGaay jkaiaawMcaaaqaaiaadwhaaaaacaGLOaGaayzkaaWaaSGbaeaaciGG LbGaaiiEaiaacchadaqadeqaaiabew9aMbGaayjkaiaawMcaaaqaam aadmqabaWaaeWabeaadaWcgaqaaiaaigdacqGHRaWkciGGLbGaaiiE aiaacchadaqadeqaaiabew9aMbGaayjkaiaawMcaaaqaaiaadwhaaa aacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaaa@5A35@  étant bornée quand u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1baaaa@395F@  est finie, et de l’inégalité de Cauchy-Schwarz ( ( a k b k ) 2 a k 2 b k 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaam aabmqabaGaeyyeIuUaamyyamaaBaaaleaacaWGRbaabeaakiaadkga daWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaGccqGHKjYOcqGHris5caWGHbWaa0baaSqaaiaadUgaaeaa caaIYaaaaOGaeyyeIuUaamOyamaaDaaaleaacaWGRbaabaGaaGOmaa aaaOGaayjkaiaawMcaaiaacYcaaaa@4D69@  il n’est pas difficile de voir non seulement que g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbaaaa@3955@  est un estimateur convergent de γ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHZoGaai ilaaaa@3A54@  mais aussi que b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3950@  dans l’équation (3.2) (qui peut être rendue sous la forme b = [ N 1 R d k α ( g T x k ) x k z k T ] 1 N 1 R d k α ( g T x k ) x k y k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbGaey ypa0ZaamWabeaacaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa eyyeIu+aaSbaaSqaaiaadkfaaeqaaOGaamizamaaBaaaleaacaWGRb aabeaakiqbeg7aHzaafaGaaiikaiaahEgadaahaaWcbeqaaiaadsfa aaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaahIhadaWgaa WcbaGaam4AaaqabaGccaWH6bWaa0baaSqaaiaadUgaaeaacaWGubaa aaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaam OtamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabggHiLpaaBaaaleaa caWGsbaabeaakiaadsgadaWgaaWcbaGaam4AaaqabaGccuaHXoqyga qbaiaacIcacaWHNbWaaWbaaSqabeaacaWGubaaaOGaaCiEamaaBaaa leaacaWGRbaabeaakiaacMcacaWH4bWaaSbaaSqaaiaadUgaaeqaaO GaamyEamaaBaaaleaacaWGRbaabeaakiaacMcaaaa@6583@  possède une limite en probabilité, que nous appellerons b * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbWaaW baaSqabeaacaGGQaaaaOGaaiilaaaa@3AE5@  que le modèle de prédiction soit vérifié ou non. En outre, b b * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbGaey OeI0IaaCOyamaaCaaaleqabaGaaiOkaaaaaaa@3C03@  ainsi que g γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHNbGaey OeI0IaaC4Sdaaa@3B81@  sont O p ( 1 / n ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaadaGc aaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@3E8D@

Observons que

( t y T y ) / N = θ ( S d k z k T b * U z k T b * ) / N + [ R d k α ( g T x k ) e k * R d k α ( γ T x k ) e k * ] / N + [ R d k α ( γ T x k ) e k * U e k * ] / N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeWada aabaWaaSGbaeaadaqadeqaaiaadshadaWgaaWcbaGaamyEaaqabaGc cqGHsislcaWGubWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaa aabaGaamOtaaaaaeaacqGH9aqpaeaacqaH4oqCdaWcgaqaamaabmqa baWaaabeaeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaaCOEamaaDa aaleaacaWGRbaabaGaamivaaaakiaahkgadaahaaWcbeqaaiaacQca aaaabaGaam4uaaqab0GaeyyeIuoakiabgkHiTmaaqababaGaaCOEam aaDaaaleaacaWGRbaabaGaamivaaaakiaahkgadaahaaWcbeqaaiaa cQcaaaaabaGaamyvaaqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaai aad6eaaaaabaaabaGaey4kaScabaWaaSGbaeaadaWadeqaamaaqaba baGaamizamaaBaaaleaacaWGRbaabeaakiabeg7aHnaabmqabaGaaC 4zamaaCaaaleqabaGaamivaaaakiaahIhadaWgaaWcbaGaam4Aaaqa baaakiaawIcacaGLPaaacaWGLbWaa0baaSqaaiaadUgaaeaacaGGQa aaaaqaaiaadkfaaeqaniabggHiLdGccqGHsisldaaeqaqaaiaadsga daWgaaWcbaGaam4AaaqabaGccqaHXoqydaqadeqaaiaaho7adaahaa WcbeqaaiaadsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGL OaGaayzkaaGaamyzamaaDaaaleaacaWGRbaabaGaaiOkaaaaaeaaca WGsbaabeqdcqGHris5aaGccaGLBbGaayzxaaaabaGaamOtaaaaaeaa aeaacqGHRaWkaeaadaWcgaqaamaadmqabaWaaabeaeaacaWGKbWaaS baaSqaaiaadUgaaeqaaOGaeqySde2aaeWabeaacaWHZoWaaWbaaSqa beaacaWGubaaaOGaaCiEamaaBaaaleaacaWGRbaabeaaaOGaayjkai aawMcaaiaadwgadaqhaaWcbaGaam4AaaqaaiaacQcaaaaabaGaamOu aaqab0GaeyyeIuoakiabgkHiTmaaqababaGaamyzamaaDaaaleaaca WGRbaabaGaaiOkaaaaaeaacaWGvbaabeqdcqGHris5aaGccaGLBbGa ayzxaaaabaGaamOtaiaacYcaaaaaaaaa@93C3@

e k * = y k z k T b * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaa0 baaSqaaiaadUgaaeaacaGGQaaaaOGaeyypa0JaamyEamaaBaaaleaa caWGRbaabeaakiabgkHiTiaahQhadaqhaaWcbaGaam4Aaaqaaiaads faaaGccaWHIbWaaWbaaSqabeaacaGGQaaaaOGaaiOlaaaa@44C0@  L’insertion de α ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHXoqyga qbamaabmqabaGaeyyXICnacaGLOaGaayzkaaaaaa@3DE4@  dans le « coefficient de régression » b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3950@  nous permet d’ignorer la contribution du deuxième terme de cette somme, Q = R d k [ α ( g T x k ) α ( γ T x k ) ] e k * / N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbGaey ypa0ZaaSGbaeaacqGHris5daWgaaWcbaGaamOuaaqabaGccaWGKbWa aSbaaSqaaiaadUgaaeqaaOWaamWabeaacqaHXoqydaqadeqaaiaahE gadaahaaWcbeqaaiaadsfaaaGccaWH4bWaaSbaaSqaaiaadUgaaeqa aaGccaGLOaGaayzkaaGaeyOeI0IaeqySde2aaeWabeaacaWHZoWaaW baaSqabeaacaWGubaaaOGaaCiEamaaBaaaleaacaWGRbaabeaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faaiaadwgadaqhaaWcbaGaam4Aaa qaaiaacQcaaaaakeaacaWGobaaaiaacYcaaaa@5527@  à l’erreur quadratique moyenne sous le quasi-plan d’échantillonnage. Il en est ainsi parce que R d k α ( γ T x k ) x k e k = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaamOuaaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGa fqySdeMbauaadaqadeqaaiaaho7adaahaaWcbeqaaiaadsfaaaGcca WH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaCiEamaa BaaaleaacaWGRbaabeaakiaadwgadaWgaaWcbaGaam4AaaqabaGccq GH9aqpcaaIWaaaaa@4AC7@  est vraie par définition, ce qui implique que R d k α ( γ T x k ) x k e k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaamOuaaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGa fqySdeMbauaadaqadeqaaiaaho7adaahaaWcbeqaaiaadsfaaaGcca WH4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaCiEamaa BaaaleaacaWGRbaabeaakiaadwgadaqhaaWcbaGaam4AaaqaaiaacQ caaaaaaa@49AC@  est O p ( 1 / n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaadaGc aaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaaaaa@3DD5@  sous nos hypothèses. En outre, puisque α ( g T x k ) α ( γ T x k ) = α ( c k ) ( g γ ) T x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda qadeqaaiaahEgadaahaaWcbeqaaiaadsfaaaGccaWH4bWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaeqySde2aaeWabe aacaWHZoWaaWbaaSqabeaacaWGubaaaOGaaCiEamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaiabg2da9iqbeg7aHzaafaWaaeWabe aacaWGJbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWa beaacaWHNbGaeyOeI0IaaC4SdaGaayjkaiaawMcaamaaCaaaleqaba GaamivaaaakiaahIhadaWgaaWcbaGaam4Aaaqabaaaaa@565D@  est aussi O p ( 1 / n ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaadaGc aaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaGaaiilaaaa@3E85@   Q = ( g γ ) T R d k α ( c k ) x k e k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbGaey ypa0ZaaeWabeaacaWHNbGaeyOeI0IaaC4SdaGaayjkaiaawMcaamaa CaaaleqabaGaamivaaaakiabggHiLpaaBaaaleaacaWGsbaabeaaki aadsgadaWgaaWcbaGaam4AaaqabaGccuaHXoqygaqbamaabmqabaGa am4yamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaahIhada WgaaWcbaGaam4AaaqabaGccaWGLbWaa0baaSqaaiaadUgaaeaacaGG Qaaaaaaa@4ED6@  est O p ( 1 / n ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaacaWG UbaaaaGaayjkaiaawMcaaiaacYcaaaa@3E60@  qui est asymptotiquement ignorable par rapport aux deux composantes O p ( 1 / n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaadaGc aaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaaaaa@3DD5@  de ( t y T y ) / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam aabmqabaGaamiDamaaBaaaleaacaWG5baabeaakiabgkHiTiaadsfa daWgaaWcbaGaamyEaaqabaaakiaawIcacaGLPaaaaeaacaWGobaaai aac6caaaa@40B1@

La contribution de Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbaaaa@393B@  étant éliminée, un estimateur sans biais idéalisé, mais incalculable, de l’erreur quadratique moyenne sous le quasi-plan d’échantillonnage de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaS baaSqaaiaadMhaaeqaaaaa@3A88@  est donné par

v I1 ( t y )= k,jS ( 1 π k π j π kj ) [ d k ( θ z k T b * + e k * ) ][ d j ( θ z j T b * + e j * ) ]+ kR ( d k e k * p k ) 2 ( 1 p k ),(3.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMeacaaIXaaabeaakmaabmqabaGaamiDamaaBaaaleaa caWG5baabeaaaOGaayjkaiaawMcaaiabg2da9maaqafabaWaaeWabe aacaaIXaGaeyOeI0YaaSaaaeaacqaHapaCdaWgaaWcbaGaam4Aaaqa baGccqaHapaCdaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaa WcbaGaam4AaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaam4A aiaacYcacaWGQbGaeyicI4Saam4uaaqab0GaeyyeIuoakmaadmqaba GaamizamaaBaaaleaacaWGRbaabeaakmaabmaabaGaeqiUdeNaaCOE amaaDaaaleaacaWGRbaabaGaamivaaaakiaahkgadaahaaWcbeqaai aacQcaaaGccqGHRaWkcaWGLbWaa0baaSqaaiaadUgaaeaacaGGQaaa aaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWaamWabeaacaWGKbWaaS baaSqaaiaadQgaaeqaaOWaaeWabeaacqaH4oqCcaWH6bWaa0baaSqa aiaadQgaaeaacaWGubaaaOGaaCOyamaaCaaaleqabaGaaiOkaaaaki abgUcaRiaadwgadaqhaaWcbaGaamOAaaqaaiaacQcaaaaakiaawIca caGLPaaaaiaawUfacaGLDbaacqGHRaWkdaaeqbqaamaabmqabaWaaS aaaeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaamyzamaaDaaaleaa caWGRbaabaGaaiOkaaaaaOqaaiaadchadaWgaaWcbaGaam4Aaaqaba aaaaGccaGLOaGaayzkaaaaleaacaWGRbGaeyicI4SaamOuaaqab0Ga eyyeIuoakmaaCaaaleqabaGaaGOmaaaakmaabmqabaGaaGymaiabgk HiTiaadchadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaGG SaGaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI2aGaaiykaaaa@8FA5@

où le premier terme du deuxième membre estime l’erreur quadratique moyenne avant la non-réponse (s’il y en a une) et le deuxième terme estime la variance ajoutée par la non-réponse.

Un estimateur quasi sans biais idéalisé de l’erreur quadratique moyenne de rechange, plus près d’être calculable, est donné par

v I 2 ( t y ) = k , j S ( 1 π k π j π k j ) [ d k ( θ z k T b * + R k p k e k * ) ] [ d j ( θ z j T b * + R j p j e j * ) ] + k R d k ( e k * p k ) 2 ( 1 p k ) , ( 3.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMeacaaIYaaabeaakmaabmqabaGaamiDamaaBaaaleaa caWG5baabeaaaOGaayjkaiaawMcaaiabg2da9maaqafabaWaaeWabe aacaaIXaGaeyOeI0YaaSaaaeaacqaHapaCdaWgaaWcbaGaam4Aaaqa baGccqaHapaCdaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaa WcbaGaam4AaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaam4A aiaacYcacaWGQbGaeyicI4Saam4uaaqab0GaeyyeIuoakmaadmqaba GaamizamaaBaaaleaacaWGRbaabeaakmaabmqabaGaeqiUdeNaaCOE amaaDaaaleaacaWGRbaabaGaamivaaaakiaahkgadaahaaWcbeqaai aacQcaaaGccqGHRaWkdaWcaaqaaiaadkfadaWgaaWcbaGaam4Aaaqa baaakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaakiaadwgadaqhaa WcbaGaam4AaaqaaiaacQcaaaaakiaawIcacaGLPaaaaiaawUfacaGL DbaadaWadeqaaiaadsgadaWgaaWcbaGaamOAaaqabaGcdaqadeqaai abeI7aXjaahQhadaqhaaWcbaGaamOAaaqaaiaadsfaaaGccaWHIbWa aWbaaSqabeaacaGGQaaaaOGaey4kaSYaaSaaaeaacaWGsbWaaSbaaS qaaiaadQgaaeqaaaGcbaGaamiCamaaBaaaleaacaWGQbaabeaaaaGc caWGLbWaa0baaSqaaiaadQgaaeaacaGGQaaaaaGccaGLOaGaayzkaa aacaGLBbGaayzxaaGaey4kaSYaaabuaeaacaWGKbWaaSbaaSqaaiaa dUgaaeqaaOWaaeWabeaadaWcaaqaaiaadwgadaqhaaWcbaGaam4Aaa qaaiaacQcaaaaakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaaaOGa ayjkaiaawMcaaaWcbaGaam4AaiabgIGiolaadkfaaeqaniabggHiLd GcdaahaaWcbeqaaiaaikdaaaGcdaqadeqaaiaaigdacqGHsislcaWG WbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaiilaiaayk W7caaMc8UaaiikaiaaiodacaGGUaGaaG4naiaacMcaaaa@97F0@

où de nouveau R k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaS baaSqaaiaadUgaaeqaaOGaeyypa0JaaGymaaaa@3C23@  quand k R , 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey icI4SaamOuaiaacYcacaaIWaaaaa@3D1A@  autrement. Puisque les ( R k / p k ) e k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaam aalyaabaGaamOuamaaBaaaleaacaWGRbaabeaaaOqaaiaadchadaWg aaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaGaamyzamaaDaaale aacaWGRbaabaGaaiOkaaaaaaa@40D2@  sont indépendants sous le modèle de réponse et sont de moyenne e k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaa0 baaSqaaiaadUgaaeaacaGGQaaaaaaa@3B1A@  et de variance ( e k * / p k ) 2 p k ( 1 p k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaam aalyaabaGaamyzamaaDaaaleaacaWGRbaabaGaaiOkaaaaaOqaaiaa dchadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaamiCamaaBaaaleaacaWGRbaabeaakmaabmqa baGaaGymaiabgkHiTiaadchadaWgaaWcbaGaam4AaaqabaaakiaawI cacaGLPaaacaGGSaaaaa@47EA@   E [ ( R k / p k ) e k * ( R j / p j ) e j * ] = e k * e j * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbWaam WabeaadaqadeqaamaalyaabaGaamOuamaaBaaaleaacaWGRbaabeaa aOqaaiaadchadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaa GaamyzamaaDaaaleaacaWGRbaabaGaaiOkaaaakmaabmqabaWaaSGb aeaacaWGsbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaamiCamaaBaaale aacaWGQbaabeaaaaaakiaawIcacaGLPaaacaWGLbWaa0baaSqaaiaa dQgaaeaacaGGQaaaaaGccaGLBbGaayzxaaGaeyypa0JaamyzamaaDa aaleaacaWGRbaabaGaaiOkaaaakiaadwgadaqhaaWcbaGaamOAaaqa aiaacQcaaaaaaa@5284@  quand k j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey iyIKRaamOAaiaac6caaaa@3CBD@  Par contre, l’expression qui suit est vérifiée quand k = j : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey ypa0JaamOAaiaacQdaaaa@3C08@

( 1 π k ) E [ ( d k R k p k e k * ) 2 ] = ( 1 π k ) [ ( d k e k * ) 2 + ( d k e k * p k ) 2 p k ( 1 p k ) ] = ( 1 π k ) ( d k e k * ) 2 + ( d k e k * p k ) 2 p k ( 1 p k ) d k ( e k * p k ) 2 p k ( 1 p k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaWaaeWabeaacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaGaamyramaadmqabaWaaeWabeaacaWGKb WaaSbaaSqaaiaadUgaaeqaaOWaaSaaaeaacaWGsbWaaSbaaSqaaiaa dUgaaeqaaaGcbaGaamiCamaaBaaaleaacaWGRbaabeaaaaGccaWGLb Waa0baaSqaaiaadUgaaeaacaGGQaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaabaGaeyypa0ZaaeWabe aacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaadUgaaeqaaaGccaGL OaGaayzkaaWaamWabeaadaqadeqaaiaadsgadaWgaaWcbaGaam4Aaa qabaGccaWGLbWaa0baaSqaaiaadUgaaeaacaGGQaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWabeaadaWcaa qaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWGLbWaa0baaSqaaiaa dUgaaeaacaGGQaaaaaGcbaGaamiCamaaBaaaleaacaWGRbaabeaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGWbWaaSba aSqaaiaadUgaaeqaaOWaaeWabeaacaaIXaGaeyOeI0IaamiCamaaBa aaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqa aaqaaiabg2da9maabmqabaGaaGymaiabgkHiTiabec8aWnaaBaaale aacaWGRbaabeaaaOGaayjkaiaawMcaamaabmqabaGaamizamaaBaaa leaacaWGRbaabeaakiaadwgadaqhaaWcbaGaam4AaaqaaiaacQcaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa deqaamaalaaabaGaamizamaaBaaaleaacaWGRbaabeaakiaadwgada qhaaWcbaGaam4AaaqaaiaacQcaaaaakeaacaWGWbWaaSbaaSqaaiaa dUgaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki aadchadaWgaaWcbaGaam4AaaqabaGcdaqadeqaaiaaigdacqGHsisl caWGWbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0 IaamizamaaBaaaleaacaWGRbaabeaakmaabmqabaWaaSaaaeaacaWG LbWaa0baaSqaaiaadUgaaeaacaGGQaaaaaGcbaGaamiCamaaBaaale aacaWGRbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaGccaWGWbWaaSbaaSqaaiaadUgaaeqaaOWaaeWabeaacaaIXaGaey OeI0IaamiCamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaa c6caaaaaaa@A174@

La première sommation dans le deuxième membre de l’équation (3.7) contient des termes où k j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey iyIKRaamOAaaaa@3C0B@  et des termes où k = j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey ypa0JaamOAaiaacYcaaaa@3BFA@  les derniers faisant que la deuxième sommation dans (3.7) diffère de la deuxième sommation dans le deuxième membre de l’équation (3.6). Notons que l’espérance sous le modèle de réponse de R d k ( e k * / p k ) 2 ( 1 p k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaamOuaaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOWa aeWabeaadaWcgaqaaiaadwgadaqhaaWcbaGaam4AaaqaaiaacQcaaa aakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaakmaabmqabaGaaGymaiabgkHiTiaadc hadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaaa@49DF@  dans la deuxième sommation dans le deuxième membre de (3.7) est S d k ( e k * / p k ) 2 p k ( 1 p k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaam4uaaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOWa aeWabeaadaWcgaqaaiaadwgadaqhaaWcbaGaam4AaaqaaiaacQcaaa aakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaakiaadchadaWgaaWcbaGaam4Aaaqaba GcdaqadeqaaiaaigdacqGHsislcaWGWbWaaSbaaSqaaiaadUgaaeqa aaGccaGLOaGaayzkaaGaaiOlaaaa@4CAD@

Enfin, v I 2 ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadMeacaaIYaaabeaakmaabmqabaGaamiDamaaBaaaleaa caWG5baabeaaaOGaayjkaiaawMcaaaaa@3ED7@  peut être remplacé par l’estimateur v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WabeaacaWG0bWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaaa aa@3D17@  asymptotiquement identique, mais calculable, dans l’équation (3.1) puisque j S ( 1 π k π j / π k j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHris5da WgaaWcbaGaamOAaiabgIGiolaadofaaeqaaOWaaeWabeaacaaIXaGa eyOeI0YaaSGbaeaacqaHapaCdaWgaaWcbaGaam4AaaqabaGccqaHap aCdaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGaam4A aiaadQgaaeqaaaaaaOGaayjkaiaawMcaaaaa@4A69@  est borné pour tout k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@3955@  sous les hypothèses (3.3) et (3.4), ce qui permet de substituer e k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadUgaaeqaaaaa@3A6B@  et α k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4Aaaqabaaaaa@3B20@  à e k * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaa0 baaSqaaiaadUgaaeaacaGGQaaaaaaa@3B1A@  et 1 / p k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aaigdaaeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaaaaa@3B47@  inconnus, respectivement (parce que e k * e k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaa0 baaSqaaiaadUgaaeaacaGGQaaaaOGaeyOeI0IaamyzamaaBaaaleaa caWGRbaabeaaaaa@3E17@  et α k 1 / p k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4AaaqabaGccqGHsisldaWcgaqaaiaaigdaaeaacaWG WbWaaSbaaSqaaiaadUgaaeqaaaaaaaa@3EF9@  sont O p ( 1 / n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGpbWaaS baaSqaaiaadchaaeqaaOWaaeWabeaadaWcgaqaaiaaigdaaeaadaGc aaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaaaaa@3DD5@  pour tout k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbGaai ykaiaac6caaaa@3AB4@

3.2 Estimation de la variance sous le modèle de prédiction

Les choses sont un peu plus simples quand nous supposons qu’un modèle de prédiction est vérifié mais que le modèle de réponse de l’équation (2.4) ne l’est pas nécessairement. Supposons que E ( y k | x k , z k ) = z k T β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGfbWaae WabeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOWaaqqabeaacaWH4bWa aSbaaSqaaiaadUgaaeqaaaGccaGLhWoacaGGSaGaaCOEamaaBaaale aacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iaahQhadaqhaaWc baGaam4AaaqaaiaadsfaaaGccaWHYoGaaiilaaaa@4967@  peu importe que l’unité k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3696@  soit échantillonnée ou non ou qu’elle réponde ou non quand elle est échantillonnée, et que les ε k = y k z k T β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadUgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaa beaakiabgkHiTiaahQhadaqhaaWcbaGaam4AaaqaaiaadsfaaaGcca WHYoaaaa@40CB@  sont des variables aléatoires non corrélées de variance égale à σ k 2 = z k T η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0JaaCOEamaaDaaaleaa caWGRbaabaGaamivaaaakiaahE7acaGGSaaaaa@3F48@  où η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4Tdaaa@36E9@  ne nécessite pas d’autres spécifications que le fait d’avoir des composantes finies.

L’erreur quadratique moyenne de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWG5baabeaaaaa@37C9@  en tant qu’estimateur de T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG5baabeaaaaa@37A9@  sous le modèle de prédiction est égale à la somme de la variance de prédiction de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWG5baabeaaaaa@37C9@  en tant qu’estimateur de T y , R ( w k 2 w k ) σ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG5baabeaakiaacYcacqGHris5daWgaaWcbaGaamOuaaqa baGcdaqadeqaaiaadEhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccq GHsislcaWG3bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa eq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaaaa@4628@  (voir, par exemple, Kott 2009, page 69), et du carré du biais, ( S x k T β U x k T β ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWabeaacq GHris5daWgaaWcbaGaam4uaaqabaGccaWH4bWaa0baaSqaaiaadUga aeaacaWGubaaaOGaaCOSdiabgkHiTiabggHiLpaaBaaaleaacaWGvb aabeaakiaahIhadaqhaaWcbaGaam4AaaqaaiaadsfaaaGccaWHYoaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaiilaaaa@47A4@  ce dernier étant égal à zéro quand θ = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaey ypa0JaaGimaiaac6caaaa@39CE@  La variance combinée de t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWG5baabeaaaaa@37C9@  en tant qu’estimateur de T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG5baabeaaaaa@37A9@  sous le modèle de prédiction et le plan d’échantillonnage original est donnée par

V C = θ Var D ( S x k T β ) + E D [ S ( w k 2 w k ) σ k 2 ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGdbaabeaakiabg2da9iabeI7aXjaabAfacaqGHbGaaeOC amaaBaaaleaacaWGebaabeaakmaabmqabaWaaabeaeaacaWH4bWaa0 baaSqaaiaadUgaaeaacaWGubaaaOGaaCOSdaWcbaGaam4uaaqab0Ga eyyeIuoaaOGaayjkaiaawMcaaiabgUcaRiaabweadaWgaaWcbaGaam iraaqabaGcdaWadeqaamaaqababaWaaeWabeaacaWG3bWaa0baaSqa aiaadUgaaeaacaaIYaaaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGRb aabeaaaOGaayjkaiaawMcaaiabeo8aZnaaDaaaleaacaWGRbaabaGa aGOmaaaaaeaacaWGtbaabeqdcqGHris5aaGccaGLBbGaayzxaaGaai ilaaaa@5993@

où l’indice inférieur D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiraaaa@366F@  indique que l’opération (variance ou espérance) est effectuée par rapport au plan d’échantillonnage original. Rappelons que w k = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbaabeaakiabg2da9iaaicdaaaa@3988@  pour k R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgc Mi5kaadkfacaGGUaaaaa@39E6@

Pour voir que v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaabm qabaGaamiDamaaBaaaleaacaWG5baabeaaaOGaayjkaiaawMcaaaaa @3A58@  dans l’équation (3.1) donne un estimateur quasi sans biais de V C , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGdbaabeaakiaacYcaaaa@382F@  observons d’abord que

e k = y k z k T b = ε k z k T [ N 1 R d j α ( g T x j ) x j z j T ] 1 N 1 R d j α ( g T x j ) x j ε j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGRbaabeaakiabg2da9iaadMhadaWgaaWcbaGaam4Aaaqa baGccqGHsislcaWH6bWaa0baaSqaaiaadUgaaeaacaWGubaaaOGaaC Oyaiabg2da9iabew7aLnaaBaaaleaacaWGRbaabeaakiabgkHiTiaa hQhadaqhaaWcbaGaam4AaaqaaiaadsfaaaGcdaWadeqaaiaad6eada ahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqaqaaiaadsgadaWgaaWc baGaamOAaaqabaGccuaHXoqygaqbamaabmqabaGaaC4zamaaCaaale qabaGaamivaaaakiaahIhadaWgaaWcbaGaamOAaaqabaaakiaawIca caGLPaaacaWH4bWaaSbaaSqaaiaadQgaaeqaaOGaaCOEamaaDaaale aacaWGQbaabaGaamivaaaaaeaacaWGsbaabeqdcqGHris5aaGccaGL BbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamOtamaaCa aaleqabaGaeyOeI0IaaGymaaaakmaaqababaGaamizamaaBaaaleaa caWGQbaabeaakiqbeg7aHzaafaWaaeWabeaacaWHNbWaaWbaaSqabe aacaWGubaaaOGaaCiEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaa wMcaaiaahIhadaWgaaWcbaGaamOAaaqabaGccqaH1oqzdaWgaaWcba GaamOAaaqabaGccaGGUaaaleaacaWGsbaabeqdcqGHris5aaaa@73BA@

Soit δ k j = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadUgacaWGQbaabeaakiabg2da9iaaigdaaaa@3B21@  quand k = j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaadQgaaaa@388B@  et 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaceGacaGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36A1@ autrement. Parce que les ε k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadUgaaeqaaaaa@3869@  ne sont pas corrélés, et que E ( ε k 2 ) = σ k = z k T η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyramaabm qabaGaeqyTdu2aa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadUgaaeqaaOGaeyypa0 JaaCOEamaaDaaaleaacaWGRbaabaGaamivaaaakiaahE7acaGGSaaa aa@456D@  il est maintenant facile de montrer que E ( e k e j ) = δ k j σ k 2 + O ( 1 / n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyramaabm qabaGaamyzamaaBaaaleaacaWGRbaabeaakiaadwgadaWgaaWcbaGa amOAaaqabaaakiaawIcacaGLPaaacqGH9aqpcqaH0oazdaWgaaWcba Gaam4AaiaadQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaI YaaaaOGaey4kaSIaae4tamaabmqabaWaaSGbaeaacaaIXaaabaGaam OBaaaaaiaawIcacaGLPaaaaaa@497F@  pour presque chaque paire k , j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY cacaWGQbaaaa@3835@  sous le modèle de prédiction quand N 1 R d k α ( g T x k ) z k x k T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyeIu+aaSbaaSqaaiaadkfa aeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiqbeg7aHzaafaWaae WabeaaqaaaaaaaaaWdbiaahEgapaWaaWbaaSqabeaapeGaamivaaaa kiaahIhapaWaaSbaaSqaa8qacaWGRbaapaqabaaakiaawIcacaGLPa aacaWH6bWaaSbaaSqaaiaadUgaaeqaaOGaaCiEamaaDaaaleaacaWG RbaabaGaamivaaaaaaa@4CBF@  converge vers une matrice inversible, et que les hypothèses (3.3), (3.4), et

j = 1 N ψ j r N   B 2 <  où   ψ j  désigne toute composante de   x j  ou  z j ,  et  r  = 1, 2,  3 ou 4, ( 3.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcaaqaam aaqahabaGaeqiYdK3aa0baaSqaaiaadQgaaeaacaWGYbaaaaqaaiaa dQgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaGcbaGaamOtaa aacaqGGaGaeyizImQaamOqamaaBaaaleaacaaIYaaabeaakiabgYda 8iabg6HiLkaabccacaqGVbGaaey+aabaaaaaaaaapeGaaeiiaiaabc capaGaeqiYdK3aaSbaaSqaaiaadQgaaeqaaOGaaeiia8qacaqGKbGa aey6aiaabohacaqGPbGaae4zaiaab6gacaqGLbGaaeiiaiaabshaca qGVbGaaeyDaiaabshacaqGLbGaaeiiaiaabogacaqGVbGaaeyBaiaa bchacaqGVbGaae4CaiaabggacaqGUbGaaeiDaiaabwgacaqGGaGaae izaiaabwgacaqGGaGaaeiiaiaahIhapaWaaSbaaSqaa8qacaWGQbaa paqabaGcpeGaaeiOaiaab+gacaqG1bGaaeiiaiaahQhapaWaaSbaaS qaa8qacaWGQbaapaqabaGccaGGSaGaaeiiaiaabwgacaqG0bGaaeii aiaadkhacaqGGaGaaeypaiaabccacaqGXaGaaeilaiaabccacaqGYa GaaeilaiaabccacaqGGaGaae4maiaabccacaqGVbGaaeyDaiaabcca caqG0aGaaeilaiaaywW7caGGOaGaaG4maiaac6cacaaI4aGaaiykaa aa@89FB@

sont vérifiées. Observons que le changement provenant des hypothèses dans (3.5) à (3.8) fait que le biais relatif de v ( t y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaabm qabaGaamiDamaaBaaaleaacaWG5baabeaaaOGaayjkaiaawMcaaaaa @3A58@  est un estimateur de V C ( ou  R ( w k 2 w k ) σ k 2  quand  θ = 0 ) O ( 1 / n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGdbaabeaakmaabmqabaGaae4BaiaabwhacaqGGaGaeyye Iu+aaSbaaSqaaiaadkfaaeqaaOWaaeWabeaacaWG3bWaa0baaSqaai aadUgaaeaacaaIYaaaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGRbaa beaaaOGaayjkaiaawMcaaiabeo8aZnaaDaaaleaacaWGRbaabaGaaG OmaaaakiaabccacaqGXbGaaeyDaiaabggacaqGUbGaaeizaiaabcca cqaH4oqCcqGH9aqpcaaIWaaacaGLOaGaayzkaaGaae4tamaabmqaba WaaSGbaeaacaaIXaaabaGaamOBaaaaaiaawIcacaGLPaaaaaa@56E8@  plutôt que O ( 1 / n ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xe9LqFf0xe9 vqaqFeFr0xbba9Fa0P0RWFb9fq0lXxbbb9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaae4tamaabm qabaWaaSGbaeaacaaIXaaabaWaaOaaaeaacaWGUbaaleqaaaaaaOGa ayjkaiaawMcaaiaac6caaaa@3A9D@

Précédent | Suivant

Date de modification :