Estimateurs de la variance robustes pour estimateurs par la régression généralisée dans des échantillons en grappes
Section 2. Résultats théoriques

Supposons une population ayant i = 1, 2, , M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiaaysW7caaIYaGaaGilaiaaysW7cqWIMaYscaaI SaGaaGjbVlaad2eaaaa@41E2@ grappes. Dans la grappe i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@3797@ il y a N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ éléments de sorte qu’il y a N = i = 1 M N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dadaaeWaqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad2eaa0Gaeyye IuoakiaaysW7caWGobWaaSbaaSqaaiaadMgaaeqaaaaa@405C@ éléments dans la population. L’univers des grappes est exprimé par U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D3@ et l’univers des éléments dans la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ est U i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38A9@ La variable d’analyse y i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@3901@ est associée à l’élément k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E9@ de la grappe i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ La population totale de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F7@ est t U y = i = 1 M k = 1 N i y i k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGvbGaamyEaaqabaGccaaI9aWaaabmaeqaleaacaWGPbGa aGypaiaaigdaaeaacaWGnbaaniabggHiLdGccaaMc8+aaabmaeqale aacaWGRbGaaGypaiaaigdaaeaacaWGobWaaSbaaWqaaiaadMgaaeqa aaqdcqGHris5aOGaaGPaVlaadMhadaWgaaWcbaGaamyAaiaadUgaae qaaOGaaiOlaaaa@4C5D@ Chaque élément de population a également un vecteur p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EE@ de variables auxiliaires, x i k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbGaam4AaaqabaGccaGGSaaaaa@39BE@ qui peut être utilisé dans l’estimation. On sélectionne un échantillon à deux degrés sans remise aux premier et deuxième degrés. La probabilité de sélection de la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ est π i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@398A@ et π k | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaaaaa@3E6C@ est la probabilité de sélection conditionnelle de l’élément k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E9@ dans la grappe i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ La probabilité globale de sélection de l’élément i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaadU gaaaa@37D7@ est π i k = π i π k | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGRbaabeaakiaai2dacqaHapaCdaWgaaWcbaGa amyAaaqabaGccqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGaaGPaVd GaayjcSdGaaGPaVlaadMgaaeqaaOGaaiOlaaaa@46A1@ Soit s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36F1@ l’ensemble de grappes d’échantillon et s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbaabeaaaaa@380B@ l’ensemble d’éléments d’échantillon dans la grappe i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ Le nombre de grappes d’échantillon est m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36EB@ tandis que le nombre d’éléments d’échantillon sélectionnés de la grappe d’échantillon i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ est n i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38C2@ La taille de l’échantillon total des éléments est n = i s n i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dadaaeqaqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGa aGPaVlaad6gadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@415F@

Dans le modèle de travail, supposons que Y U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCywamaaBa aaleaacaWGvbaabeaakiaacYcaaaa@389B@ le vecteur N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CC@ des variables d’analyse, suit le modèle linéaire suivant :

E ξ ( Y U ) = X β ( 2.1 ) cov ξ ( Y U ) = Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadweadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGaaCywamaa BaaaleaacaWGvbaabeaaaOGaayjkaiaawMcaaaqaaiaai2dacaWHyb GaaCOSdiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikda caGGUaGaaGymaiaacMcaaeaacaqGJbGaae4BaiaabAhadaWgaaWcba GaeqOVdGhabeaakmaabmaabaGaaCywamaaBaaaleaacaWGvbaabeaa aOGaayjkaiaawMcaaaqaaiaai2dacaWHOoaaaaaa@54B3@

où l’indice ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37BC@ désigne une espérance par rapport à un modèle; X= [ X 1 , X 2 ,, X M ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaacaWGybGaeyypa0ZaamWaaeaadaqf WaqabSqaaiaaigdaaeaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0H gip5wzaGGbaiab=rQivcqdbaGaamiwaaaakiaacYcadaqfWaqabSqa aiaaikdaaeaacqWFKksLa0qaaiaadIfaaaGccaGGSaGaaiOlaiaac6 cacaGGUaGaaiilamaavadabeWcbaGaamytaaqaaiab=rQivcqdbaGa amiwaaaaaOGaay5waiaaw2faamaaCaaaleqabaGae8hPIujaaaaa@5C81@ est la matrice N × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgE na0kaadchaaaa@39D8@ des variables auxiliaires et X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGPbaabeaaaaa@37F4@ est la matrice N i × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaakiabgEna0kaadchaaaa@3AFC@ des variables auxiliaires pour les éléments N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ dans la grappe i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacU daaaa@37A6@ et β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3737@ est un vecteur de paramètre de longueur p . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaac6 caaaa@37A0@ On suppose que les éléments des grappes sont corrélés tandis que les éléments des différentes grappes sont indépendants selon le modèle. Ainsi, la matrice de covariance Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ est une matrice diagonale par blocs N × N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgE na0kaad6eaaaa@39B6@ avec des matrices diagonales Ψ i = [ ψ i k ] N i × N i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGPbaabeaakiaai2dadaWadaqaaiabeI8a5naaBaaaleaa caWGPbGaam4AaaqabaaakiaawUfacaGLDbaadaWgaaWcbaGaamOtam aaBaaameaacaWGPbaabeaaliabgEna0kaad6eadaWgaaadbaGaamyA aaqabaaaleqaaOGaaiOlaaaa@45DD@ Une des principales caractéristiques des estimateurs de la variance que nous proposons est qu’il n’est pas nécessaire de connaître la forme particulière de ψ i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgacaWGRbaabeaaaaa@39D1@ pour construire les estimateurs de la variance. Les estimateurs de la variance proposés seront convergents, quelle que soit la forme de Ψ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdiaac6 caaaa@37DE@

Särndal et coll. (1992, chapitre 8) examinent trois estimateurs GREG différents pouvant être utilisés dans les échantillons en grappes. Tous trois dépendent des données disponibles. Considérons leur cas B, qui se produit lorsque des données au niveau de l’unité sont disponibles pour l’échantillon complet et que des totaux de contrôle sont disponibles pour la population. Dans ce cas, l’estimateur GREG est

t ^ y g r = t ^ y π + B ^ ( t U x t ^ x π ) = g Π 1 y s ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiqadshagaqcamaaDaaaleaacaWG5baabaGaam4zaiaadkhaaaaa keaacaaI9aGabmiDayaajaWaaSbaaSqaaiaadMhacqaHapaCaeqaaO Gaey4kaSIabCOqayaajaWaaWbaaSqabeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaakmaabmaabaGaaCiDam aaBaaaleaacaWGvbGaamiEaaqabaGccqGHsislceWH0bGbaKaadaWg aaWcbaGaamiEaiabec8aWbqabaaakiaawIcacaGLPaaaaeaaaeaaca aI9aGaaC4zamaaCaaaleqabaGae8hPIujaaOGaaCiOdmaaCaaaleqa baGaeyOeI0IaaGymaaaakiaahMhadaWgaaWcbaGaam4CaaqabaGcca aMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaIYaGaaiOlaiaaikdacaGGPaaaaaaa@6EC1@

y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbaabeaaaaa@381F@ est le vecteur n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EC@ des y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F7@ pour les éléments d’échantillon, t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja WaaSbaaSqaaiaadMhacqaHapaCaeqaaaaa@39E9@ est l’estimateur π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37B6@ du total des y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacY caaaa@37A7@ t U x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiDamaaBa aaleaacaWGvbGaamiEaaqabaaaaa@38F9@ est le vecteur p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EE@ des totaux de population des x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacY caaaa@37A6@ t ^ x π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiDayaaja WaaSbaaSqaaiaadIhacqaHapaCaeqaaaaa@39EC@ est l’estimateur π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37B6@ de t U x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiDamaaBa aaleaacaWGvbGaamiEaaqabaGccaGGSaaaaa@39B3@ et (si Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ est connu) B ^ = A 1 X s Ψ s 1 Π 1 y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja GaaGypaiaahgeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHybWa a0baaSqaaiaadohaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbbiab=rQivcaakiaahI6adaqhaaWcbaGaam4Caaqaaiab gkHiTiaaigdaaaGccaWHGoWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaaCyEamaaBaaaleaacaWGZbaabeaaaaa@50FB@ avec A = X s Ψ s 1 Π 1 X s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaai2 dacaWHybWaa0baaSqaaiaadohaaeaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbbiab=rQivcaakiaahI6adaqhaaWcbaGaam 4CaaqaaiabgkHiTiaaigdaaaGccaWHGoWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaCiwamaaBaaaleaacaWGZbaabeaakiaacYcaaaa@4EDA@ X s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGZbaabeaaaaa@37FE@ la matrice des variables auxiliaires de l’échantillon, et Π = diag [ π i k ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdiaai2 dacaqGKbGaaeyAaiaabggacaqGNbWaamWaaeaacqaHapaCdaWgaaWc baGaamyAaiaadUgaaeqaaaGccaGLBbGaayzxaaaaaa@4150@ ( i s , k s i ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGjbVlabgIGiolaaysW7caWGZbGaaGilaiaaysW7caWGRbGa aGjbVlabgIGiolaaysW7caWGZbWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaGaai4oaaaa@48B2@ Ψ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbaabeaaaaa@3851@ est la partie de Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ associée aux éléments d’échantillon; et g = 1 n + ( t U x t ^ x π ) A 1 X s Ψ s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaCa aaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuqa cqWFKksLaaGccaaI9aGaaCymamaaDaaaleaacaWGUbaabaGae8hPIu jaaOGaey4kaSYaaeWaaeaacaWH0bWaaSbaaSqaaiaadwfacaWG4baa beaakiabgkHiTiqahshagaqcamaaBaaaleaacaWG4bGaeqiWdahabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGae8hPIujaaOGaaCyqamaa CaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaam4Caa qaaiab=rQivcaakiaahI6adaqhaaWcbaGaam4CaaqaaiabgkHiTiaa igdaaaaaaa@5E26@ 1 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCymamaaBa aaleaacaWGUbaabeaaaaa@37D2@ est un vecteur de n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EC@ valeurs 1.

La composante du poids g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E5@ de la grappe d’échantillon i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ est g i = 1 n i + ( t U x t ^ x π ) A 1 X s i Ψ s i 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaDa aaleaacaWGPbaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuqacqWFKksLaaGccaaI9aGaaCymamaaDaaaleaacaWGUbWaaS baaWqaaiaadMgaaeqaaaWcbaGae8hPIujaaOGaey4kaSYaaeWaaeaa caWH0bWaaSbaaSqaaiaadwfacaWG4baabeaakiabgkHiTiqahshaga qcamaaBaaaleaacaWG4bGaeqiWdahabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGae8hPIujaaOGaaCyqamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaahIfadaqhaaWcbaGaam4CaiaadMgaaeaacqWFKksLaaGc caWHOoWaa0baaSqaaiaadohacaWGPbaabaGaeyOeI0IaaGymaaaaki aacYcaaaa@62D0@ X s i = [ x i 1 , , x i n i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaDa aaleaacaWGZbGaamyAaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfeGae8hPIujaaOGaaGypamaadmaabaGaaCiEamaaBa aaleaacaWGPbGaaGymaaqabaGccaaISaGaaGjbVlablAciljaaiYca caaMe8UaaCiEamaaBaaaleaacaWGPbGaamOBamaaBaaameaacaWGPb aabeaaaSqabaaakiaawUfacaGLDbaaaaa@53E1@ étant la matrice p × n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE na0kaad6gadaWgaaWcbaGaamyAaaqabaaaaa@3B12@ des variables auxiliaires pour les éléments d’échantillon dans la grappe d’échantillon i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@3797@ Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ est la partie n i × n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiabgEna0kaad6gadaWgaaWcbaGaamyAaaqa baaaaa@3C34@ de Ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGPbaabeaaaaa@3847@ pour les éléments d’échantillon dans la grappe d’échantillon i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@3797@ et 1 n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCymamaaBa aaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@38F8@ est un vecteur de n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3806@ valeurs 1. Puisque Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ est généralement inconnu, une valeur de substitution Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaaaa@36D3@ peut être utilisée pour Ψ s 1 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaDa aaleaacaWGZbaabaGaeyOeI0IaaGymaaaakiaacUdaaaa@3AC3@ Q = I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaiabg2 da9iaahMeaaaa@38AB@ est un choix courant. Plus bas, nous supposons qu’une valeur générale Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaaaa@36D3@ est utilisée dans l’estimation par la régression généralisée plutôt que Ψ s 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaDa aaleaacaWGZbaabaGaeyOeI0IaaGymaaaakiaac6caaaa@3AB6@

2.1  Estimateurs de la variance actuels

Särndal et coll. (1992, résultat 8.9.1) présentent un estimateur de la variance par rapport au plan t ^ y g r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhaaeaacaWGNbGaamOCaaaakiaacYcaaaa@3ACA@ qui comporte des probabilités de sélection conjointe des grappes et des éléments des grappes. En cas d’échantillonnage de Poisson, aux deux degrés, leur estimateur est

υ g = i s ( 1 π i ) π i 2 ( t ^ e , i g ) 2 + i s 1 π i k s i ( 1 π k | i ) π k | i 2 g i k 2 e i k 2 ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEgaaeqaaOGaaGjbVlaai2dacaaMe8+aaabuaeqaleaa caWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaalaaabaWaaeWaae aacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaadMgaaeqaaaGccaGL OaGaayzkaaaabaGaeqiWda3aa0baaSqaaiaadMgaaeaacaaIYaaaaa aakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadwgacaaMb8UaaGil aiaaykW7caWGPbaabaGaam4zaaaaaOGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaysW7cqGHRaWkcaaMe8+aaabuaeqaleaacaWG PbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaalaaabaGaaGymaaqaai abec8aWnaaBaaaleaacaWGPbaabeaaaaGcdaaeqbqabSqaaiaadUga cqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aO WaaSaaaeaadaqadaqaaiaaigdacqGHsislcqaHapaCdaWgaaWcbaWa aqGaaeaacaWGRbGaaGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaGcca GLOaGaayzkaaaabaGaeqiWda3aa0baaSqaamaaeiaabaGaam4Aaiaa ykW7aiaawIa7aiaaykW7caWGPbaabaGaaGOmaaaaaaGccaWGNbWaa0 baaSqaaiaadMgacaWGRbaabaGaaGOmaaaakiaadwgadaqhaaWcbaGa amyAaiaadUgaaeaacaaIYaaaaOGaaGzbVlaaywW7caaMf8UaaGzbVl aaywW7caGGOaGaaGOmaiaac6cacaaIZaGaaiykaaaa@921F@

t ^ e , i g = s i g i k e i k / π k | i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadwgacaaMb8UaaGilaiaaykW7caWGPbaabaGaam4z aaaakiaai2dadaWcgaqaamaaqababeWcbaGaam4CamaaBaaameaaca WGPbaabeaaaSqab0GaeyyeIuoakiaaykW7caWGNbWaaSbaaSqaaiaa dMgacaWGRbaabeaakiaadwgadaWgaaWcbaGaamyAaiaadUgaaeqaaa GcbaGaeqiWda3aaSbaaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7 aiaaykW7caWGPbaabeaaaaGccaGGSaaaaa@5367@ g i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@38EF@ est la composante k e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeyzaaaaaaa@37FE@ du vecteur g i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38BD@ et e i k = y i k x i k B ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaafecaWGLb WaaSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWG5bWaaSbaaSqa aiaadMgacaWGRbaabeaakiabgkHiTiaahIhadaqhaaWcbaGaamyAai aadUgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb biab=rQivcaakiqahkeagaqcaiaac6caaaa@4E2E@ Les calculs pour cet estimateur sont plus simples que la formule générale qui utilise des probabilités de sélection conjointe et peut avoir des performances satisfaisantes en cas de plans pt π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabs hacqaHapaCaaa@39A0@ où l’on peut obtenir une approximation de la variance des estimateurs par des formules qui supposent une indépendance entre les sélections.

Voici un estimateur approprié si l’échantillonnage au premier degré est sélectionné avec remise :

υ w r = m m 1 i s ( e 1 i e ¯ 1 ) 2 ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEhacaWGYbaabeaakiaai2dadaWcaaqaaiaad2gaaeaa caWGTbGaeyOeI0IaaGymaaaadaaeqbqabSqaaiaadMgacqGHiiIZca WGZbaabeqdcqGHris5aOWaaeWaaeaacaWGLbWaaSbaaSqaaiaaigda caWGPbaabeaakiabgkHiTiqadwgagaqeamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGinaiaacM caaaa@5753@

avec e 1 i = k s i e i k / π i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaaIXaGaamyAaaqabaGccaaMe8UaaGypaiaaysW7daWcgaqa amaaqababeWcbaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyAaa qabaaaleqaniabggHiLdGccaaMc8UaamyzamaaBaaaleaacaWGPbGa am4AaaqabaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaadUgaaeqaaa aaaaa@4B89@ et e ¯ 1 = m 1 i s e 1 i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaara WaaSbaaSqaaiaaigdaaeqaaOGaaGjbVlaai2dacaaMe8UaamyBamaa CaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcbaGaamyAaiabgI GiolaadohaaeqaniabggHiLdGccaaMc8UaamyzamaaBaaaleaacaaI XaGaamyAaaqabaGccaGGUaaaaa@48FC@ L’estimateur par linéarisation jackknife est (Yung et Rao, 1996)

υ J L = m 1 m i s ( e 2 i e ¯ 2 ) 2 ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaakiaai2dadaWcaaqaaiaad2gacqGH sislcaaIXaaabaGaamyBaaaadaaeqbqabSqaaiaadMgacqGHiiIZca WGZbaabeqdcqGHris5aOWaaeWaaeaacaWGLbWaaSbaaSqaaiaaikda caWGPbaabeaakiabgkHiTiqadwgagaqeamaaBaaaleaacaaIYaaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGynaiaacM caaaa@5703@

e 2 i = k s i g i k e i k / π i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaaIYaGaamyAaaqabaGccaaMe8UaaGypaiaaysW7daWcgaqa amaaqababeWcbaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyAaa qabaaaleqaniabggHiLdGccaaMc8Uaam4zamaaBaaaleaacaWGPbGa am4AaaqabaGccaWGLbWaaSbaaSqaaiaadMgacaWGRbaabeaaaOqaai abec8aWnaaBaaaleaacaWGPbGaam4Aaaqabaaaaaaa@4E8A@ et e ¯ 2 = m 1 i s e 2 i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaara WaaSbaaSqaaiaaikdaaeqaaOGaaGjbVlaai2dacaaMe8UaamyBamaa CaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcbaGaamyAaiabgI GiolaadohaaeqaniabggHiLdGccaaMc8UaamyzamaaBaaaleaacaaI YaGaamyAaaqabaGccaGGSaaaaa@48FC@ g i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@38EF@ étant la composante k e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeyzaaaaaaa@37FE@ du vecteur g i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38BF@

La méthode jackknife est une autre technique courante d’estimation de la variance. Krewski et Rao (1981) présentent plusieurs façons asymptotiquement équivalentes d’exprimer le jackknife. La forme suivante de l’estimateur jackknife constitue un point de départ pratique pour les calculs qui suivent :

υ Jack = m 1 m i s ( t ^ y ( i ) g r t ^ y ( ) g r ) 2 ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaGjbVlaai2da caaMe8+aaSaaaeaacaWGTbGaeyOeI0IaaGymaaqaaiaad2gaaaWaaa buaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaa baGabmiDayaajaWaa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaawI cacaGLPaaaaeaacaWGNbGaamOCaaaakiabgkHiTiqadshagaqcamaa DaaaleaacaWG5bWaaeWaaeaacqGHflY1aiaawIcacaGLPaaaaeaaca WGNbGaamOCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUa GaaGOnaiaacMcaaaa@65D1@

t ^ y ( i ) g r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeaa caWGNbGaamOCaaaaaaa@3C87@ est la valeur de l’estimateur GREG après suppression de la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ et t ^ y ( ) g r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhadaqadaqaaiabgwSixdGaayjkaiaawMcaaaqa aiaadEgacaWGYbaaaaaa@3DE3@ est la moyenne de toutes les estimations t ^ y ( i ) g r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeaa caWGNbGaamOCaaaakiaac6caaaa@3D43@ L’utilisation de (2.6) peut exiger d’importantes ressources de calcul, car il faut calculer m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36EB@ estimations différentes de t ^ y ( i ) g r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeaa caWGNbGaamOCaaaakiaac6caaaa@3D43@ Les estimateurs υ Jack , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaiilaaaa@3C2B@ υ w r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEhacaWGYbaabeaaaaa@39DF@ et υ J L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaaaaa@398C@ sont tous convergents par rapport au plan de sondage dans les conditions de Krewski et Rao (1981) et de Yung et Rao (1996). L’une de leurs principales conditions était que les grappes devaient être sélectionnées avec remise. Cette hypothèse simplifie les calculs théoriques, mais elle est utilisée seulement par souci de commodité. En effet, de nombreuses études empiriques ont démontré que les résultats théoriques étaient de bons prédicteurs de la performance des estimateurs dans les plans sans remise, tant que la fraction de sondage au premier degré est petite.

2.2  Nouveaux estimateurs de la variance

Nous utilisons le cadre fondé sur un modèle pour construire de nouveaux estimateurs de la variance. En premier lieu, nous calculons la variance fondée sur le modèle de t ^ y g r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhaaeaacaWGNbGaamOCaaaakiaac6caaaa@3ACC@ Supposons que le modèle (2.1) se vérifie et que l’échantillonnage est ignorable, en ce sens que la probabilité qu’une unité soit dans l’échantillon donné Y U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCywamaaBa aaleaacaWGvbaabeaaaaa@37E1@ et X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwaaaa@36DA@ dépend seulement de X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwaaaa@36DA@ (voir par exemple la discussion dans Valliant, Dorfman et Royall, 2000, section 2.6.2 et les références supplémentaires qui y sont citées). Ensuite, nous construisons des estimateurs de la variance du modèle, au moyen d’ajustements de la matrice chapeau pour tenir compte de l’hétérogénéité dans les données. Nous évaluons les propriétés fondées sur le plan de sondage des nouveaux estimateurs de la variance dans une simulation.

Pour calculer la variance du modèle de t ^ y g r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhaaeaacaWGNbGaamOCaaaakiaacYcaaaa@3ACA@ soit y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGPbaabeaaaaa@3815@ le vecteur de population des variables d’analyse pour la grappe i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@3797@ et y s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbGaamyAaaqabaaaaa@390D@ le vecteur des éléments d’échantillon. Comme le montre l’annexe A.2, sous le modèle (2.1), la variance fondée sur le modèle de t ^ y g r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhaaeaacaWGNbGaamOCaaaaaaa@3A10@ est :

var ξ ( t ^ y g r t U y ) = i s g i Π i 1 Ψ s i Π i 1 g i 2 i s [ g i Π i 1 cov ξ ( y s i , y i ) 1 N i ] + 1 N Ψ 1 N = L 1 2 L 2 + L 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaaceWG0bGbaKaadaqhaaWcbaGaamyEaaqaaiaadEgacaWGYbaaaO GaeyOeI0IaamiDamaaBaaaleaacaWGvbGaamyEaaqabaaakiaawIca caGLPaaaaeaacaaI9aWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caa qab0GaeyyeIuoakiaaykW7caWHNbWaa0baaSqaaiaadMgaaeaatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaaki aahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHOoWa aSbaaSqaaiaadohacaWGPbaabeaakiaahc6adaqhaaWcbaGaamyAaa qaaiabgkHiTiaaigdaaaGccaWHNbWaaSbaaSqaaiaadMgaaeqaaOGa eyOeI0IaaGOmamaaqafabeWcbaGaamyAaiabgIGiolaadohaaeqani abggHiLdGcdaWadaqaaiaahEgadaqhaaWcbaGaamyAaaqaaiab=rQi vcaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGcca qGJbGaae4BaiaabAhadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGa aCyEamaaBaaaleaacaWGZbGaamyAaaqabaGccaaISaGaaGjbVlaahM hadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaaMe8UaaCym amaaBaaaleaacaWGobWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaOGaay 5waiaaw2faaiabgUcaRiaahgdadaqhaaWcbaGaamOtaaqaaiab=rQi vcaakiaahI6acaWHXaWaaSbaaSqaaiaad6eaaeqaaaGcbaaabaGaaG ypaiaadYeadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIYaGaamit amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadYeadaWgaaWcbaGaaG 4maaqabaaaaaaa@9AAF@

var ξ ( y s i ) = Ψ s i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahMhadaWg aaWcbaGaam4CaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypaiaahI 6adaWgaaWcbaGaam4CaiaadMgaaeqaaOGaaiilaaaa@4432@ la partie de Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ associée à des éléments dans s i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38C5@ et 1 N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCymamaaBa aaleaacaWGobWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@38D8@ et 1 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCymamaaBa aaleaacaWGobaabeaaaaa@37B2@ sont des vecteurs de N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ et N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CC@  1.

La variance de l’erreur fondée sur le modèle de t ^ y g r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhaaeaacaWGNbGaamOCaaaaaaa@3A10@ nécessite de connaître Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ pour toute la population. En l’absence de solides hypothèses établissant un lien entre les structures de covariance de l’échantillon et hors de l’échantillon, les composantes de Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@ associées aux valeurs non échantillonnées ne peuvent pas être estimées à partir de l’échantillon. Cependant, comme le montre l’annexe A.2, dans certaines conditions raisonnables, les ordres des termes sont L 1 = O ( M 2 / m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaai2dacaWGpbWaaeWaaeaadaWcgaqaaiaa d2eadaahaaWcbeqaaiaaikdaaaaakeaacaWGTbaaaaGaayjkaiaawM caaaaa@3DAC@ et L 2 = L 3 = O ( M ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaai2dacaWGmbWaaSbaaSqaaiaaiodaaeqa aOGaaGypaiaad+eadaqadaqaaiaad2eaaiaawIcacaGLPaaacaGGSa aaaa@3EED@ de sorte que L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaaaaa@37B1@ domine la variance à mesure que le nombre de grappes d’échantillon et de population augmente. Ainsi,

av ξ ( t ^ y g r t U y ) = i s g i Π i 1 Ψ s i Π i 1 g i ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyyaiaabA hadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGabmiDayaajaWaa0ba aSqaaiaadMhaaeaacaWGNbGaamOCaaaakiabgkHiTiaadshadaWgaa WcbaGaamyvaiaadMhaaeqaaaGccaGLOaGaayzkaaGaaGypamaaqafa beWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8UaaC 4zamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuqacqWFKksLaaGccaWHGoWaa0baaSqaaiaadMgaae aacqGHsislcaaIXaaaaOGaaCiQdmaaBaaaleaacaWGZbGaamyAaaqa baGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislcaaIXaaaaOGaaC 4zamaaBaaaleaacaWGPbaabeaakiaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@717A@

av ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyyaiaabA hadaWgaaWcbaGaeqOVdGhabeaaaaa@39C5@ désigne la variance du modèle asymptotique selon les hypothèses de l’annexe A.1. On peut former un estimateur robuste du deuxième membre de (2.7) même si Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ est inconnu. En revanche, si le nombre de grappes de population augmente au même taux que les grappes d’échantillon (c’est-à-dire que f = m / M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dadaWcgaqaaiaad2gaaeaacaWGnbaaaaaa@3985@ converge vers une constante non nulle), alors L 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaacYcaaaa@386B@ L 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaaaaa@37B2@ et L 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIZaaabeaaaaa@37B3@ peuvent tous contribuer de façon importante à la variance asymptotique. Dans le présent article, nous examinerons uniquement l’estimation de L 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaac6caaaa@386D@

À moins que la vraie matrice de variance de y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbaabeaaaaa@381F@ soit connue, il faut estimer Ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGPbaabeaakiaac6caaaa@3903@ À l’annexe A.3, nous montrons que dans les grands échantillons var ξ ( e i ) Ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahwgadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHijYUcaWHOoWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@4318@ e i = y s i y ^ s i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaakiaai2dacaWH5bWaaSbaaSqaaiaadohacaWG PbaabeaakiabgkHiTiqahMhagaqcamaaBaaaleaacaWGZbGaamyAaa qabaGccaGGSaaaaa@40BB@ avec y ^ s i = X s i B ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyEayaaja WaaSbaaSqaaiaadohacaWGPbaabeaakiaai2dacaWHybWaaSbaaSqa aiaadohacaWGPbaabeaakiqahkeagaqcaaaa@3DC6@ et X s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGZbGaamyAaaqabaaaaa@38EC@ étant la matrice n i × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiabgEna0kaadchaaaa@3B1C@ des variables auxiliaires pour les éléments d’échantillon dans la grappe d’échantillon i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ Si on substitue e i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaakiaahwgadaqhaaWcbaGaamyAaaqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaaaa@457F@ à Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ dans (2.7), on obtient l’estimateur sandwich

υ R = i s g i Π i 1 e i e i Π i 1 g i . ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaOGaaGypamaaqafabeWcbaGaamyAaiabgIGi olaadohaaeqaniabggHiLdGccaaMc8UaaC4zamaaDaaaleaacaWGPb aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuqacqWF KksLaaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislcaaIXaaaaO GaaCyzamaaBaaaleaacaWGPbaabeaakiaahwgadaqhaaWcbaGaamyA aaqaaiab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTi aaigdaaaGccaWHNbWaaSbaaSqaaiaadMgaaeqaaOGaaGOlaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGioai aacMcaaaa@6A48@

D’après les résultats présentés à l’annexe A.3, υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@ est approximativement sans biais pour av ξ ( t ^ y g r t U y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyyaiaabA hadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGabmiDayaajaWaa0ba aSqaaiaadMhaaeaacaWGNbGaamOCaaaakiabgkHiTiaadshadaWgaa WcbaGaamyvaiaadMhaaeqaaaGccaGLOaGaayzkaaaaaa@436D@ dans les grands échantillons. Cet estimateur sandwich est aussi étroitement lié à l’estimateur par grappe ultime fondé sur le plan de sondage pour un plan dans lequel les grappes sont sélectionnées avec remise, qui est, à son tour, semblable à υ g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEgaaeqaaaaa@38D8@ et υ J L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaaaaa@398C@ avec un échantillonnage avec remise. Par conséquent, υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@ possède des propriétés souhaitables fondées à la fois sur le plan et sur le modèle.

Dans les échantillons de taille petite à moyenne, υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@ présente un biais par rapport au modèle et sous-estime souvent la variance véritable. On peut ajuster la matrice chapeau pour le corriger. Comme on le montre l’annexe A.3,

E ξ ( e i e i ) = var ξ ( e i ) = ( I n i H i i ) Ψ s i ( I n i H i i ) + j i ; i , j s H i j Ψ s j H i j ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaaBa aaleaacqaH+oaEaeqaaOWaaeWaaeaacaWHLbWaaSbaaSqaaiaadMga aeqaaOGaaCyzamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaaakiaawIcacaGLPaaa caaI9aGaaeODaiaabggacaqGYbWaaSbaaSqaaiabe67a4bqabaGcda qadaqaaiaahwgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa caaI9aWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6gadaWgaaadbaGaam yAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGaamyA aaqabaaakiaawIcacaGLPaaacaWHOoWaaSbaaSqaaiaadohacaWGPb aabeaakmaabmaabaGaaCysamaaBaaaleaacaWGUbWaaSbaaWqaaiaa dMgaaeqaaaWcbeaakiabgkHiTiaahIeadaWgaaWcbaGaamyAaiaadM gaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqWFKksLaaGccqGH RaWkdaaeqbqabSqaaiaadQgacqGHGjsUcaWGPbGaaG4oaiaaykW7ca WGPbGaaGzaVlaaiYcacaaMc8UaamOAaiabgIGiolaadohaaeqaniab ggHiLdGccaWHibWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahI6ada WgaaWcbaGaam4CaiaadQgaaeqaaOGaaCisamaaDaaaleaacaWGPbGa amOAaaqaaiab=rQivcaakiaaywW7caaMf8UaaGzbVlaacIcacaaIYa GaaiOlaiaaiMdacaGGPaaaaa@8E77@

H i j = X s i A 1 X s j Q j Π j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaaCiwamaaDaaaleaacaWG ZbGaamyAaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfeGae8hPIujaaOGaaCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaa kiaahIfadaWgaaWcbaGaam4CaiaadQgaaeqaaOGaaCyuamaaBaaale aacaWGQbaabeaakiaahc6adaqhaaWcbaGaamOAaaqaaiabgkHiTiaa igdaaaaaaa@53A3@ ( i , j = 1, , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbGaaGjbVlaai2dacaaMe8UaaGymaiaa iYcacaaMe8UaeSOjGSKaaGilaKaaGjaaysW7kiaad2gaaiaawIcaca GLPaaacaGGSaaaaa@47FB@ Q j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuamaaBa aaleaacaWGQbaabeaaaaa@37EE@ et Π j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdmaaBa aaleaacaWGQbaabeaaaaa@3840@ étant les parties n j × n j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGQbaabeaakiabgEna0kaad6gadaWgaaWcbaGaamOAaaqa baaaaa@3C36@ de Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaaaa@36D3@ et Π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdaaa@3725@ étant associé à la grappe d’échantillon j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaac6 caaaa@379A@ Comme dans Li et Valliant (2009) et Valliant (2002), on peut recueillir H i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38D3@ dans une matrice chapeau pondérée selon l’enquête :

H = X s A 1 X s Q Π 1 = [ X s 1 A 1 X s 1 Q 1 Π 1 1 X s 1 A 1 X s m Q m Π m 1 X s m A 1 X s 1 Q 1 Π 1 1 X s m A 1 X s m Q m Π m 1 ] . ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipeea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeGaca aabaGaaCisaaqaaiaai2dacaWHybWaaSbaaSqaaiaadohaaeqaaOGa aCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcba Gaam4Caaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac feGae8hPIujaaOGaaCyuaiaahc6adaahaaWcbeqaaiabgkHiTiaaig daaaGccaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikdaca GGUaGaaGymaiaaicdacaGGPaaabaaabaGaaGypamaadmaabaqbaeqa bmWaaaqaaiaahIfadaWgaaWcbaGaam4CaiaaigdaaeqaaOGaaCyqam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaam4C aiaaigdaaeaacqWFKksLaaGccaWHrbWaaSbaaSqaaiaaigdaaeqaaO GaaCiOdmaaDaaaleaacaaIXaaabaGaeyOeI0IaaGymaaaaaOqaaiab lAcilbqaaiaahIfadaWgaaWcbaGaam4CaiaaigdaaeqaaOGaaCyqam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaam4C aiaad2gaaeaacqWFKksLaaGccaWHrbWaaSbaaSqaaiaad2gaaeqaaO GaaCiOdmaaDaaaleaacaWGTbaabaGaeyOeI0IaaGymaaaaaOqaaiab l6UinbqaaiablgVipbqaaiabl6UinbqaaiaahIfadaWgaaWcbaGaam 4Caiaad2gaaeqaaOGaaCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaa kiaahIfadaqhaaWcbaGaam4CaiaaigdaaeaacqWFKksLaaGccaWHrb WaaSbaaSqaaiaaigdaaeqaaOGaaCiOdmaaDaaaleaacaaIXaaabaGa eyOeI0IaaGymaaaaaOqaaiablAcilbqaaiaahIfadaWgaaWcbaGaam 4Caiaad2gaaeqaaOGaaCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaa kiaahIfadaqhaaWcbaGaam4Caiaad2gaaeaacqWFKksLaaGccaWHrb WaaSbaaSqaaiaad2gaaeqaaOGaaCiOdmaaDaaaleaacaWGTbaabaGa eyOeI0IaaGymaaaaaaaakiaawUfacaGLDbaacaGGUaaaaaaa@B1C6@

Selon les hypothèses de l’annexe A.1, H = O ( m 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisaiaai2 dacaWGpbWaaeWaaeaacaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaa aaGccaGLOaGaayzkaaGaaiilaaaa@3D6F@ ce qui permet de conclure que var ξ ( e i ) Ψ s i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahwgadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHijYUcaWHOoWaaS baaSqaaiaadohacaWGPbaabeaakiaac6caaaa@4412@ Les sous-matrices diagonales H i i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaaaaa@38D2@ sont des matrices analogues aux effets de levier dans un échantillonnage à un degré. Dans une régression des moindres carrés ordinaires, le vecteur des valeurs prédites peut s’écrire y ^ = H MCO y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyEayaaja GaaGypaiaahIeadaWgaaWcbaGaaeytaiaaboeacaqGpbaabeaakiaa hMhaaaa@3C43@ avec H MCO = X ( X T X ) 1 X T . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaqGnbGaae4qaiaab+eaaeqaaOGaaGypaiaahIfadaqadaqa aiaahIfadaahaaWcbeqaaiaadsfaaaGccaWHybaacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCiwamaaCaaaleqabaGa amivaaaakiaac6caaaa@43ED@ Les effets de levier sont des diagonales de la matrice chapeau, H MCO , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaqGnbGaae4qaiaab+eaaeqaaOGaaiilaaaa@3A18@ qui peuvent servir à corriger un petit biais d’échantillon dans e i 2 = ( y i y ^ i ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGPbaabaGaaGOmaaaakiaai2dadaqadaqaaiaadMhadaWg aaWcbaGaamyAaaqabaGccqGHsislceWG5bGbaKaadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@413E@ comme estimateur de var ξ ( y i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaadMhadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@3F21@ Nous utilisons H i i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaaaaa@38D2@ de façon analogue ci-dessous.

Pour tenir compte du fait que e i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaakiaahwgadaqhaaWcbaGaamyAaaqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaaaa@457F@ présente un biais par rapport au modèle pour les échantillons petits à moyens, nous apportons des ajustements de type levier à e i e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaakiaahwgadaqhaaWcbaGaamyAaaqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaOGaai Olaaaa@463B@ Si Q = I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaiabg2 da9iaahMeaaaa@38AB@ et que l’échantillon est autopondéré (c’est-à-dire Π = c I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdiaai2 dacaWGJbGaaCysaaaa@39A6@ pour certains 0 < c < 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGJbGaaGipaiaaigdacaGGPaGaaiilaaaa@3B3F@ alors var ξ ( e i ) = ( I n i H i i ) Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahwgadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaaI9aWaaeWaaeaaca WHjbWaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGa eyOeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcaca GLPaaacaWHOoWaaSbaaSqaaiaadohacaWGPbaabeaaaaa@4AE6@ (voir l’annexe A.3). Si on résout Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ et le substitue dans (2.8), on obtient l’estimateur de la variance :

υ D = i s g i Π i 1 ( I n i H i i ) 1 e i e i Π i 1 g i ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaOGaaGypamaaqafabeWcbaGaamyAaiabgIGi olaadohaaeqaniabggHiLdGccaaMc8UaaC4zamaaDaaaleaacaWGPb aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuqacqWF KksLaaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislcaaIXaaaaO WaaeWaaeaacaWHjbWaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqa baaaleqaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqaba aakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWH LbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaDaaaleaacaWGPbaaba Gae8hPIujaaOGaaCiOdmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGym aaaakiaahEgadaWgaaWcbaGaamyAaaqabaGccaaMf8UaaGzbVlaayw W7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaIXaGaaiyk aaaa@748F@

qui, dans ce cas particulier, est aussi approximativement sans biais étant donné que H i i = O ( m 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaGccaaI9aGaam4tamaabmaabaGaamyB amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaac6 caaaa@3F83@ Une des caractéristiques indésirables de υ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaaaa@38B5@ est qu’il peut être négatif ou avoir des contributions négatives de certaines grappes si υ D i = g i Π i 1 ( I n i H i i ) 1 e i e i Π i 1 g i < 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseacaWGPbaabeaakiaai2dacaWHNbWaa0baaSqaaiaa dMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbi ab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigda aaGcdaqadaqaaiaahMeadaWgaaWcbaGaamOBamaaBaaameaacaWGPb aabeaaaSqabaGccqGHsislcaWHibWaaSbaaSqaaiaadMgacaWGPbaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aahwgadaWgaaWcbaGaamyAaaqabaGccaWHLbWaa0baaSqaaiaadMga aeaacqWFKksLaaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislca aIXaaaaOGaaC4zamaaBaaaleaacaWGPbaabeaakiaaiYdacaaIWaGa aiOlaaaa@648A@ Pour ces grappes, le remplacement de υ D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseacaWGPbaabeaaaaa@39A3@ par υ R i = g i Π i 1 e i e i Π i 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfacaWGPbaabeaakiaai2dacaWHNbWaa0baaSqaaiaa dMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbi ab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigda aaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaDaaaleaaca WGPbaabaGae8hPIujaaOGaaCiOdmaaDaaaleaacaWGPbaabaGaeyOe I0IaaGymaaaakiaahEgadaWgaaWcbaGaamyAaaqabaaaaa@5803@ permet d’obtenir un estimateur de la variance positif. Cet ajustement est utilisé dans la simulation de la section 3.

Aux annexes A.4 et A.5, nous montrons que l’estimateur de la variance jackknife peut être écrit exactement comme suit :

υ Jack = m 1 m [ i s ( D i D ¯ ) 2 2 i s ( D i D ¯ ) F i + i s F i 2 ] ( 2.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaGypamaalaaa baGaamyBaiabgkHiTiaaigdaaeaacaWGTbaaamaadmaabaWaaabuae qaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaabaGa amiramaaBaaaleaacaWGPbaabeaakiabgkHiTiqadseagaqeaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdadaae qbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaeWaae aacaWGebWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iabmirayaaraaa caGLOaGaayzkaaGaamOramaaBaaaleaacaWGPbaabeaakiabgUcaRm aaqafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaM c8UaamOramaaDaaaleaacaWGPbaabaGaaGOmaaaaaOGaay5waiaaw2 faaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGG UaGaaGymaiaaikdacaGGPaaaaa@72C7@

F i = ( G i G ¯ ) 1 n ( K i K ¯ ) D i = g i Π i 1 ( I n i H i i ) 1 e i K i = ( 1 N X U m 1 n i Π i 1 X s i ) ( B ^ R i ) ; K ¯ = m 1 i s K i G i = 1 n i Π i 1 ( I n i H i i ) 1 [ H i i y s i y ^ s i ] ; G ¯ = m 1 i s G i R i = A 1 X s i Q i Π i 1 ( I n i H i i ) 1 e i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaamOramaaBaaaleaacaWGPbaabeaaaOqaaiaai2dadaqadaqa aiaadEeadaWgaaWcbaGaamyAaaqabaGccqGHsislceWGhbGbaebaai aawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaWGUbaaamaa bmaabaGaam4samaaBaaaleaacaWGPbaabeaakiabgkHiTiqadUeaga qeaaGaayjkaiaawMcaaaqaaiaadseadaWgaaWcbaGaamyAaaqabaaa keaacaaI9aGaaC4zamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaWHGoWaa0ba aSqaaiaadMgaaeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWHjbWaaS baaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0Ia aCisamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGLPaaada ahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHLbWaaSbaaSqaaiaadMga aeqaaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaOqaaiaai2dada qadaqaaiaahgdadaqhaaWcbaGaamOtaaqaaiab=rQivcaakiaahIfa daWgaaWcbaGaamyvaaqabaGccqGHsislcaWGTbGaaCymamaaDaaale aacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbaGae8hPIujaaOGaaCiO dmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaahIfadaWgaa WcbaGaam4CaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaaceWH cbGbaKaacqGHsislcaWHsbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaGaaG4oaiaaysW7ceWGlbGbaebacaaI9aGaamyBamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaaqafabeWcbaGaamyAaiabgIGiol aadohaaeqaniabggHiLdGccaaMc8Uaam4samaaBaaaleaacaWGPbaa beaaaOqaaiaadEeadaWgaaWcbaGaamyAaaqabaaakeaacaaI9aGaaC ymamaaDaaaleaacaWGUbWaaSbaaeaacaWGPbaabeaaaeaacqWFKksL aaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislcaaIXaaaaOWaae WaaeaacaWHjbWaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaa leqaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWadaqa aiaahIeadaWgaaWcbaGaamyAaiaadMgaaeqaaOGaaCyEamaaBaaale aacaWGZbGaamyAaaqabaGccqGHsislceWH5bGbaKaadaWgaaWcbaGa am4CaiaadMgaaeqaaaGccaGLBbGaayzxaaGaaG4oaiaaysW7ceWGhb GbaebacaaI9aGaamyBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaa qafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8 Uaam4ramaaBaaaleaacaWGPbaabeaaaOqaaiaahkfadaWgaaWcbaGa amyAaaqabaaakeaacaaI9aGaaCyqamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaahIfadaqhaaWcbaGaam4CaiaadMgaaeaacqWFKksLaaGc caWHrbWaaSbaaSqaaiaadMgaaeqaaOGaaCiOdmaaDaaaleaacaWGPb aabaGaeyOeI0IaaGymaaaakmaabmaabaGaaCysamaaBaaaleaacaWG UbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakiabgkHiTiaahIeadaWgaa WcbaGaamyAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaaCyzamaaBaaaleaacaWGPbaabeaakiaai6 caaaaaaa@E2A8@

Cette forme de υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@ réduit considérablement les calculs, puisqu’une seule estimation GREG est nécessaire, au lieu de m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36EB@ estimations. (Il va de soi qu’il peut être avantageux de recalculer l’estimation par l’estimation par la régression généralisée GREG pour chaque réplique jackknife si un ajustement de non-réponse élaboré influe sur la taille de la vraie variance.)

Dans les grands échantillons, on peut établir approximativement υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@ par :

υ J 1 = m 1 m i s ( D i D ¯ ) 2 ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaakiaai2dadaWcaaqaaiaad2gacqGH sislcaaIXaaabaGaamyBaaaadaaeqbqabSqaaiaadMgacqGHiiIZca WGZbaabeqdcqGHris5aOWaaeWaaeaacaWGebWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0IabmirayaaraaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGOmaiaac6cacaaIXaGaaG4maiaacMcaaaa@55B6@

ou par

υ J 2 = m 1 m i s D i 2 = m 1 m i s g i Π i 1 ( I n i H i i ) 1 e i e i ( I n i H i i ) 1 Π i 1 g i . ( 2.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabew8a1naaBaaaleaacaWGkbGaaGOmaaqabaaakeaacaaI9aWa aSaaaeaacaWGTbGaeyOeI0IaaGymaaqaaiaad2gaaaWaaabuaeqale aacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWGebWa a0baaSqaaiaadMgaaeaacaaIYaaaaaGcbaaabaGaaGypamaalaaaba GaamyBaiabgkHiTiaaigdaaeaacaWGTbaaamaaqafabeWcbaGaamyA aiabgIGiolaadohaaeqaniabggHiLdGccaaMc8UaaC4zamaaDaaale aacaWGPbaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuqacqWFKksLaaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislca aIXaaaaOWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6gadaWgaaadbaGa amyAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGaam yAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigda aaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaDaaaleaaca WGPbaabaGae8hPIujaaOWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6ga daWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaale aacaWGPbGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGccaWHGoWaa0baaSqaaiaadMgaaeaacqGHsislca aIXaaaaOGaaC4zamaaBaaaleaacaWGPbaabeaakiaai6cacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdaca aI0aGaaiykaaaaaaa@9240@

Les estimateurs υ J 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@ et υ J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaaaaa@3977@ sont des versions en grappes des approximations à un degré du jackknife dans Valliant (2002, équations (3.5), (3.6)).

Comme l’esquisse l’annexe A.6, υ Jack , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaiilaaaa@3C2B@ υ J L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaakiaacYcaaaa@3A46@ υ J 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaakiaacYcaaaa@3A30@ υ J 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaakiaacYcaaaa@3A31@ υ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaaaa@38B5@ et υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@ équivalent tous asymptotiquement à m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaac6caaaa@3AFB@ Comme υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@ et υ J L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaaaaa@398C@ sont convergents par rapport au plan de sondage, on peut s’attendre à ce que les autres estimateurs ci-dessus donnent de bons résultats sur des échantillons répétés quand la taille de l’échantillon au premier degré est grande et que le modèle (2.1) est approximativement correct. Il faut cependant garder en tête que la fraction d’échantillonnage des grappes doit être petite pour que les estimateurs construits à partir d’un échantillon au premier degré sans remise aient les mêmes performances que si l’échantillon avait été sélectionné avec remise.

Aucun de ces estimateurs de type sandwich ne comprend de facteurs de correction de la population finie. Ils peuvent par conséquent avoir tendance à surestimer la variance d’échantillonnage quand une grande proportion des grappes d’échantillon est sélectionnée. Pour tenir compte de cela, nous pouvons rajuster davantage tous les estimateurs de la variance de façon ponctuelle en multipliant les estimateurs de la variance par un facteur de correction de population finie, noté f p c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGWbGaam4yaaqabaGccaGGSaaaaa@39A7@ tel qu’il a été élaboré par Kott (1988). Il en résulte les estimateurs ajustés suivants :

υ R * = f p c i s g i Π i 1 e i e i Π i 1 g i υ D * = f p c i s g i Π i 1 ( I n i H i i ) 1 e i e i Π i 1 g i υ Jack * = f p c m m 1 [ i s ( D i D ¯ ) 2 2 i s ( D i D ¯ ) F i + i s F i 2 ] υ J 1 * = f p c m m 1 i s ( D i D ¯ ) 2 υ J 2 * = f p c i s g i Π i 1 ( I n i H i i ) 1 e i e i ( I n i H i i ) 1 Π i 1 g i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaeqyXdu3aa0baaSqaaiaadkfaaeaacaGGQaaaaaGcbaGaaGyp aiaadAgadaWgaaWcbaGaamiCaiaadogaaeqaaOWaaabuaeqaleaaca WGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHNbWaa0ba aSqaaiaadMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGqbbiab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHi TiaaigdaaaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaDa aaleaacaWGPbaabaGae8hPIujaaOGaaCiOdmaaDaaaleaacaWGPbaa baGaeyOeI0IaaGymaaaakiaahEgadaWgaaWcbaGaamyAaaqabaaake aacqaHfpqDdaqhaaWcbaGaamiraaqaaiaacQcaaaaakeaacaaI9aGa amOzamaaBaaaleaacaWGWbGaam4yaaqabaGcdaaeqbqabSqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGPaVlaahEgadaqhaaWc baGaamyAaaqaaiab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqaai abgkHiTiaaigdaaaGcdaqadaqaaiaahMeadaWgaaWcbaGaamOBamaa BaaabaGaamyAaaqabaaabeaakiabgkHiTiaahIeadaWgaaWcbaGaam yAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaCyzamaaBaaaleaacaWGPbaabeaakiaahwgadaqhaa WcbaGaamyAaaqaaiab=rQivcaakiaahc6adaqhaaWcbaGaamyAaaqa aiabgkHiTiaaigdaaaGccaWHNbWaaSbaaSqaaiaadMgaaeqaaaGcba GaeqyXdu3aa0baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeaacaGG QaaaaaGcbaGaaGypaiaadAgadaWgaaWcbaGaamiCaiaadogaaeqaaO WaaSaaaeaacaWGTbaabaGaamyBaiabgkHiTiaaigdaaaWaamWaaeaa daaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaaG PaVpaabmaabaGaamiramaaBaaaleaacaWGPbaabeaakiabgkHiTiqa dseagaqeaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaaikdadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGH ris5aOGaaGPaVpaabmaabaGaamiramaaBaaaleaacaWGPbaabeaaki abgkHiTiqadseagaqeaaGaayjkaiaawMcaaiaadAeadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaaeqbqabSqaaiaadMgacqGHiiIZcaWGZb aabeqdcqGHris5aOGaaGPaVlaadAeadaqhaaWcbaGaamyAaaqaaiaa ikdaaaaakiaawUfacaGLDbaaaeaacqaHfpqDdaqhaaWcbaGaamOsai aaigdaaeaacaGGQaaaaaGcbaGaaGypaiaadAgadaWgaaWcbaGaamiC aiaadogaaeqaaOWaaSaaaeaacaWGTbaabaGaamyBaiabgkHiTiaaig daaaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa kiaaykW7daqadaqaaiaadseadaWgaaWcbaGaamyAaaqabaGccqGHsi slceWGebGbaebaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaa keaacqaHfpqDdaqhaaWcbaGaamOsaiaaikdaaeaacaGGQaaaaaGcba GaaGypaiaadAgadaWgaaWcbaGaamiCaiaadogaaeqaaOWaaabuaeqa leaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHNb Waa0baaSqaaiaadMgaaeaacqWFKksLaaGccaWHGoWaa0baaSqaaiaa dMgaaeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWHjbWaaSbaaSqaai aad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0IaaCisamaa BaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaOGa aCyzamaaDaaaleaacaWGPbaabaGae8hPIujaaOWaaeWaaeaacaWHjb WaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyOe I0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGLPa aadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHGoWaa0baaSqaaiaa dMgaaeaacqGHsislcaaIXaaaaOGaaC4zamaaBaaaleaacaWGPbaabe aakiaac6caaaaaaa@17A5@

Quand un échantillon aléatoire simple est sélectionné au premier degré, f p c = 1 m / M . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGWbGaam4yaaqabaGccaaI9aWaaSGbaeaacaaIXaGaeyOe I0IaamyBaaqaaiaad2eaaaGaaiOlaaaa@3DF2@ D’après Kott (1988), une correction appropriée quand le premier degré est sélectionné avec des probabilités variables est f p c = 1 m i = 1 M p i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGWbGaam4yaaqabaGccaaI9aGaaGymaiabgkHiTiaad2ga daaeWaqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad2eaa0GaeyyeIu oakiaaykW7caWGWbWaa0baaSqaaiaadMgaaeaacaaIYaaaaaaa@45FE@ p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaaaaa@3808@ est la probabilité de tirage unique pour la grappe i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@3797@ c’est-à-dire la probabilité que la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ soit sélectionnée dans un échantillon de taille 1.


Date de modification :