Estimateurs de la variance robustes pour estimateurs par la régression généralisée dans des échantillons en grappes
Section 4. Conclusion

Il a été démontré que les ajustements d’effets de levier des estimateurs standards de la variance réduisent le biais et améliorent la couverture de l’intervalle de confiance fondée sur les estimateurs par régression généralisée dans les échantillons à un degré. Le présent article étend ces résultats à des échantillons à deux degrés en présentant de nouveaux ajustements fondés sur des matrices chapeaux. Notre théorie justifie les ajustements et illustre que certains estimateurs proposés sont liés au jackknife avec suppression de grappe, qui est une procédure commune dans l’estimation par sondage.

Pour mettre à l’épreuve la théorie, nous avons mené une série d’études par simulations sur trois populations conçues pour évaluer le rendement dans des situations diverses. Pour ce, nous avons utilisé une grande fraction de sondage d’unités au premier degré dans une population d’âge scolaire. Dans une deuxième population, constituée à partir des données de l’Enquête sur les collectivités américaines (ACS), nous avons mis à l’épreuve les effets des petites tailles d’échantillon. Dans une troisième population simulée, nous avons examiné les performances d’un grand échantillon. Nous avons employé à la fois un échantillonnage aléatoire simple et un échantillonnage avec probabilités proportionnelles à la taille des grappes.

Les relations des estimateurs de la variance étaient semblables dans tous les plans d’échantillonnage. L’estimateur de la variance avec remise, υ w r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEhacaWGYbaabeaakiaacYcaaaa@3A99@ qui est le choix par défaut dans les progiciels pour données d’enquête, l’estimateur par linéarisation jackknife, υ J L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaakiaacYcaaaa@3A46@ et l’estimateur de la variance fondé sur le plan, υ g , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadEgaaeqaaOGaaiilaaaa@3992@ qui suppose un échantillonnage de Poisson à chaque degré pour faciliter les calculs, présentent souvent un biais négatif, ce qui entraîne des intervalles de confiance au taux de couverture inférieur au taux souhaité. Certains estimateurs liés au jackknife  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ υ Jack , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaiilaaaa@3C2B@ υ J 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@ et υ J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaaaaa@3977@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ qui comprennent explicitement ou implicitement des ajustements de matrice chapeau, ont tendance à produire de grandes valeurs aberrantes quand l’échantillon au premier degré est petit. Cela est particulièrement vrai quand le premier degré est sélectionné par EAS, mais moins dans l’échantillonnage avec PPT quand une mesure de taille efficace est utilisée.

Les estimateurs de la variance proposés ici, en particulier υ D , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaOGaaiilaaaa@396F@ offrent des solutions de rechange à l’estimation de la variance des estimateurs GREG dans des échantillons complexes. Au détriment d’une légère inflation de la variabilité de l’estimateur de la variance, les estimateurs sandwich à la matrice chapeau ajustée, notés ici par v D , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebaabeaakiaacYcaaaa@38A3@ v J 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGkbGaaGymaaqabaaaaa@38AA@ et v J 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGkbGaaGOmaaqabaGccaGGSaaaaa@3965@ donnent une couverture de l’intervalle de confiance plus proche de la valeur nominale dans les échantillons petits à moyens. Selon le plan d’échantillonnage et les caractéristiques de la population, les estimateurs à la matrice chapeau ajustée peuvent produire des estimations de la variance moins biaisées et de meilleures inférences comparativement aux méthodes standards.

Remerciements

Les auteurs remercient le rédacteur associé et deux examinateurs, dont les commentaires ont considérablement amélioré l’article.

Annexe

Résultats théoriques

A.1 Hypothèses

Voici les hypothèses utilisées pour l’obtention de résultats asymptotiques. Le nombre de populations et de grappes d’échantillons tend vers l’infini. Cependant, le nombre de grappes de population augmente plus rapidement que le nombre de grappes d’échantillon. Certaines quantités de population sont supposées bornées.

A.1.1
m / M 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGTbaabaGaamytaaaacqGHsgIRcaaIWaaaaa@3A7A@ quand m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A49@  et M . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgk ziUkabg6HiLkaac6caaaa@3ADB@
A.1.2
Tous les N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@  et n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3806@  sont bornés.
A.1.3
π i k = O ( m / M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGpbWaaeWaaeaadaWc gaqaaiaad2gaaeaacaWGnbaaaaGaayjkaiaawMcaaaaa@3EC8@ pour tous les i k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaadU gacaGGUaaaaa@3889@
A.1.4
Tous les éléments de X , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwaiaacY caaaa@378A@   Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdaaa@372D@  et Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaaaa@36D3@  sont bornés.
A.1.5
Le plan d’échantillonnage est tel que m M ( t ^ x π t U x ) d N ( 0, V ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaam aakaaabaGaamyBaaadbeaaaSqaaiaad2eaaaGcdaqadaqaaiqahsha gaqcamaaBaaaleaacaWG4bGaeqiWdahabeaakiabgkHiTiaahshada WgaaWcbaGaamyvaiaadIhaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaa ysW7daWfGaqaaiabgkziUcWcbeqaaiaadsgaaaGccaaMe8UaaGjbVl aad6eadaqadaqaaiaaicdacaaISaGaaGjbVlaahAfaaiaawIcacaGL PaaacaGGSaaaaa@51CC@  où V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaaaa@36D8@  est une matrice définie positive p × p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE na0kaadchacaGGSaaaaa@3AAA@  c’est-à-dire que ( t ^ x π t U x ) = O p ( M / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WH0bGbaKaadaWgaaWcbaGaamiEaiabec8aWbqabaGccqGHsislcaWH 0bWaaSbaaSqaaiaadwfacaWG4baabeaaaOGaayjkaiaawMcaaiaai2 dacaWGpbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaadaWcgaqaaiaa d2eaaeaadaGcaaqaaiaad2gaaSqabaaaaaGccaGLOaGaayzkaaGaai Olaaaa@4676@

Étant donné que Π = O ( m M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdiaai2 dacaWGpbWaaeWaaeaadaWcbaWcbaGaamyBaaqaaiaad2eaaaaakiaa wIcacaGLPaaaaaa@3C33@ élément par élément et A = X s Q 1 Π 1 X s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaai2 dacaWHybWaa0baaSqaaiaadohaaeaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbbiab=rQivcaakiaahgfadaahaaWcbeqaai abgkHiTiaaigdaaaGccaWHGoWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaaCiwamaaBaaaleaacaWGZbaabeaaaaa@4CCE@ peut être écrit comme la somme de termes n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EC@ et que n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3806@ est borné quand m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaacYcaaaa@3AF9@ A = O ( M ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaai2 dacaWGpbWaaeWaaeaacaWGnbaacaGLOaGaayzkaaGaaiOlaaaa@3B6B@ Par définition, g i = 1 n i + ( t U x t ^ x π ) A 1 X i Q i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaDa aaleaacaWGPbaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuqacqWFKksLaaGccaaI9aGaaCymamaaBaaaleaacaWGUbWaaS baaWqaaiaadMgaaeqaaaWcbeaakiabgUcaRmaabmaabaGaaCiDamaa BaaaleaacaWGvbGaamiEaaqabaGccqGHsislceWH0bGbaKaadaWgaa WcbaGaamiEaiabec8aWbqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiab=rQivcaakiaahgeadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca WHybWaa0baaSqaaiaadMgaaeaacqWFKksLaaGccaWHrbWaaSbaaSqa aiaadMgaaeqaaOGaaiOlaaaa@5CFE@ Le second terme dans g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaaaaa@37FF@ est O p ( m 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaacaWGWbaabeaakmaabmaabaGaamyBamaaCaaaleqabaGaeyOe I0YaaSGbaeaacaaIXaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca GGUaaaaa@3DD6@ Par conséquent, g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaBa aaleaacaWGPbaabeaaaaa@3803@ converge vers un vecteur de valeurs 1. Si on utilise A = O ( M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaai2 dacaWGpbWaaeWaaeaacaWGnbaacaGLOaGaayzkaaaaaa@3AB9@ ainsi que les hypothèses A.1.3 et A.1.4, H i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38D3@ est O ( m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaGaamyBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaa wMcaaaaa@3B27@ élément par élément.

A.2 Variation du modèle de l’estimateur GREG

Soit y s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbGaamyAaaqabaaaaa@390D@ le vecteur de tous les éléments d’échantillon dans la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ et soit y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGPbaabeaaaaa@3815@ le vecteur de tous les éléments de la grappe i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ La variance du GREG, en ce qui concerne le modèle de travail (2.1), est :

var ξ ( t ^ y g r t y ) = var ξ ( i s g i Π i 1 y s i i U 1 N i y i ) = i s g i Π i 1 Ψ s i Π i 1 g i 2 cov ξ ( i s g i Π i 1 y s i , i U 1 N i y i ) + 1 N Ψ 1 N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaaceWG0bGbaKaadaqhaaWcbaGaamyEaaqaaiaadEgacaWGYbaaaO GaeyOeI0IaamiDamaaBaaaleaacaWG5baabeaaaOGaayjkaiaawMca aaqaaiaai2dacaqG2bGaaeyyaiaabkhadaWgaaWcbaGaeqOVdGhabe aakmaabmaabaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0Ga eyyeIuoakiaaykW7caWHNbWaa0baaSqaaiaadMgaaeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaakiaahc6a daqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWH5bWaaSbaaS qaaiaadohacaWGPbaabeaakiabgkHiTmaaqafabeWcbaGaamyAaiab gIGiolaadwfaaeqaniabggHiLdGccaaMc8UaaCymamaaDaaaleaaca WGobWaaSbaaWqaaiaadMgaaeqaaaWcbaGae8hPIujaaOGaaCyEamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaaqaaiaai2dada aeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGPa VlaahEgadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaahc6adaqhaa WcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHOoWaaSbaaSqaaiaa dohacaWGPbaabeaakiaahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTi aaigdaaaGccaWHNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGOm aiaabogacaqGVbGaaeODamaaBaaaleaacqaH+oaEaeqaaOWaaeWaae aadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGa aGPaVlaahEgadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaahc6ada qhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWH5bWaaSbaaSqa aiaadohacaWGPbaabeaakiaaiYcacaaMe8+aaabuaeqaleaacaWGPb GaeyicI4Saamyvaaqab0GaeyyeIuoakiaaykW7caWHXaWaa0baaSqa aiaad6eadaWgaaadbaGaamyAaaqabaaaleaacqWFKksLaaGccaWH5b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaaCym amaaDaaaleaacaWGobaabaGae8hPIujaaOGaaCiQdiaahgdadaWgaa WcbaGaamOtaaqabaGccaGGUaaaaaaa@C114@

Étant donné que i U 1 i y i = i s 1 i y i + i ( U s ) 1 i y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaaykW7caWHXaWa a0baaSqaaiaadMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbbiab=rQivcaakiaahMhadaWgaaWcbaGaamyAaaqabaGc caaI9aWaaabeaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oakiaaykW7caWHXaWaa0baaSqaaiaadMgaaeaacqWFKksLaaGccaWH 5bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabeaeqaleaacaWGPb GaeyicI48aaeWaaeaacaWGvbGaeyOeI0Iaam4CaaGaayjkaiaawMca aaqab0GaeyyeIuoakiaaykW7caWHXaWaa0baaSqaaiaadMgaaeaacq WFKksLaaGccaWH5bWaaSbaaSqaaiaadMgaaeqaaaaa@6AAD@ et les éléments des différentes grappes ne sont pas corrélés, nous obtenons :

var ξ ( t ^ y g r t y ) = i s g i Π i 1 Ψ s i Π i 1 g i 2 i s [ g i Π i 1 cov ξ ( y s i , y i ) 1 N i ] + 1 N Ψ 1 N = L 1 2 L 2 + L 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaaceWG0bGbaKaadaqhaaWcbaGaamyEaaqaaiaadEgacaWGYbaaaO GaeyOeI0IaamiDamaaBaaaleaacaWG5baabeaaaOGaayjkaiaawMca aaqaaiaai2dadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcq GHris5aOGaaGPaVlaahEgadaqhaaWcbaGaamyAaaqaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaOGaaCiOdm aaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaahI6adaWgaaWc baGaam4CaiaadMgaaeqaaOGaaCiOdmaaDaaaleaacaWGPbaabaGaey OeI0IaaGymaaaakiaahEgadaWgaaWcbaGaamyAaaqabaGccqGHsisl caaIYaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oakmaadmaabaGaaC4zamaaDaaaleaacaWGPbaabaGae8hPIujaaOGa aCiOdmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaabogaca qGVbGaaeODamaaBaaaleaacqaH+oaEaeqaaOWaaeWaaeaacaWH5bWa aSbaaSqaaiaadohacaWGPbaabeaakiaaygW7caaISaGaaGjbVlaahM hadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaWHXaWaaSba aSqaaiaad6eadaWgaaadbaGaamyAaaqabaaaleqaaaGccaGLBbGaay zxaaGaey4kaSIaaCymamaaDaaaleaacaWGobaabaGae8hPIujaaOGa aCiQdiaahgdadaWgaaWcbaGaamOtaaqabaaakeaaaeaacaaI9aGaam itamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaikdacaWGmbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIZaaabe aakiaac6caaaaaaa@9A8E@

Puisque A 1 = O ( M 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaai2dacaWGpbWaaeWaaeaacaWG nbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaa@3E77@ et g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaBa aaleaacaWGPbaabeaaaaa@3803@ et Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ sont bornés, nous avons L 1 = O ( M 2 / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaai2dacaWGpbWaaeWaaeaadaWcgaqaaiaa d2eadaahaaWcbeqaaiaaikdaaaaakeaacaWGTbaaaaGaayjkaiaawM caaiaac6caaaa@3E5E@ Étant donné que Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaaaaa@393F@ est borné, cov ξ ( y s i , y i ) = O ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqG2bWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahMhadaWg aaWcbaGaam4CaiaadMgaaeqaaOGaaGzaVlaaiYcacaaMe8UaaCyEam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaai2dacaWGpbWa aeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@493C@ et L 2 = O ( M ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaai2dacaWGpbWaaeWaaeaacaWGnbaacaGL OaGaayzkaaGaaiOlaaaa@3C64@ L 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIZaaabeaaaaa@37B3@ est la somme des termes N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaac6 caaaa@377E@ Puisque les valeurs N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ sont bornées, L 3 = O ( M ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIZaaabeaakiaai2dacaWGpbWaaeWaaeaacaWGnbaacaGL OaGaayzkaaGaaiOlaaaa@3C65@ Ainsi, L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaaaaa@37B1@ est le terme dominant de la variance de prédiction.

A.3 Démonstration de var ξ ( e i ) Ψ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahwgadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHijYUcaWHOoWaaS baaSqaaiaadohacaWGPbaabeaaaaa@4380@

Dans la présente section, pour simplifier la notation, nous omettons l’indice s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36F1@ dans y s i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbGaamyAaaqabaGccaGGSaaaaa@39C7@ y ^ s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyEayaaja WaaSbaaSqaaiaadohacaWGPbaabeaaaaa@391D@ et Ψ s i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiQdmaaBa aaleaacaWGZbGaamyAaaqabaGccaGGUaaaaa@39FB@ Le résidu peut s’écrire en termes de matrice chapeau comme suit.

e i = y i y ^ i =( I n i H ii ) y i ji;i,js H ij y j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaahwgadaWgaaWcbaGaamyAaaqabaaakeaacaaI9aGaaCyEamaa BaaaleaacaWGPbaabeaakiabgkHiTiqahMhagaqcamaaBaaaleaaca WGPbaabeaaaOqaaaqaaiaai2dadaqadaqaaiaahMeadaWgaaWcbaGa amOBamaaBaaameaacaWGPbaabeaaaSqabaGccqGHsislcaWHibWaaS baaSqaaiaadMgacaWGPbaabeaaaOGaayjkaiaawMcaaiaahMhadaWg aaWcbaGaamyAaaqabaGccqGHsisldaaeqbqabSqaaiaadQgacqGHGj sUcaWGPbGaaG4oaiaaykW7caWGPbGaaGzaVlaaiYcacaaMc8UaamOA aiabgIGiolaadohaaeqaniabggHiLdGccaaMc8UaaCisamaaBaaale aacaWGPbGaamOAaaqabaGccaWH5bWaaSbaaSqaaiaadQgaaeqaaaaa aaa@614F@

I n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@3910@  est la matrice d’identité n i × n i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiabgEna0kaad6gadaWgaaWcbaGaamyAaaqa baGccaGGUaaaaa@3CF0@  La variance du modèle de e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaaaaa@3801@  est alors

var ξ ( e i ) = var ξ [ ( I n i H ii ) y i ji H ij y j ] =( I n i H ii ) var ξ ( y i ) ( I n i H ii ) + ji H ij var ξ ( y j ) H ij =( I n i H ii ) Ψ i ( I n i H ii ) + ji H ij Ψ j H ij .(A.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaacaWHLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaba GaaGypaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWa amWaaeaadaqadaqaaiaahMeadaWgaaWcbaGaamOBamaaBaaameaaca WGPbaabeaaaSqabaGccqGHsislcaWHibWaaSbaaSqaaiaadMgacaWG PbaabeaaaOGaayjkaiaawMcaaiaaysW7caWH5bWaaSbaaSqaaiaadM gaaeqaaOGaeyOeI0YaaabuaeqaleaacaWGQbGaeyiyIKRaamyAaaqa b0GaeyyeIuoakiaaykW7caWHibWaaSbaaSqaaiaadMgacaWGQbaabe aakiaahMhadaWgaaWcbaGaamOAaaqabaaakiaawUfacaGLDbaaaeaa aeaacaaI9aWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6gadaWgaaadba GaamyAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGa amyAaaqabaaakiaawIcacaGLPaaacaqG2bGaaeyyaiaabkhadaWgaa WcbaGaeqOVdGhabeaakmaabmaabaGaaCyEamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaamaabmaabaGaaCysamaaBaaaleaacaWGUb WaaSbaaWqaaiaadMgaaeqaaaWcbeaakiabgkHiTiaahIeadaWgaaWc baGaamyAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaatu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaa kiabgUcaRmaaqafabeWcbaGaamOAaiabgcMi5kaadMgaaeqaniabgg HiLdGccaaMc8UaaCisamaaBaaaleaacaWGPbGaamOAaaqabaGccaqG 2bGaaeyyaiaabkhadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGaaC yEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaysW7caWH ibWaa0baaSqaaiaadMgacaWGQbaabaGae8hPIujaaaGcbaaabaGaaG ypamaabmaabaGaaCysamaaBaaaleaacaWGUbWaaSbaaWqaaiaadMga aeqaaaWcbeaakiabgkHiTiaahIeadaWgaaWcbaGaamyAaiaadMgaae qaaaGccaGLOaGaayzkaaGaaCiQdmaaBaaaleaacaWGPbaabeaakmaa bmaabaGaaCysamaaBaaaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaa WcbeaakiabgkHiTiaahIeadaWgaaWcbaGaamyAaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacqWFKksLaaGccqGHRaWkdaaeqb qabSqaaiaadQgacqGHGjsUcaWGPbaabeqdcqGHris5aOGaaGPaVlaa hIeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaCiQdmaaBaaaleaaca WGQbaabeaakiaahIeadaqhaaWcbaGaamyAaiaadQgaaeaacqWFKksL aaGccaaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaabgeacaGGUaGaaGymaiaacMcaaaaaaa@D53E@

Comme on l’a indiqué plus haut, H ii =O( m 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaGccaaI9aGaam4tamaabmaabaGaamyB amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaac6 caaaa@3F83@  Alors, var ξ ( e i )= Ψ i +O( m 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabg gacaqGYbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiaahwgadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaaI9aGaaCiQdmaaBa aaleaacaWGPbaabeaakiabgUcaRiaad+eadaqadaqaaiaad2gadaah aaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaGGUaaaaa@4840@

Pour justifier υ D , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaOGaaiilaaaa@396F@  notons que le second terme de (A.1) peut s’écrire comme suit :

ji H ij Ψ j H ij = js H ij Ψ j H ij H ii Ψ i H ii . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGQbGaeyiyIKRaamyAaaqab0GaeyyeIuoakiaaykW7caWHibWa aSbaaSqaaiaadMgacaWGQbaabeaakiaahI6adaWgaaWcbaGaamOAaa qabaGccaWHibWaa0baaSqaaiaadMgacaWGQbaabaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaaI9aWaaa buaeqaleaacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7 caWHibWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahI6adaWgaaWcba GaamOAaaqabaGccaWHibWaa0baaSqaaiaadMgacaWGQbaabaGae8hP IujaaOGaeyOeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaGcca WHOoWaaSbaaSqaaiaadMgaaeqaaOGaaCisamaaDaaaleaacaWGPbGa amyAaaqaaiab=rQivcaakiaac6caaaa@6E6D@

La somme sur l’échantillon en grappes complet est

js H ij Ψ j H ij = X i A 1 ( js X j Q j Π j 1 Ψ j Π j 1 Q j X j ) A 1 X i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHibWa aSbaaSqaaiaadMgacaWGQbaabeaakiaahI6adaWgaaWcbaGaamOAaa qabaGccaWHibWaa0baaSqaaiaadMgacaWGQbaabaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaaI9aGaaC iwamaaBaaaleaacaWGPbaabeaakiaahgeadaahaaWcbeqaaiabgkHi TiaaigdaaaGcdaqadaqaamaaqafabeWcbaGaamOAaiabgIGiolaado haaeqaniabggHiLdGccaaMc8UaaCiwamaaDaaaleaacaWGQbaabaGa e8hPIujaaOGaaCyuamaaBaaaleaacaWGQbaabeaakiaahc6adaqhaa WcbaGaamOAaaqaaiabgkHiTiaaigdaaaGccaWHOoWaaSbaaSqaaiaa dQgaaeqaaOGaaCiOdmaaDaaaleaacaWGQbaabaGaeyOeI0IaaGymaa aakiaahgfadaWgaaWcbaGaamOAaaqabaGccaWHybWaaSbaaSqaaiaa dQgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaahgeadaahaaWcbeqaai abgkHiTiaaigdaaaGccaWHybWaa0baaSqaaiaadMgaaeaacqWFKksL aaGccaaIUaaaaa@7BD7@

Dans le cas particulier de Q j = Ψ j 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuamaaBa aaleaacaWGQbaabeaakiaai2dacaWHOoWaa0baaSqaaiaadQgaaeaa cqGHsislcaaIXaaaaaaa@3CB7@  et Π i =c I n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdmaaBa aaleaacaWGPbaabeaakiaai2dacaWGJbGaaCysamaaBaaaleaacaWG UbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@3D0F@  pour une constante c( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgI GiopaabmaabaGaaGimaiaaiYcacaaMe8UaaGymaaGaayjkaiaawMca aaaa@3DA6@  (c’est-à-dire que l’échantillon est autopondéré), nous avons 

js H ij Ψ j H ij = c 2 X i A 1 ( js X j Ψ j 1 X j ) A 1 X i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHibWa aSbaaSqaaiaadMgacaWGQbaabeaakiaahI6adaWgaaWcbaGaamOAaa qabaGccaWHibWaa0baaSqaaiaadMgacaWGQbaabaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaaI9aGaam 4yamaaCaaaleqabaGaeyOeI0IaaGOmaaaakiaahIfadaWgaaWcbaGa amyAaaqabaGccaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaae WaaeaadaaeqbqabSqaaiaadQgacqGHiiIZcaWGZbaabeqdcqGHris5 aOGaaGPaVlaahIfadaqhaaWcbaGaamOAaaqaaiab=rQivcaakiaahI 6adaqhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGccaWHybWaaSba aSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaahgeadaahaa WcbeqaaiabgkHiTiaaigdaaaGccaWHybWaa0baaSqaaiaadMgaaeaa cqWFKksLaaGccaaISaaaaa@7454@

ainsi que H ii =c X i A 1 X i Ψ i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaGccaaI9aGaam4yaiaahIfadaWgaaWc baGaamyAaaqabaGccaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaaCiwamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuqacqWFKksLaaGccaWHOoWaa0baaSqaaiaadM gaaeaacqGHsislcaaIXaaaaaaa@50A1@  et A= c 1 X Ψ 1 X. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaai2 dacaWGJbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCiwaiaahI6a daahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHybGaaiOlaaaa@3FD8@  À partir de ces simplifications, nous obtenons js H ij Ψ j H ij = H ii Ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHibWa aSbaaSqaaiaadMgacaWGQbaabeaakiaahI6adaWgaaWcbaGaamOAaa qabaGccaWHibWaa0baaSqaaiaadMgacaWGQbaabaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaaI9aGaaC isamaaBaaaleaacaWGPbGaamyAaaqabaGccaWHOoWaaSbaaSqaaiaa dMgaaeqaaOGaaiOlaaaa@571E@  Si on substitue ce résultat dans (A.1) et qu’on simplifie, on a

var ξ ( e i ) =( I n i H ii ) Ψ i ( I n i H ii ) + ji H ij Ψ j H ij =( I n i H ii ) Ψ i .(A.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaacaWHLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaba GaaGypamaabmaabaGaaCysamaaBaaaleaacaWGUbWaaSbaaWqaaiaa dMgaaeqaaaWcbeaakiabgkHiTiaahIeadaWgaaWcbaGaamyAaiaadM gaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaahI6adaWgaaWcbaGaamyA aaqabaGcdaqadaqaaiaahMeadaWgaaWcbaGaamOBamaaBaaameaaca WGPbaabeaaaSqabaGccqGHsislcaWHibWaaSbaaSqaaiaadMgacaWG PbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccqGHRaWkdaae qbqabSqaaiaadQgacqGHGjsUcaWGPbaabeqdcqGHris5aOGaaGPaVl aahIeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaCiQdmaaBaaaleaa caWGQbaabeaakiaahIeadaqhaaWcbaGaamyAaiaadQgaaeaacqWFKk sLaaaakeaaaeaacaaI9aWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6ga daWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaale aacaWGPbGaamyAaaqabaaakiaawIcacaGLPaaacaaMc8UaaCiQdmaa BaaaleaacaWGPbaabeaakiaai6cacaaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaabgea caGGUaGaaGOmaiaacMcaaaaaaa@92E1@

Il s’agit de la base de l’ajustement de υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@  pour obtenir υ D . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaOGaaiOlaaaa@3971@

A.4 Démonstration de B ^ ( i ) = B ^ R i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaaI 9aGabCOqayaajaGaeyOeI0IaaCOuamaaBaaaleaacaWGPbaabeaaaa a@3E25@  pour les échantillons en grappes

Dans la présente section, nous omettons l’indice s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36F1@  dans X s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGZbaabeaakiaacYcaaaa@38B8@   y s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbaabeaakiaacYcaaaa@38D9@   X si , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGZbGaamyAaaqabaGccaGGSaaaaa@39A6@   y si , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbGaamyAaaqabaGccaGGSaaaaa@39C7@   X s( i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGZbWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaaaaa@3A75@  et y s( i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEamaaBa aaleaacaWGZbWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaaaaa@3A96@  pour simplifier la notation. L’indice ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbaacaGLOaGaayzkaaaaaa@3870@  désigne la suppression de la i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@37FC@  grappe du vecteur ou de la matrice de l’échantillon complet. Par exemple, B ^ ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaaaaa@3977@  est l’estimation de B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOqaaaa@36C4@  fondée sur toutes les grappes d’échantillon sauf la grappe i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@  soit

B ^ ( i ) = ( X ( i ) W ( i ) X ( i ) ) 1 X ( i ) W ( i ) y ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaaI 9aWaaeWaaeaacaWHybWaa0baaSqaamaabmaabaGaamyAaaGaayjkai aawMcaaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac feGae8hPIujaaOGaaC4vamaaBaaaleaadaqadaqaaiaadMgaaiaawI cacaGLPaaaaeqaaOGaaCiwamaaBaaaleaadaqadaqaaiaadMgaaiaa wIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaCiwamaaDaaaleaadaqadaqaaiaadMgaaiaawIca caGLPaaaaeaacqWFKksLaaGccaWHxbWaaSbaaSqaamaabmaabaGaam yAaaGaayjkaiaawMcaaaqabaGccaWH5bWaaSbaaSqaamaabmaabaGa amyAaaGaayjkaiaawMcaaaqabaaaaa@6065@

W ( i ) = Q ( i ) Π ( i ) 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4vamaaBa aaleaadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeqaaOGaaGypaiaa hgfadaWgaaWcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaaki aahc6adaqhaaWcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabaGa eyOeI0IaaGymaaaakiaac6caaaa@4408@  Si nous utilisons le lemme 9.5.1 de Valliant et coll. (2000), nous obtenons

B ^ ( i ) =( A 1 + A 1 X i W i ( I n i H ii ) 1 X i A 1 ) X ( i ) W ( i ) y ( i ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaaI 9aWaaeWaaeaacaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey 4kaSIaaCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqh aaWcbaGaamyAaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfeGae8hPIujaaOGaaC4vamaaBaaaleaacaWGPbaabeaakmaa bmaabaGaaCysamaaBaaaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaa WcbeaakiabgkHiTiaahIeadaWgaaWcbaGaamyAaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCiwam aaBaaaleaacaWGPbaabeaakiaahgeadaahaaWcbeqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaacaaMe8UaaCiwamaaDaaaleaadaqada qaaiaadMgaaiaawIcacaGLPaaaaeaacqWFKksLaaGccaWHxbWaaSba aSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaWH5bWaaS baaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaGGUaaa aa@6F6A@

Étant donné que X ( i ) W ( i ) y ( i ) = X Wy X i W i y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaDa aaleaadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeaatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaakiaahEfada WgaaWcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaakiaahMha daWgaaWcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaakiaai2 dacaWHybWaaWbaaSqabeaacqWFKksLaaGccaWHxbGaaCyEaiabgkHi TiaahIfadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaahEfadaWgaa WcbaGaamyAaaqabaGccaWH5bWaaSbaaSqaaiaadMgaaeqaaaaa@5AC3@  et B ^ = A 1 X Wy, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja GaaGypaiaahgeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHybWa aWbaaSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaG qbbiab=rQivcaakiaahEfacaWH5bGaaiilaaaa@4959@  nous avons

B ^ ( i ) = A 1 ( X Wy X i W i y i ) + A 1 X i W i ( I n i H ii ) 1 X i A 1 ( X Wy X i W i y i ) = B ^ A 1 X i W i ( I n i H ii ) 1 ( I n i H ii ) y i + A 1 X i W i ( I n i H ii ) 1 y ^ i A 1 X i W i ( I n i H ii ) 1 H ii y i = B ^ A 1 X i W i ( I n i H ii ) 1 e i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGabCOqayaajaWaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaa wMcaaaqabaaakeaacaaI9aGaaCyqamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaabmaabaGaaCiwamaaCaaaleqabaWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaWHxbGaaCyEai abgkHiTiaahIfadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaahEfa daWgaaWcbaGaamyAaaqabaGccaWH5bWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaaGjbVlabgUcaRiaahgeadaahaaWc beqaaiabgkHiTiaaigdaaaGccaWHybWaa0baaSqaaiaadMgaaeaacq WFKksLaaGccaWHxbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWH jbWaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaey OeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHybWaaSbaaSqaai aadMgaaeqaaOGaaCyqamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaa bmaabaGaaCiwamaaCaaaleqabaGae8hPIujaaOGaaC4vaiaahMhacq GHsislcaWHybWaaSbaaSqaaiaadMgaaeqaaOGaaC4vamaaBaaaleaa caWGPbaabeaakiaahMhadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaeaaaeaacaaI9aGabCOqayaajaGaeyOeI0IaaCyqamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaamyAaaqaai ab=rQivcaakiaahEfadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaa hMeadaWgaaWcbaGaamOBamaaBaaameaacaWGPbaabeaaaSqabaGccq GHsislcaWHibWaaSbaaSqaaiaadMgacaWGPbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaaCysam aaBaaaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakiabgkHi TiaahIeadaWgaaWcbaGaamyAaiaadMgaaeqaaaGccaGLOaGaayzkaa GaaCyEamaaBaaaleaacaWGPbaabeaakiabgUcaRiaahgeadaahaaWc beqaaiabgkHiTiaaigdaaaGccaWHybWaa0baaSqaaiaadMgaaeaacq WFKksLaaGccaWHxbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWH jbWaaSbaaSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaey OeI0IaaCisamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWH5bGbaKaadaWgaa WcbaGaamyAaaqabaaakeaaaeaacaaMe8UaeyOeI0IaaCyqamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaamyAaaqaai ab=rQivcaakiaahEfadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaa hMeadaWgaaWcbaGaamOBamaaBaaameaacaWGPbaabeaaaSqabaGccq GHsislcaWHibWaaSbaaSqaaiaadMgacaWGPbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIeadaWgaaWcba GaamyAaiaadMgaaeqaaOGaaCyEamaaBaaaleaacaWGPbaabeaaaOqa aaqaaiaai2daceWHcbGbaKaacqGHsislcaWHbbWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaaCiwamaaDaaaleaacaWGPbaabaGae8hPIuja aOGaaC4vamaaBaaaleaacaWGPbaabeaakmaabmaabaGaaCysamaaBa aaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakiabgkHiTiaa hIeadaWgaaWcbaGaamyAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaacqGHsislcaaIXaaaaOGaaCyzamaaBaaaleaacaWGPbaa beaakiaai6caaaaaaa@E64E@

Par conséquent, B ^ ( i ) = B ^ R i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOqayaaja WaaSbaaSqaamaabmaabaGaamyAaaGaayjkaiaawMcaaaqabaGccaaI 9aGabCOqayaajaGaeyOeI0IaaCOuamaaBaaaleaacaWGPbaabeaaki aac6caaaa@3EC1@

A.5 Estimateur de la variance par la méthode du jackknife de GREG en grappes en termes de leviers

Nous simplifions maintenant l’estimateur de la variance par la méthode du jackknife avec suppression de grappe de GREG en grappes. Comme dans les sections A.3 et A.4, nous omettons l’indice s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36F1@  dans plusieurs termes pour simplifier la notation. Le total estimé après la suppression de la grappe i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@37FC@  est défini comme étant

t ^ y( i ) gr = m m1 t ^ y( i ) π +[ t Ux m m1 t ^ x( i ) π ] B ^ ( i ) = m 1 n Π 1 y m1 m 1 n i Π i 1 y i m1 +[ 1 N X U m 1 n Π 1 X m1 + m 1 n i Π i 1 X i m1 ]( B ^ R i ) = m 1 n Π 1 y m1 m 1 n i Π i 1 y i m1 + m m1 ( 1 N X U 1 n Π 1 X )( B ^ R i ) 1 m1 ( 1 N X U m 1 n i Π i 1 X i )( B ^ R i ) = m m1 t ^ y gr m 1 n i Π i 1 y i m1 m m1 ( 1 N X U 1 n Π 1 X ) R i 1 m1 K i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGabmiDayaajaWaa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaa wIcacaGLPaaaaeaacaWGNbGaamOCaaaaaOqaaiaai2dadaWcaaqaai aad2gaaeaacaWGTbGaeyOeI0IaaGymaaaaceWG0bGbaKaadaqhaaWc baGaamyEamaabmaabaGaamyAaaGaayjkaiaawMcaaaqaaiabec8aWb aakiabgUcaRmaadmaabaGaaCiDamaaBaaaleaacaWGvbGaamiEaaqa baGccqGHsisldaWcaaqaaiaad2gaaeaacaWGTbGaeyOeI0IaaGymaa aaceWH0bGbaKaadaqhaaWcbaGaamiEamaabmaabaGaamyAaaGaayjk aiaawMcaaaqaaiabec8aWbaaaOGaay5waiaaw2faaiaaysW7ceWHcb GbaKaadaWgaaWcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaabeaa aOqaaaqaaiaai2dadaWcaaqaaiaad2gacaWHXaWaa0baaSqaaiaad6 gaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab =rQivcaakiaahc6adaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWH5b aabaGaamyBaiabgkHiTiaaigdaaaGaeyOeI0YaaSaaaeaacaWGTbGa aCymamaaDaaaleaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbaGae8 hPIujaaOGaaCiOdmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaa kiaahMhadaWgaaWcbaGaamyAaaqabaaakeaacaWGTbGaeyOeI0IaaG ymaaaacqGHRaWkdaWadaqaaiaahgdadaqhaaWcbaGaamOtaaqaaiab =rQivcaakiaahIfadaWgaaWcbaGaamyvaaqabaGccqGHsisldaWcaa qaaiaad2gacaWHXaWaa0baaSqaaiaad6gaaeaacqWFKksLaaGccaWH GoWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCiwaaqaaiaad2gacq GHsislcaaIXaaaaiabgUcaRmaalaaabaGaamyBaiaahgdadaqhaaWc baGaamOBamaaBaaameaacaWGPbaabeaaaSqaaiab=rQivcaakiaahc 6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHybWaaSba aSqaaiaadMgaaeqaaaGcbaGaamyBaiabgkHiTiaaigdaaaaacaGLBb GaayzxaaGaaGjbVpaabmaabaGabCOqayaajaGaeyOeI0IaaCOuamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaaqaaiaai2dada Wcaaqaaiaad2gacaWHXaWaa0baaSqaaiaad6gaaeaacqWFKksLaaGc caWHGoWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCyEaaqaaiaad2 gacqGHsislcaaIXaaaaiabgkHiTmaalaaabaGaamyBaiaahgdadaqh aaWcbaGaamOBamaaBaaameaacaWGPbaabeaaaSqaaiab=rQivcaaki aahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWH5bWa aSbaaSqaaiaadMgaaeqaaaGcbaGaamyBaiabgkHiTiaaigdaaaaaba aabaGaaGjbVlabgUcaRmaalaaabaGaamyBaaqaaiaad2gacqGHsisl caaIXaaaamaabmaabaGaaCymamaaDaaaleaacaWGobaabaGae8hPIu jaaOGaaCiwamaaBaaaleaacaWGvbaabeaakiabgkHiTiaahgdadaqh aaWcbaGaamOBaaqaaiab=rQivcaakiaahc6adaahaaWcbeqaaiabgk HiTiaaigdaaaGccaWHybaacaGLOaGaayzkaaWaaeWaaeaaceWHcbGb aKaacqGHsislcaWHsbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyBaiabgkHiTiaaigda aaWaaeWaaeaacaWHXaWaa0baaSqaaiaad6eaaeaacqWFKksLaaGcca WHybWaaSbaaSqaaiaadwfaaeqaaOGaeyOeI0IaamyBaiaahgdadaqh aaWcbaGaamOBamaaBaaameaacaWGPbaabeaaaSqaaiab=rQivcaaki aahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHybWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaaceWHcb GbaKaacqGHsislcaWHsbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaabaaabaGaaGypamaalaaabaGaamyBaaqaaiaad2gacqGHsi slcaaIXaaaaiqadshagaqcamaaDaaaleaacaWG5baabaGaam4zaiaa dkhaaaGccqGHsisldaWcaaqaaiaad2gacaWHXaWaa0baaSqaaiaad6 gadaWgaaadbaGaamyAaaqabaaaleaacqWFKksLaaGccaWHGoWaa0ba aSqaaiaadMgaaeaacqGHsislcaaIXaaaaOGaaCyEamaaBaaaleaaca WGPbaabeaaaOqaaiaad2gacqGHsislcaaIXaaaaiabgkHiTmaalaaa baGaamyBaaqaaiaad2gacqGHsislcaaIXaaaamaabmaabaGaaCymam aaDaaaleaacaWGobaabaGae8hPIujaaOGaaCiwamaaBaaaleaacaWG vbaabeaakiabgkHiTiaahgdadaqhaaWcbaGaamOBaaqaaiab=rQivc aakiaahc6adaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHybaacaGL OaGaayzkaaGaaGjbVlaahkfadaWgaaWcbaGaamyAaaqabaGccqGHsi sldaWcaaqaaiaaigdaaeaacaWGTbGaeyOeI0IaaGymaaaacaWGlbWa aSbaaSqaaiaadMgaaeqaaOGaaGOlaaaaaaa@38EB@

L’ajout et la soustraction de m m1 1 n i Π i 1 ( I n i H ii ) 1 e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai aad2gaaeaacaWGTbGaeyOeI0IaaGymaaaakiaahgdadaqhaaWcbaGa amOBamaaBaaameaacaWGPbaabeaaaSqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaOGaaCiOdmaaDaaaleaa caWGPbaabaGaeyOeI0IaaGymaaaakmaabmaabaGaaCysamaaBaaale aacaWGUbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakiabgkHiTiaahIea daWgaaWcbaGaamyAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacqGHsislcaaIXaaaaOGaaCyzamaaBaaaleaacaWGPbaabeaa aaa@587A@  et une importante simplification donnent

t ^ y( i ) gr = m m1 t ^ y gr m m1 g i Π i 1 ( I n i H ii ) 1 e i + m m1 G i 1 m1 K i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadMhadaqadaqaaiaadMgaaiaawIcacaGLPaaaaeaa caWGNbGaamOCaaaakiaai2dadaWcaaqaaiaad2gaaeaacaWGTbGaey OeI0IaaGymaaaaceWG0bGbaKaadaqhaaWcbaGaamyEaaqaaiaadEga caWGYbaaaOGaeyOeI0YaaSaaaeaacaWGTbaabaGaamyBaiabgkHiTi aaigdaaaGaaC4zamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaWHGoWaa0baaS qaaiaadMgaaeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWHjbWaaSba aSqaaiaad6gadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0IaaC isamaaBaaaleaacaWGPbGaamyAaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaWHLbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaWGTbaabaGaamyBaiabgkHiTiaaigda aaGaam4ramaaBaaaleaacaWGPbaabeaakiabgkHiTmaalaaabaGaaG ymaaqaaiaad2gacqGHsislcaaIXaaaaiaadUeadaWgaaWcbaGaamyA aaqabaGccaaIUaaaaa@74ED@

La différence entre les estimations avec suppression d’une unité et la moyenne de ces estimations donne

t ^ y( i ) gr t ^ y( ) gr = m m1 ( D i D ¯ )+ m m1 ( G i G ¯ ) 1 m1 ( K i K ¯ ) = m m1 ( D i D ¯ )+ m m1 [ ( G i G ¯ ) 1 m ( K i K ¯ ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiqadshagaqcamaaDaaaleaacaWG5bWaaeWaaeaacaWGPbaacaGL OaGaayzkaaaabaGaam4zaiaadkhaaaGccqGHsislceWG0bGbaKaada qhaaWcbaGaamyEamaabmaabaGaeyyXICnacaGLOaGaayzkaaaabaGa am4zaiaadkhaaaaakeaacaaI9aGaeyOeI0YaaSaaaeaacaWGTbaaba GaamyBaiabgkHiTiaaigdaaaWaaeWaaeaacaWGebWaaSbaaSqaaiaa dMgaaeqaaOGaeyOeI0IabmirayaaraaacaGLOaGaayzkaaGaey4kaS YaaSaaaeaacaWGTbaabaGaamyBaiabgkHiTiaaigdaaaWaaeWaaeaa caWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iabm4rayaaraaaca GLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyBaiabgkHi TiaaigdaaaWaaeWaaeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaey OeI0Iabm4sayaaraaacaGLOaGaayzkaaaabaaabaGaaGypaiabgkHi TmaalaaabaGaamyBaaqaaiaad2gacqGHsislcaaIXaaaamaabmaaba GaamiramaaBaaaleaacaWGPbaabeaakiabgkHiTiqadseagaqeaaGa ayjkaiaawMcaaiabgUcaRmaalaaabaGaamyBaaqaaiaad2gacqGHsi slcaaIXaaaamaadmaabaWaaeWaaeaacaWGhbWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0Iabm4rayaaraaacaGLOaGaayzkaaGaeyOeI0YaaS aaaeaacaaIXaaabaGaamyBaaaadaqadaqaaiaadUeadaWgaaWcbaGa amyAaaqabaGccqGHsislceWGlbGbaebaaiaawIcacaGLPaaaaiaawU facaGLDbaacaaIUaaaaaaa@8282@

Soit F i =( G i G ¯ ) m 1 ( K i K ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakiaai2dadaqadaqaaiaadEeadaWgaaWcbaGa amyAaaqabaGccqGHsislceWGhbGbaebaaiaawIcacaGLPaaacqGHsi slcaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG lbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iabm4sayaaraaacaGLOa Gaayzkaaaaaa@4709@  qui donne la formule de υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@  dans l’équation  (2.12). Puis, étant donné que H ii =O( m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaGccaaI9aGaam4tamaabmaabaGaamyB amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa@3ED1@  et y ^ i = X i B ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyEayaaja WaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaahIfadaWgaaWcbaGaamyA aaqabaGcceWHcbGbaKaacaGGSaaaaa@3C86@

F i =( G i G ¯ ) 1 m ( K i K ¯ ) [ 1 n i Π i 1 y ^ i + 1 m is 1 n i Π i 1 y ^ i ] 1 m [ m 1 n i Π i 1 X i B ^ + is 1 n i Π i 1 X i B ^ ] =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadAeadaWgaaWcbaGaamyAaaqabaaakeaacaaI9aWaaeWaaeaa caWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iabm4rayaaraaaca GLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyBaaaadaqa daqaaiaadUeadaWgaaWcbaGaamyAaaqabaGccqGHsislceWGlbGbae baaiaawIcacaGLPaaaaeaaaeaacqGHijYUdaWadaqaaiabgkHiTiaa hgdadaqhaaWcbaGaamOBamaaBaaameaacaWGPbaabeaaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaOGa aCiOdmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiqahMhaga qcamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqa aiaad2gaaaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0Gaey yeIuoakiaaykW7caWHXaWaa0baaSqaaiaad6gadaWgaaadbaGaamyA aaqabaaaleaacqWFKksLaaGccaWHGoWaa0baaSqaaiaadMgaaeaacq GHsislcaaIXaaaaOGabCyEayaajaWaaSbaaSqaaiaadMgaaeqaaaGc caGLBbGaayzxaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyBaaaada WadaqaaiabgkHiTiaad2gacaWHXaWaa0baaSqaaiaad6gadaWgaaad baGaamyAaaqabaaaleaacqWFKksLaaGccaWHGoWaa0baaSqaaiaadM gaaeaacqGHsislcaaIXaaaaOGaaCiwamaaBaaaleaacaWGPbaabeaa kiqahkeagaqcaiabgUcaRmaaqafabeWcbaGaamyAaiabgIGiolaado haaeqaniabggHiLdGccaaMc8UaaCymamaaDaaaleaacaWGUbWaaSba aWqaaiaadMgaaeqaaaWcbaGae8hPIujaaOGaaCiOdmaaDaaaleaaca WGPbaabaGaeyOeI0IaaGymaaaakiaahIfadaWgaaWcbaGaamyAaaqa baGcceWHcbGbaKaaaiaawUfacaGLDbaaaeaaaeaacaaI9aGaaCimai aai6caaaaaaa@9C53@

Ainsi, F i =o( 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakiaai2dacaWGVbWaaeWaaeaacaaIXaaacaGL OaGaayzkaaGaaiilaaaa@3C97@  et υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@  dans (2.6) et (2.12) équivaut asymptotiquement à υ J1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@  dans (2.13).

Enfin, pour justifier υ J2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaaaaa@3977@  dans (2.14), nous écrivons υ J1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@  sous la forme du calcul  

υ J1 = m m1 [ is ( g i U i e i ) 2 1 m ( is g i U i e i ) 2 ](A.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaakiaai2dadaWcaaqaaiaad2gaaeaa caWGTbGaeyOeI0IaaGymaaaadaWadaqaamaaqafabeWcbaGaamyAai abgIGiolaadohaaeqaniabggHiLdGccaaMc8+aaeWaaeaacaWHNbWa a0baaSqaaiaadMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbbiab=rQivcaakiaadwfadaWgaaWcbaGaamyAaaqabaGc caWHLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyBaaaa daqadaqaamaaqafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabgg HiLdGccaaMc8UaaC4zamaaDaaaleaacaWGPbaabaGae8hPIujaaOGa amyvamaaBaaaleaacaWGPbaabeaakiaahwgadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfa caGLDbaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaqGbb GaaiOlaiaaiodacaGGPaaaaa@7AA3@

U i = Π i 1 ( I n i H ii ) 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaakiaai2dacaWHGoWaa0baaSqaaiaadMgaaeaa cqGHsislcaaIXaaaaOWaaeWaaeaacaWHjbWaaSbaaSqaaiaad6gada WgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0IaaCisamaaBaaaleaa caWGPbGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaGGUaaaaa@47C2@  Notons que la variance du modèle de D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37DC@  est

var ξ ( D i ) = var ξ ( g i U i e i ) = g i U i var ξ ( e i ) U i g i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWa aeaacaWGebWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaba GaaGypaiaabAhacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWa aeWaaeaacaWHNbWaa0baaSqaaiaadMgaaeaatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbbiab=rQivcaakiaadwfadaWgaaWc baGaamyAaaqabaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaaabaaabaGaaGypaiaahEgadaqhaaWcbaGaamyAaaqaaiab =rQivcaakiaadwfadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaabA hacaqGHbGaaeOCamaaBaaaleaacqaH+oaEaeqaaOWaaeWaaeaacaWH LbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaadw fadaWgaaWcbaGaamyAaaqabaGccaWHNbWaaSbaaSqaaiaadMgaaeqa aOGaaiOlaaaaaaa@6E45@

Puisque U i =O( M/m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaakiaai2dacaWGpbWaaeWaaeaadaWcgaqaaiaa d2eaaeaacaWGTbaaaaGaayjkaiaawMcaaaaa@3CF5@  et que la somme dans is var ξ ( D i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caqG2bGa aeyyaiaabkhadaWgaaWcbaGaeqOVdGhabeaakmaabmaabaGaamiram aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@451D@  contient des termes n=m n ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaWGTbGabmOBayaaraGaaiilaaaa@3A60@  la variance de is g i U i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWHNbWa a0baaSqaaiaadMgaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbbiab=rQivcaakiaadwfadaWgaaWcbaGaamyAaaqabaGc caWHLbWaaSbaaSqaaiaadMgaaeqaaaaa@4E62@  est O( M 2 /m ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaWaaSGbaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyB aaaaaiaawIcacaGLPaaacaGGUaaaaa@3BD5@  Ensuite, on met à l’échelle υ J1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@  pour que la valeur soit appropriée pour une moyenne, le premier terme entre parenthèses dans (A.3) est N 2 is D i 2 =O( m 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa aaleqabaGaeyOeI0IaaGOmaaaakmaaqababeWcbaGaamyAaiabgIGi olaadohaaeqaniabggHiLdGccaaMc8UaamiramaaDaaaleaacaWGPb aabaGaaGOmaaaakiaai2dacaWGpbWaaeWaaeaacaWGTbWaaWbaaSqa beaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@48E0@  Puisque le second terme entre parenthèses a une espérance de modèle de 0 et une variance O( m 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaGaamyBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaa wMcaaiaacYcaaaa@3BD7@  il converge en probabilité à 0, et υ J2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaaaaa@3977@  équivaut asymptotiquement à υ J1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaakiaac6caaaa@3A32@

A.6 Équivalence asymptotique des estimateurs de la variance

Dans la présente annexe, nous esquissons des arguments pour expliquer pourquoi plusieurs estimateurs de la variance sont asymptotiquement équivalents. En utilisant des arguments fondés sur le plan de sondage, Yung et Rao (1996, Annexe) ont montré que l’estimateur par linéarisation jackknife, υ JL , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaakiaacYcaaaa@3A46@  pour l’estimation par la régression généralisée (GREG), équivaut asymptotiquement à l’estimateur convergent par rapport au plan, υ Jack , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaaiilaaaa@3C2B@  dans des plans à plusieurs degrés stratifiés avec un grand nombre de strates et un nombre borné de grappes d’échantillon sélectionnées dans chaque strate. Si on utilise les conditions de régularité de Rao et Shao (1985), on peut étendre le résultat à des plans dans lesquels soit (i) le nombre de strates est grand et le nombre de grappes par strate est limité ou (ii) le nombre de strates est limité et le nombre de grappes d’échantillon par strate est grand, comme cela est le cas dans le présent article.

L’estimateur par linéarisation jackknife de la section 2 peut être étendu comme suit

N 2 υ JL = N 2 is g i Π i 1 e i e i Π i 1 g i N 2 m ( m 1 is g i Π i 1 e i ) 2 .(A.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa aaleqabaGaeyOeI0IaaGOmaaaakiabew8a1naaBaaaleaacaWGkbGa amitaaqabaGccaaI9aGaamOtamaaCaaaleqabaGaeyOeI0IaaGOmaa aakmaaqafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGc caaMc8UaaC4zamaaDaaaleaacaWGPbaabaWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuqacqWFKksLaaGccaWHGoWaa0baaSqa aiaadMgaaeaacqGHsislcaaIXaaaaOGaaCyzamaaBaaaleaacaWGPb aabeaakiaahwgadaqhaaWcbaGaamyAaaqaaiab=rQivcaakiaahc6a daqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHNbWaaSbaaS qaaiaadMgaaeqaaOGaeyOeI0IaamOtamaaCaaaleqabaGaeyOeI0Ia aGOmaaaakiaad2gadaqadaqaaiaad2gadaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGH ris5aOGaaGPaVlaahEgadaqhaaWcbaGaamyAaaqaaiab=rQivcaaki aahc6adaqhaaWcbaGaamyAaaqaaiabgkHiTiaaigdaaaGccaWHLbWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaOGaaGzaVlaac6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaacIcacaqGbbGaaiOlaiaaisdacaGGPaaaaa@8D01@

Le premier terme dans (A.4) est égal à v R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGsbaabeaakiaac6caaaa@38B3@  Parce que, dans certaines hypothèses raisonnables, g i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zamaaBa aaleaacaWGPbaabeaaaaa@3803@  et e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBa aaleaacaWGPbaabeaaaaa@3801@  sont bornés, et Π i 1 =O( M/m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiOdmaaDa aaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaai2dacaWGpbWaaeWa aeaadaWcgaqaaiaad2eaaeaacaWGTbaaaaGaayjkaiaawMcaaaaa@3EF0@  selon les hypothèses A.1.2 et A.1.3, le premier terme dans (A.4) est O( 1/m ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG Uaaaaa@3ACB@  Le second terme est aussi O( 1/m ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG Saaaaa@3AC9@  mais l’espérance du modèle de e ¯ 2 = m 1 is g i Π i 1 e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyzayaara WaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaad2gadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaaeqaqabSqaaiaadMgacqGHiiIZcaWGZbaabe qdcqGHris5aOGaaGPaVlaahEgadaqhaaWcbaGaamyAaaqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaOGaaC iOdmaaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaahwgadaWg aaWcbaGaamyAaaqabaaaaa@55ED@  est nulle tant que (2.1) se vérifie. Étant donné que e ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyzayaara WaaSbaaSqaaiaaikdaaeqaaaaa@37E7@  est une moyenne, sa variance de modèle tend vers 0 quand m. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaac6caaaa@3AFB@  Ainsi, le second terme dans (A.4) converge en probabilité à 0 et υ JL υ R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaakiabgIKi7kabew8a1naaBaaaleaa caWGsbaabeaakiaac6caaaa@3ECD@

À la section A.5, il a été démontré que υ Jack MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaaaa@3B71@  et υ J1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaaaaa@3976@  sont asymptotiquement équivalents. Dans A.1.1-A.1.4, H ii =O( m 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisamaaBa aaleaacaWGPbGaamyAaaqabaGccaaI9aGaam4tamaabmaabaGaamyB amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaac6 caaaa@3F83@  Par conséquent, υ J2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaaaaa@3977@  et υ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaaaa@38B5@  sont approximativement identiques à υ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaaaa@38C3@  et m. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaac6caaaa@3AFB@  Ainsi, υ Jack υ JL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaabQeacaqGHbGaae4yaiaabUgaaeqaaOGaeyisISRaeqyX du3aaSbaaSqaaiaadQeacaWGmbaabeaaaaa@40BF@  par extension de Yung et Rao (1996), les deux étant convergents par rapport au plan de sondage. De plus, υ JL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaWGmbaabeaaaaa@398C@  équivaut asymptotiquement à υ J1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIXaaabeaakiaacYcaaaa@3A30@   υ J2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadQeacaaIYaaabeaakiaacYcaaaa@3A31@   υ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadseaaeqaaaaa@38B5@  et υ R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXdu3aaS baaSqaaiaadkfaaeqaaOGaaiOlaaaa@397F@  Par conséquent, les autres estimateurs de la variance examinés ici ont tous des justifications fondées sur le modèle et sur le plan de sondage.

Bibliographie

Kott, P.S. (1988). Model-based finite population correction for the Horvitz-Thompson estimator. Biometrika, 75(4), 797-799.

Krewski, D., et Rao, J.N.K. (1981). Inference from stratified samples: Properties of the linearization, jackknife and balanced repeated replication methods. The Annals of Statistics, 9(5), 1010-1019.

Li, J., et Valliant, R. (2009). Matrice chapeau et effets de levier pondérés par les poids de sondage. Techniques d’enquête, 35, 1, 17-27. Article accessible à l’adresse https://www150.statcan.gc.ca/n1/fr/pub/12-001-x/2009001/article/10881-fra.pdf.

Long, J.S., et Ervin, L.H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54(3), 217-224.

MacKinnon, J.G., et White, H. (1985). Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305-325.

Rao, J.N.K., et Shao, J. (1985). Inference from stratified samples: Second-order analysis of three methods for nonlinear statistics. Journal of the American Statistical Association, 80(391), 620-630.

Royall, R.M., et Cumberland, W.G. (1978). Variance estimation in finite population sampling. Journal of the American Statistical Association, 73(362), 351-358.

Särndal, C.-E., Swensson, B. et Wretman, J. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika, 76(3), 527-537.

Särndal, C.-E., Swensson, B. et Wretman, J. (1992). Model Assisted Survey Sampling. Springer Series in Statistics. New York: Springer-Verlag.

Valliant, R. (2002). Estimation de la variance de l’estimateur de régression généralisée. Techniques d’enquête, 28, 1, 109-122. Article accessible à l’adresse https://www150.statcan.gc.ca/n1/fr/pub/12-001-x/2002001/article/6424-fra.pdf.

Valliant, R., Dorfman, A.H. et Royall, R.M. (2000). Finite Population Sampling and Inference: A Prediction Approach. Wiley Series in Probability and Statistics: Survey Methodology Section. New York: John Wiley & Sons, Inc.

Yung, W., et Rao, J.N.K. (1996). Linéarisation des estimateurs de variance jackknife dans un échantillonnage stratifié à degrés multiples. Techniques d’enquête, 22, 1, 23-31. Article accessible à l’adresse https://www150.statcan.gc.ca/n1/fr/pub/12-001-x/1996001/article/14388-fra.pdf.


Date de modification :