Enquête mensuelle sur le commerce de détail (EMCD) – Énoncé de la qualité des données

Objectifs, utilisation et utilisateurs
Concepts, variables et classifications
Couverture et bases de sondage
Échantillonnage
Conception du questionnaire
Réponse et non réponse
Opérations de collecte et de saisie des données
Vérification
Imputation
Estimation
Révisions et désaisonnalisation
Évaluation de la qualité des données
Contrôle de la divulgation

1. Objectifs, utilisation et utilisateurs

1.1. Objectifs

L’Enquête mensuelle sur le commerce de détail (EMCD) fournit des renseignements sur la performance du secteur du commerce de détail et, quand les données sont combinées à d’autres statistiques, représente un important indicateur de l'état de l’économie canadienne.

1.1. Utilisation

Les estimations fournissent une mesure de la santé et de la performance du secteur du commerce de détail. L'information recueillie est utilisée pour estimer le niveau et la tendance mensuelle des ventes ainsi que le nombre d’emplacements. À la fin de chaque année, les estimations donnent un premier aperçu de la valeur annuelle des ventes au détail et de la performance du secteur.

1.2. Utilisateurs

Divers organismes, associations sectorielles et gouvernements utilisent l'information. Les détaillants utilisent les résultats de l'enquête pour comparer leurs résultats à ceux d'entreprises similaires, ainsi qu'à des fins de marketing. Les associations de détaillants peuvent surveiller la performance de leur industrie et promouvoir les industries du commerce de détail. Les investisseurs peuvent surveiller la croissance de l'industrie, ce qui peut donner aux détaillants un meilleur accès au capital d'investissement. Les données de l'enquête aident les administrations à comprendre le rôle des détaillants dans l'économie, ce qui facilite l'élaboration des politiques et des encouragements fiscaux. Le commerce de détail étant un important secteur de l'économie canadienne, les données permettent aux administrations de déterminer plus exactement la santé globale de l'économie grâce à l'utilisation des estimations dans le calcul du produit intérieur brut (PIB) national.

2. Concepts, variables et classifications

2.1. Concepts

Le secteur du commerce de détail comprend les établissements dont l’activité principale consiste à vendre des marchandises au détail, généralement sans transformation, et à fournir des services connexes.

Le commerce de détail représente le dernier maillon de la chaîne de distribution; les détaillants sont donc organisés pour vendre des marchandises en petites quantités au grand public. Ce secteur comprend deux grands types d’établissements : les détaillants en magasin et les détaillants hors magasin. L’EMCD couvre uniquement les détaillants en magasin. Leurs principales caractéristiques sont décrites ci-après.

Les détaillants en magasin exploitent des points de vente fixes, situés et conçus de manière à attirer un grand nombre de passants. De façon générale, les magasins de détail ont de grands étalages et font de la publicité dans les médias. Ils vendent surtout des biens de consommation qui intéressent les particuliers ou les ménages, mais certains servent aussi les entreprises et une clientèle institutionnelle. Parmi ces établissements, on compte les magasins de fournitures de bureau, les magasins d’ordinateurs et de logiciels, les stations-service, les vendeurs de matériaux de construction, les magasins de fournitures de plomberie et de fournitures électriques.

En plus de vendre des marchandises, certains types de détaillants fournissent des services après-vente, comme des services de réparation et d’installation. Ainsi, les concessionnaires d’automobiles neuves, les magasins d’électronique et d’appareils ménagers, et les magasins d’instruments et de fournitures de musique assurent fréquemment un service de réparation, alors que les magasins de revêtements de sol et les magasins de garnitures de fenêtres fournissent souvent des services d’installation. En règle générale, les établissements qui vendent des marchandises au détail et qui ont un service après-vente sont classés dans ce secteur.

Les salles d’exposition des sociétés de vente sur catalogue, les stations-service et les marchands de maisons mobiles sont assimilés à des détaillants en magasin.

2.2. Variables

Les ventes sont définies comme étant les ventes de toutes les marchandises achetées pour la revente, nettes des rendus et des escomptes. Sont inclus les honoraires et les commissions résultant de la vente de biens et de services pour le compte de tiers, comme la vente de billets de loterie, de billets d’autobus et de cartes de téléphone. Sont également inclus les recettes provenant des pièces et de la main-d’oeuvre utilisées pour les services d'entretien et de réparation, les revenus de location et de location à bail de biens et de matériel, les revenus provenant de services, y compris les services de restauration, les ventes de biens fabriqués en tant qu’activité secondaire et la valeur des marchandises prélevées par le propriétaire pour son usage personnel. Sont exclus les autres revenus de location de biens immobiliers, les frais de placement, les subventions d’exploitation et autres, les redevances et les droits de franchise.

L’emplacement d’affaires comprend le ou les emplacements physiques où a lieu l’activité commerciale dans chaque province et territoire et dont les ventes sont créditées ou comptabilisées dans les états financiers de l’entreprise. Pour les détaillants, il s’agit normalement d’un magasin.

Dollars constants : La valeur du commerce de détail est mesurée de deux façons : par la prise en compte des effets de la variation des prix sur la valeur des ventes et par l’élimination des effets de la variation des prix. La première mesure est la valeur des ventes au détail en dollars courants et la seconde, la valeur des ventes au détail en dollars constants. Pour calculer l’estimation en dollars courants, on agrège la valeur des ventes pondérées de tous les points de vente au détail. Pour calculer l’estimation en dollars constants, il faut d’abord rajuster la valeur des ventes par rapport à une année de base en utilisant l’Indice des prix à la consommation, puis additionner les valeurs résultantes.

2.3. Classification

L’Enquête mensuelle sur le commerce de détail est fondée sur la définition du commerce de détail adoptée dans le SCIAN (Système de classification des industries de l’Amérique du Nord). Le SCIAN est le cadre commun reconnu pour la production de statistiques comparables par les organismes statistiques du Canada, du Mexique et des États-Unis. L’accord définit les limites de 20 secteurs. Le SCIAN est fondé sur un cadre conceptuel axé sur la production, ou l’offre, en ce sens que les établissements sont regroupés en classes ou branches d’activité d’après la similarité des processus utilisés pour produire les biens et les services.

Les estimations sont calculées pour 21 groupes fondés sur des agrégations spéciales du Système de classification des industries de l’Amérique du Nord (SCIAN) de 2012. Les 21 groupes sont en outre agrégés en onze sous-secteurs.

Du point de vue géographique, les estimations des ventes sont produites pour le Canada et pour chaque province et territoire.

3. Couverture et bases de sondage

La base de sondage de l'Enquête mensuelle sur le commerce de détail (EMCD) est le Registre des entreprises (RE) de Statistique Canada. Ce dernier est une liste structurée d'entreprises productrices de biens et de services au Canada. Cette base de données tenue à jour centralement contient des renseignements détaillés sur la plupart des entités commerciales exploitées au Canada. Le RE couvre toutes les entreprises constituées en société, avec ou sans employés. Pour les entreprises non constituées en société, le RE comprend toutes les entreprises ayant des employés, ainsi que les entreprises sans employés ayant des ventes annualisées provenant d'un compte de la taxe sur les produits et services (TPS) ou un revenu annuel provenant de la déclaration d'impôt individuelle.

Dans le RE, les entreprises sont représentées selon une structure hiérarchique à quatre niveaux ayant pour sommet l'entreprise statistique suivie, par ordre décroissant, par la compagnie statistique, l'établissement statistique et l'emplacement statistique. Une entreprise peut être reliée à une ou à plusieurs compagnies statistiques, une compagnie statistique à un ou à plusieurs établissements statistiques et un établissement statistique à un ou à plusieurs emplacements statistiques.

La population cible de l'EMCD comprend tous les établissements statistiques figurant dans le RE, excluant les entreprises non constituées en société n'ayant pas d'employés dont les ventes annuelles sont inférieures à 30 000 $, qui sont classés dans le secteur du commerce de détail d'après le Système de classification des industries de l'Amérique du Nord (SCIAN) (environ 200 000 établissements). La fourchette de codes du SCIAN pour le secteur du commerce de détail varie de 441100 à 453999. Un établissement statistique est l'entité de production ou le plus petit groupe d'entités de production qui produit un ensemble de biens ou de services homogènes, dont les activités ne débordent pas les frontières provinciales/territoriales, et qui est en mesure de fournir des données sur la valeur de la production, ainsi que sur le coût des matières utilisées et le coût et l'importance de la main-d'oeuvre affectée à la production. L'entité de production est l'unité physique où se déroulent les activités de l'entreprise. Elle doit avoir une adresse de voirie et une main-d'oeuvre directement affectée au processus de production.
Sont exclus de la population cible les établissements auxiliaires (producteurs de services de soutien de l'activité de production de biens et services destinés au marché de plus d'un établissement au sein de l'entreprise, et qui sont considérés comme un centre de coûts ou un centre de dépenses discrétionnaires pour lequel les données sur tous les coûts, y compris la main-d'oeuvre et l'amortissement, peuvent être déclarées par l'entreprise), les futurs établissements, les établissements pour lesquels les signaux économiques indiquent un revenu manquant ou nul, et les établissements appartenant aux catégories du SCIAN non couvertes qui suivent :

  • 4541 (entreprises de télémagasinage et de vente par correspondance)
  • 4542 (exploitants de distributeurs automatiques)
  • 45431 (marchands de combustible)
  • 45439 (autres établissements de vente directe)

4. Échantillonnage

L'échantillon de l'EMCD est formé de 10 000 groupes d'établissements (grappes) classés dans le secteur du commerce de détail et sélectionnés à partir du Registre des entreprises de Statistique Canada. Par définition, une grappe d'établissements comprend tous les établissements appartenant à une entreprise statistique qui font partie d'un même groupe industriel et d'une même région géographique. L’EMCD est fondée sur un plan d'échantillonnage stratifié avec sélection d'un échantillon aléatoire simple dans chaque strate. La stratification est faite selon des groupes industriels (majoritairement mais non exclusivement des SCIAN à quatre chiffres) et selon la région géographique, c'est-à-dire selon la province ou le territoire. Ensuite, la population est stratifiée selon la taille de l'établissement. La mesure de taille est créée en combinant des données provenant d'enquêtes indépendantes et trois variables administratives, à savoir le revenu annuel profilé, les ventes assujetties à la TPS exprimées sur une base annuelle et le revenu de la déclaration d’impôt (T1 ou T2).

Les strates de taille comptent une strate à tirage complet (recensement), au moins deux strates à tirage partiel (échantillonnées partiellement) et une strate à tirage nul (non échantillonnée). La strate à tirage nul est destinée à réduire le fardeau de réponse en excluant les entreprises les plus petites de la population observée. Ces entreprises représentent, en principe, au plus 10 % du total des ventes. Au lieu d'envoyer un questionnaire à ces entreprises, on produit les estimations d'après des données administratives.

L'échantillon est réparti de façon optimale afin d'atteindre les coefficients de variation cibles au niveau du Canada dans son ensemble, de la province ou du territoire, de l’industrie et des groupes industriels selon la province ou le territoire. On procède aussi à un suréchantillonnage pour tenir compte des unités disparues, non répondantes ou classées incorrectement.

L'EMCD est une enquête répétée avec maximisation du chevauchement des échantillons mensuels. On retient l'échantillon d’un mois à l’autre et, chaque mois, on y ajoute de nouvelles unités (naissances). Pour découvrir les nouvelles unités visées par l'EMCD, c'est-à-dire les nouvelles grappes d'établissement(s), on examine chaque mois l'univers le plus récent du RE. On stratifie ces nouvelles unités conformément aux mêmes critères que ceux appliqués à la population initiale, puis on les échantillonne conformément à la fraction d'échantillonnage de la strate à laquelle elles appartiennent et on les ajoute à l'échantillon mensuel. Des disparitions d'entité surviennent également chaque mois. Une entité disparue peut être une grappe d'établissements qui ont cessé leurs activités (fermeture) ou dont les activités principales ne se rattachent plus au commerce de détail (hors du champ). La situation de ces entreprises est mise à jour dans le RE d'après des renseignements de source administrative et les commentaires reçus lors des enquêtes, y compris ceux des entreprises prenant part à l'EMCD. Les méthodes suivies pour traiter les unités disparues et les unités classées incorrectement font partie des procédures d'échantillonnage et de mise à jour de la population.

5. Conception du questionnaire

L’Enquête mensuelle sur le commerce de détail englobe les sous-enquêtes suivantes :

Enquête mensuelle sur le commerce de détail – R8

Enquête mensuelle sur le commerce de détail (avec les stocks) – R8

Enquête sur les ventes et stocks de boissons alcooliques

Le questionnaire est conçu pour recueillir mensuellement auprès d'un échantillon de détaillants des données sur les ventes au détail, sur le nombre d'emplacements commerciaux par province ou territoire et sur les stocks de biens possédés et destinés à la revente. Lors du remaniement de 2004, la plupart des questionnaires n'ont subit que des changements de présentation. Le questionnaire sur les ventes et les stocks de boissons alcooliques a subi des modifications plus importantes. Les modifications ont été discutées avec les intervenants et les répondants ont eu l'occasion de faire des commentaires avant que le nouveau questionnaire ne soit finalisé. Si d'autres modifications devaient être apportées à l'un des questionnaires, les changements proposés seraient soumis à un comité d'examen et ferait l'objet d'un essai sur le terrain auprès de répondants et d'utilisateurs de données pour s'assurer de leur pertinence.

6. Réponse et non réponse

6.1. Réponse et non-réponse

Bien que les gestionnaires d'enquête et les employés des opérations fassent tout leur possible pour maximiser la réponse à l'EMCD, un certain degré de non-réponse a lieu. Pour qu'un établissement statistique soit considéré comme répondant, il faut que le degré de réponse partielle (situation où une réponse exacte n'est obtenue que pour certaines questions posées au répondant) atteigne un seuil minimal au-dessous duquel la déclaration fournie par l'établissement serait rejetée et l'établissement, considéré comme une unité non répondante. Le cas échéant, on considère que l'entreprise n'a pas répondu du tout.

La non-réponse a deux effets sur les données : premièrement, elle introduit un biais dans les estimations si les non-répondants diffèrent des répondants en ce qui concerne les caractéristiques mesurées et, deuxièmement, elle fait augmenter la variance d'échantillonnage des estimations, parce que la taille effective de l'échantillon est réduite comparativement à celle considérée au départ.

L'ampleur des efforts déployés pour obtenir une réponse auprès d'un non-répondant dépend des contraintes budgétaires et de temps, de l'effet de la non-réponse sur la qualité globale et du risque de biais dû à la non-réponse.

La méthode principalement utilisée pour réduire l'effet de la non-réponse à l'étape de l'échantillonnage consiste à augmenter la taille de l'échantillon en appliquant un taux de suréchantillonnage déterminé d'après les résultats d'enquêtes similaires.

Les cas de non-réponse qui surviennent malgré les méthodes appliquées aux étapes de l'échantillonnage et de la collecte pour réduire l'effet de la non-réponse sont traités par imputation.

Afin de déterminer l'importance de la non-réponse qui a lieu chaque mois, on calcule divers taux de réponse. Pour un mois de référence donné, on produit les estimations au moins deux fois (estimations provisoires et estimations révisées). Entre les deux exécutions, certaines données fournies par les répondants peuvent être jugées inutilisables et des valeurs imputées peuvent être corrigées au moyen de données fournies par les répondants. Par conséquent, les taux de réponse sont calculés après chaque exécution du processus d'estimation.

Pour l'EMCD, deux types de taux sont calculés (non pondérés et pondérés). Afin d'évaluer l'efficacité du processus de collecte, on calcule les taux de réponse non pondérés. Les taux pondérés, fondés sur le poids d'estimation et la valeur de la variable d'intérêt, évaluent la qualité de l'estimation. À l'intérieur de chacun de ces types de taux, il existe des taux distincts pour les unités faisant partie de l'échantillon et pour les unités qui sont uniquement modélisées à partir de données administratives qui ont été extraites des fichiers de TPS.

Afin d’obtenir une meilleure idée du succès du processus de collecte de données, on calcule deux taux non pondérés appelés « taux de résultat de la collecte » et « taux de résultat de l'extraction ». On calcule ces taux en divisant le nombre de répondants par le nombre d'unités avec lesquelles on a essayé de prendre contact ou pour lesquelles on a essayé de recevoir des données extraites. Les déclarants non mensuels (répondants bénéficiant de modalités de déclaration spéciales leur permettant de ne pas produire de déclaration chaque mois, mais pour lesquels des données réelles sont disponibles lors des révisions subséquentes) sont exclus du numérateur ainsi que du dénominateur pour les mois où aucun contact n'est pris avec eux. Brièvement, les divers taux de réponse se calculent comme suit :

Taux pondérés :

Taux de réponse des unités faisant partie de l'échantillon (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i / Somme des ventes pondérées des unités faisant partie de l'échantillon

i = unités pour lesquelles il existe des données déclarées qui seront utilisées dans l'estimation ou qui sont des refus convertis, ou pour lesquelles il existe des données déclarées qui n'ont pas encore été évaluées pour l'estimation.

Taux de réponse des unités modélisées à partir de données administratives (estimation) = Somme des ventes pondérées des unités avec situation de réponse ii / Somme des ventes pondérées des unités modélisées à partir de données administratives

ii = unités pour lesquelles il existe des données extraites des fichiers administratifs et qui sont utilisables pour l'estimation.

Taux de réponse total (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i ou situation de réponse ii / Somme de toutes les ventes pondérées

Taux non pondérés :

Taux de réponse des unités faisant partie de l'échantillon (collecte) =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse iv

iii = unités pour lesquelles il existe des données déclarées (dont le cas n'est pas résolu, utilisées ou non utilisées pour l'estimation) ou qui sont des refus convertis;

iv = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de répondre, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

Taux de réponse des unités modélisées à partir de données administratives (extraction) =
Nombre de questionnaires avec situation de réponse vi / Nombre de questionnaires avec situation de réponse vii

vi = unités dans le champ d'observation pour lesquelles il existe des données (utilisables ou non utilisables) extraites des fichiers administratifs;

vii = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de déclarer la source de données administratives, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation)

Taux de résultat de la collecte =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse viii

iii = même que iii défini plus haut;

viii = même que iv, à part l'exclusion des unités avec lesquelles on a pris contact, parce que leur réponse n'est pas disponible pour un mois particulier, puisqu'il s'agit de déclarants non mensuels.

Taux de résultat de l'extraction =
Nombre de questionnaires avec situation de réponse ix / Nombre de questionnaires avec situation de réponse vii

ix = même que vi, avec l'ajout des unités extraites qui ont été imputées ou qui étaient hors du champ de l'enquête;

où vii = même que vii défini plus haut.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation que nous avons tenté de recueillir)

Tous les taux pondérés et non pondérés susmentionnés sont calculés au niveau du groupe industriel, de la région et du groupe de taille, ainsi que pour toute combinaison de ces niveaux.

Utilisation des données administratives

Réduire le fardeau de réponse est un défi à long terme pour Statistique Canada. Afin d’alléger le fardeau de réponse et de réduire les coûts reliés à l’enquête, notamment en ce qui a trait aux petites entreprises, l’EMCD a réduit le nombre d’établissements simples de l’échantillon qui sont enquêtés directement et dérive plutôt les chiffres de vente pour ces établissements à partir des fichiers de la TPS en utilisant un modèle statistique. Le modèle explique les différences entre les ventes et les recettes déclarées aux fins de la TPS, ainsi que le décalage entre la période de référence de l’enquête et celle de la TPS.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

Le tableau 1 contient les fractions de réponses pondérées pour tous les groupes industriels ainsi que pour toutes les provinces et territoires. Pour des fractions de réponses pondérées plus détaillées, veuillez contacter la section du marketing et de la diffusion au (613) 951-3549, sans frais: 1-877-421-3067 or par courriel à retailinfo@statcan.

6.2. Méthodes utilisées pour réduire la non-réponse durant la collecte

Beaucoup d’efforts sont déployés en vue de réduire au minimum la non-réponse durant la collecte. Les méthodes utilisées incluent des techniques d'interview, comme l'utilisation de questions d'approfondissement et des techniques de persuasion, la replanification répétée des appels téléphoniques pour obtenir l'information et la mise en place de procédures indiquant aux intervieweurs comment s'y prendre avec les répondants qui refusent de participer à l'enquête.

Si les données demandées ne sont pas disponibles au moment de la collecte, la meilleure estimation fournie par le répondant est acceptée et est révisée par la suite, quand les données réelles sont disponibles.

Pour réduire au minimum la non-réponse totale pour toutes les variables, des réponses partielles sont acceptées. En outre, les questionnaires sont personnalisés pour la collecte de certaines variables, comme les stocks, de sorte que la collecte ait lieu durant les mois où les données sont disponibles.

Enfin, pour établir un climat de confiance entre les intervieweurs et les répondants, les cas sont généralement affectés au même intervieweur chaque mois. Ce dernier peut ainsi établir une relation personnelle avec le répondant et renforcer sa confiance.

7. Opérations de collecte et de saisie des données

La collecte des données est réalisée par les bureaux régionaux de Statistique Canada.

Tableau 1:
Fractions de réponse pondérées par SCIAN et pour les provinces et territoires, novembre 2013 :
Sommaire du tableau
Le tableau montre les résultats de Fractions de réponse pondérées par SCIAN et pour les provinces et territoires Fractions de réponse pondérées(figurant comme en-tête de colonne).
  Fractions de réponse pondérées
Total Enquêté Administrative
SCIAN - Canada  
Concessionnaires de véhicules et de pièces automobiles 91,6 92,2 64,1
Concessionnaires d'automobiles 93,3 93,7 56,0
Concessionnaires d'automobiles neuves Note 1 94,8 94,8  
Concessionnaires d'automobiles d'occasion 67,8 70,1 56,0
Autres concessionnaires de véhicules automobiles 66,8 67,3 63,6
Magasins de pièces, de pneus et d' accessoires pour véhicules automobiles 87,1 88,9 71,2
Magasins de meubles et d'accessoires de maison 83,5 87,2 47,6
Magasins de meubles 88,6 90,1 58,7
Magasins d'accessoires de maison 75,7 82,0 42,4
Magasin d'appareils électroniques et ménagers 88,9 89,8 45,7
Marchands de matériaux de construction et de matériel et fournitures de jardinage 88,8 92,6 58,9
Magasins d'alimentation 88,7 90,7 65,7
Épiceries 92,4 94,1 73,4
Supermarchés et autres épiceries (sauf les dépanneurs) 95,0 96,3 79,7
Dépanneurs 53,7 58,8 24,6
Magasins d'alimentation spécialisés 65,9 73,0 38,3
Magasins de bière, de vin et de spiritueux 80,5 82,0 21,5
Magasins de produits de santé et de soins personnels 89,7 89,9 86,1
Stations-service 75,5 75,9 68,0
Magasins de vêtements et d'accessoires vestimentaires 87,7 88,9 47,6
Magasins de vêtements 88,5 89,6 50,0
Magasins de chaussures 90,1 91,3  
Bijouteries et magasins de bagages et de maroquinerie 78,4 80,3 51,4
Magasins d'articles de sport, d'articles de passe-temps, d'articles de musique et de livres 90,1 92,8 51,8
Magasins de marchandises diverses 98,3 99,1 21,0
Grands magasins 100,0 100,0  
Autres magasins de marchandises diverses 96,8 98,2 21,0
Magasins de détail divers 76,5 81,5 33,3
Total 88,8 90,2 61,6
Régions  
Terre-Neuve-et-Labrador 83,6 84,9 35,9
Île-du-Prince-Édouard 87,2 88,7 9,2
Nouvelle Écosse 90,3 91,1 67,1
Nouveau-Brunswick 86,0 87,8 54,7
Québec 88,0 89,8 64,9
Ontario 89,3 90,7 58,6
Manitoba 86,1 86,6 59,6
Saskatchewan 91,4 92,6 64,3
Alberta 87,5 88,5 65,0
Colombie-Britannique 91,2 92,9 59,9
Territoire du Yukon 86,8 86,8  
Territoires du Nord-Ouest 84,2 84,2  
Nunavut 71,6 71,6  

Ces derniers envoient un questionnaire aux répondants ou communiquent avec ceux-ci par téléphone afin d'obtenir les valeurs de leurs ventes et de leurs stocks, et de confirmer l'ouverture ou la fermeture des emplacements d'affaires. Ils effectuent aussi un suivi auprès des non-répondants. La collecte des données débute environ sept jours ouvrables après la fin du mois de référence et se poursuit pendant tout le mois en question.

Les entités qui participent à l'enquête pour la première fois reçoivent une lettre d'introduction en vue d’informer le répondant qu'un représentant de Statistique Canada l'appellera. Cet appel a pour but de présenter l'enquête, de confirmer l'activité de l'entreprise, d'établir et de commencer la collecte des données, et de répondre à toutes questions que le répondant pourrait avoir.

8. Vérification

La vérification des données est l'application de contrôles pour déceler les entrées manquantes, invalides ou incohérentes, ou pour repérer les enregistrements de données susceptibles d'être erronés. Durant le processus d'enquête de l'EMCD, les données sont vérifiées à deux moments distincts.

Premièrement, une vérification est faite durant la collecte des données. Après leur collecte par téléphone ou au moyen du questionnaire à renvoyer par la poste, les données sont saisies à l'aide d'applications informatiques personnalisées. Toutes sont soumises à une vérification. Les contrôles réalisés durant la collecte des données, appelés contrôles sur le terrain, comprennent généralement des contrôles de validité et certains contrôles de cohérence simples. Ils servent aussi à déceler les erreurs commises durant l'interview par le répondant ou par l'intervieweur et de repérer l'information manquante à l'étape de la collecte en vue de réduire le besoin d'un suivi ultérieur. Les contrôles sur le terrain ont également pour but d'épurer les réponses. Dans le cas de l'EMCD, les réponses du mois courant sont comparées aux réponses fournies par le répondant le mois précédent et (ou) l'année précédente pour le mois courant. Les contrôles sur le terrain permettent de repérer les problèmes que posent les procédures de collecte des données et la conception des questionnaires, et de déterminer s'il faut offrir une formation supplémentaire aux intervieweurs.

Tout enregistrement de données rejeté lors des contrôles préliminaires fait l'objet d'un suivi auprès du répondant afin de valider les données soupçonnées d'être incorrectes. Une fois validé, les données recueillies sont transmises de façon régulière au Bureau central à Ottawa.

Deuxièmement, après la collecte, les données sont soumises à une vérification statistique dont la nature est plus empirique. On exécute la vérification statistique avant l'imputation, afin de repérer les données qui serviront de base pour l'imputation de valeurs pour les non-répondants. Les valeurs très extrêmes risquant de perturber une tendance mensuelle sont exclues des calculs de tendance lors de la vérification statistique. Il convient de souligner qu'aucun ajustement n'est fait à cette étape pour corriger les valeurs extrêmes déclarées.

La première étape de la vérification statistique consiste à repérer les réponses qui seront soumises aux règles de vérification statistique. Les données déclarées pour le mois de référence courant sont soumises à divers contrôles.

Le premier ensemble de contrôles est fondé sur la méthode d'Hidiroglou-Berthelot qui consiste à examiner le rapport des données du mois courant fournies par un répondant à des données historiques (c.-à-d. dernier mois ou même mois l'année précédente) ou administratives. Si le rapport calculé pour le répondant diffère significativement de ceux obtenus pour des répondants dont les caractéristiques sont comparables en ce qui concerne le groupe industriel et/ou la région géographique, la réponse est considérée comme une valeur extrême.

Le deuxième ensemble de contrôles est basé sur la vérification de la part de marché. Cette méthode, qui s'appuie sur les données du mois courant uniquement, permet de vérifier les données fournies par tous les répondants, mêmes ceux pour lesquels on ne dispose pas de données historiques ou de données auxiliaires. Par conséquent, parmi un groupe de répondants présentant des caractéristiques similaires en ce qui concerne le groupe industriel et (ou) la région géographique, toute valeur dont la contribution pondérée au total du groupe est trop importante sera considérée comme une valeur extrême.

Pour les contrôles fondés sur la méthode d'Hidiroglou-Berthelot, les données jugées extrêmes ne sont pas incluses dans les modèles d'imputation (ceux fondés sur les ratios). En outre, les données considérées comme des valeurs extrêmes lors de la vérification de la part de marché ne sont pas incluses dans les modèles d'imputation où les moyennes et les médianes sont calculées pour imputer des valeurs pour les réponses pour lesquelles il n'existe pas de données historiques.

Conjointement avec les vérifications statistiques effectuées après la collecte de données, on procède à la détection d’erreurs des données extraites des fichiers administratifs. Les données modélisées de la TPS sont également assujetties à une phase de vérification approfondie. Chaque fichier sur lequel les données modélisées sont fondées est vérifié de même que les valeurs modélisées. Les vérifications sont effectuées au niveau agrégé (industrie, géographie) afin de détecter les fichiers qui dévient de la norme (soit en exhibant des différences d’un mois à l’autre trop importantes ou qui diffèrent considérablement des autres unités. Toutes les données qui faillissent ces étapes de contrôle sont sujettes à une vérification manuelle, et si nécessaire, à une action corrective.

9. Imputation

Le processus d’imputation de l'EMCD a pour but de remplacer les données manquantes par des valeurs imputées. Des valeurs sont attribuées aux enregistrements pour lesquels la vérification a révélé des valeurs manquantes afin de s'assurer que les estimations soient de haute qualité et d'établir une cohérence interne plausible. Pour des raisons de fardeau de réponse, de coût et d'actualité des données, il est généralement impossible de réaliser auprès des répondants tous les suivis nécessaires pour résoudre les problèmes de réponses manquantes. Puisqu'il est souhaitable de produire un fichier de microdonnées complet et cohérent, on recourt à l'imputation pour traiter les cas persistants de données manquantes.

Dans le cas de l'EMCD, on peut fonder l'imputation des valeurs manquantes sur des données historiques ou sur des données administratives. Le choix de la méthode appropriée est fondé sur une stratégie qui dépend de l'existence de données historiques ou de données administratives et (ou) du mois de référence en question.

Il existe trois types de méthode d'imputation d'après des données historiques. Le premier est l’application d’une tendance générale qui s'appuie sur une source unique de données historiques (mois précédent, données recueillies pour le mois suivant ou données recueillies pour le même mois l'année précédente). Le deuxième est un modèle de régression dans lequel sont utilisées simultanément les données provenant du mois précédent et celles provenant du même mois l'année précédente. La troisième méthode consiste à remplacer directement les valeurs manquantes par des données historiques.

Selon le mois de référence, il existe, pour le choix de la méthode, un ordre de préférence en vue d'assurer une imputation de haute qualité. Le troisième type de méthode d'imputation historique est toujours la dernière option considérée pour chaque mois de référence.

Les méthodes d'imputation fondées sur des données administratives sont sélectionnées automatiquement lorsqu'on ne dispose pas de données historiques pour un non-répondant. La source de données administratives (ventes annuelles assujetties à la TPS) est le fondement de ces méthodes. Les ventes annuelles assujetties à la TPS sont utilisées pour deux types de méthode. L'une est une tendance générale que l'on utilise pour les structures simples, comme les entreprises ne comptant qu'un seul établissement et l'autre, appelée méthode de la médiane-moyenne, est utilisée pour les unités dont la structure est plus complexe.

10. Estimation

L'estimation est un processus qui consiste à calculer une valeur approximative des paramètres de population inconnus en utilisant uniquement la partie de la population qui est incluse dans un échantillon. Des inférences sont ensuite faites au sujet des paramètres inconnus en utilisant les données d'échantillon et les renseignements connexes sur le plan de sondage. Cette étape fait usage du Système généralisé d'estimation (SGE) de Statistique Canada.

Pour les ventes des détaillants, la population est divisée en une partie observée (strates à tirage complet et à tirage partiel) et une partie non observée (strate à tirage nul). D'après l'échantillon tiré à partir de la partie observée, on calcule une estimation pour la population au moyen d'un estimateur d'Horvitz-Thompson où les réponses concernant les ventes sont pondérées par l'inverse des probabilités d'inclusion des unités échantillonnées. Ces poids (appelés poids d'échantillonnage) peuvent être interprétés comme étant le nombre de fois que chaque unité échantillonnée devrait être répétée pour représenter la population complète. Les valeurs pondérées des ventes ainsi calculées sont totalisées par domaine, pour produire une estimation du total des ventes pour chaque combinaison des groupes industriels/région géographique. Un domaine est défini comme correspondant aux valeurs de classification les plus récentes disponibles dans le RE pour l'unité et la période de référence de l'enquête. Les domaines peuvent différer des strates d'échantillonnage originales, parce que les unités peuvent avoir changé de taille, d'industrie ou d'emplacement. Les changements de classification sont reflétés immédiatement dans les estimations et ne sont pas cumulés au cours du temps. Pour la partie non observée de la population, les ventes sont estimées à l’aide de modèles statistiques exploitant les ventes assujetties à la TPS exprimées sous forme mensuelle.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

La variance est la mesure de précision utilisée dans le cas de l'EMCD pour évaluer la qualité de l'estimation des paramètres de population et pour obtenir des inférences valides. Pour la partie observée de la population, la variance est calculée directement à partir d'un échantillon aléatoire simple stratifié sans remise.

Les estimations d'échantillon peuvent différer de la valeur prévue des estimations. Cependant, puisque l'estimation est fondée sur un échantillon probabiliste, il est possible d'évaluer la variabilité de l'estimation d'échantillon par rapport à la valeur prévue. La variance d'une estimation est une mesure de la précision de l'estimation d'échantillon qui est définie comme étant la moyenne, sur tous les échantillons possibles, de l'écart quadratique de l'estimation par rapport à sa valeur prévue.

11. Révisions et désaisonnalisation

Des révisions des données brutes doivent être effectuées pour corriger les erreurs non dues à l'échantillonnage qui sont décelées. Ceci comporte généralement le remplacement de données imputées par des données déclarées, la correction de données déclarées précédemment, et de procéder à des estimations pour les nouvelles entreprises créées dont on ne connaissait pas l'existence au moment des estimations originales.

Les données brutes sont révisées, sur une base mensuelle, pour le mois précédant immédiatement le mois de référence en cours qui fait l'objet de la publication. C'est donc dire que lorsque les données pour décembre sont publiées pour la première fois, on procédera aussi à des révisions, au besoin, à l'égard des données brutes pour novembre. En outre, des révisions sont aussi effectuées une fois par année, au moment de la première publication des données de février, pour tous les mois de l'année précédente. On vise ainsi à corriger tout problème important que l'on ait décelé et qui s'applique pour une période prolongée. La période de révision proprement dite dépend de la nature du problème décelé, mais elle ne dépasse rarement trois ans.

Les séries temporelles ou chronologiques comportent les éléments essentiels à la description, l'explication et la prévision du comportement d'un phénomène économique. « Ce sont des dossiers statistiques de l'évolution des processus économiques dans le temps1 ». Les séries temporelles socio-économiques comme celles de l’Enquête mensuelle sur le commerce de gros peuvent habituellement être décomposées en cinq composantes principales : la tendance-cycle, la saisonnalité, l’effet des jours ouvrables, l’effet de la fête de Pâques et la composante irrégulière.

La tendance représente l’évolution à long terme de la série, tandis que le cycle représente un mouvement lisse, quasi périodique, autour de la tendance qui met en évidence une succession de phases de croissance et de décroissance (ex. le cycle des affaires). Les deux composantes tendance et cycle sont estimées ensemble et la tendance-cycle reflète l'évolution fondamentale de la série. Les autres composantes traduisent des mouvements passagers à court terme. La composante saisonnière représente des fluctuations infra-annuelles, mensuelles ou trimestrielles, qui se répètent plus ou moins régulièrement d'une année à l'autre. Les variations saisonnières sont le produit des effets directs et indirects des saisons climatiques et d’éléments de type institutionnel (attribuable aux conventions sociales ou aux règles administratives, Noël par exemple).

L’effet des jours ouvrables provient du fait que l'importance relative des jours varie systématiquement à l'intérieur de la semaine et que le nombre de chacun des jours dans un mois donné varie d'une année à l'autre. Cet effet est présent lorsque l’activité change en fonction du jour de la semaine. Par exemple, dimanche connaît typiquement moins d'activité que les autres jours, et le nombre de dimanches, lundis, etc., dans un mois donné change d'année en année.
1 La désaisonnalisation des séries temporelles économiques : quelques remarques; tiré de la Revue statistique du Canada , août 1974
2 Pour plus de renseignements, voir X-12-ARIMA Reference Manual Version 0.3 (2007), U.S. Census Bureau.
3 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

L’effet de la fête de Pâques est la variation due au déplacement d’une partie de l’activité d’avril vers mars quand Pâques tombe en mars plutôt qu’en avril.

Enfin, la composante irrégulière regroupe toutes les autres fluctuations plus ou moins erratiques non prises en compte dans les composantes précédentes. Elle représente un résidu qui incorpore, entre autres, les erreurs de mesure sur la variable elle-même ainsi que des événements inhabituels (ex. grèves, sécheresse, inondations, panne d’électricité majeure ou d'autres variations inattendues dans les activités des répondants).

Ainsi, les composantes saisonnière et irrégulière, l’effet des jours ouvrables et l’effet de la fête de Pâques masquent la composante fondamentale de la série, qui est la tendance-cycle. La désaisonnalisation (correction des variations saisonnières) consiste à retirer de la série la composante saisonnière, l’effet des jours ouvrables et l’effet de la fête de Pâques. Elle contribue donc à révéler la tendance-cycle. Bien que la désaisonnalisation permette de mieux comprendre la tendance-cycle fondamentale d'une série, la série désaisonnalisée n'en contient pas moins une composante irrégulière. De légères variations d'un mois à l'autre dans la série désaisonnalisée peuvent n'être que de simples mouvements irréguliers. Pour avoir une meilleure idée de la tendance fondamentale, les utilisateurs doivent donc examiner les séries désaisonnalisées sur un certain nombre de mois.

Depuis avril 2008, l’Enquête mensuelle sur le commerce de gros utilise le logiciel X-12-ARIMA2 pour la désaisonnalisation. La technique utilisée consiste essentiellement, dans un premier temps, à corriger la série initiale de toute sorte d’effets indésirables, tels l’effet des jours ouvrables et l’effet de Pâques, par un module appelé regARIMA. L’estimation de ces effets se fait grâce à l’utilisation de modèles de régression à erreurs ARIMA (modèles autorégressifs à moyennes mobiles intégrées). On peut également extrapoler la série d'au moins une année à l'aide du modèle. Dans un deuxième temps, la série brute, pré-ajustée et extrapolée s’il y a lieu, est désaisonnalisée par la méthode X-11.

La méthode X-11, qui permet d’analyser des séries mensuelles et trimestrielles, repose sur un principe itératif d’estimation des différentes composantes, cette estimation étant faite à chaque étape grâce à des moyennes mobiles adéquates3. Les moyennes mobiles utilisées pour estimer les principales composantes, la tendance et la saisonnalité, sont avant tout des outils de lissage conçus pour éliminer une composante indésirable de la série. Puisque les moyennes mobiles réagissent mal à la présence de valeurs atypiques, la méthode X-11 incorpore un outil de détection et de correction des points atypiques utilisé pour nettoyer la série au cours de la désaisonnalisation. Les valeurs atypiques peuvent également être détectées et corrigées d’avance, à l’aide du module regARIMA.

Finalement, les données désaisonnalisées sont ajustées aux totaux annuels des données brutes. Malheureusement, la désaisonnalisation supprime l’additivité infra-annuelle d’un système de séries; de légères différences peuvent alors être observées entre la somme de séries désaisonnalisées et la désaisonnalisation directe de leur total. Afin d’assurer ou de rétablir l’additivité d’un système de séries, un processus de réconciliation est appliqué ou une désaisonnalisation indirecte est employée, c.-à-d. la désaisonnalisation d’un total est obtenu en faisant la somme des séries désaisonnalisées individuellement.

1 Pour plus de renseignements, voir X-12-ARIMA Référence Manuel Version 0.3 (2007), U.S. Census Bureau. .
2 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

12. Évaluation de la qualité des données

La méthodologie de l'enquête a pour objectif de contrôler les erreurs et de réduire leurs effets éventuels sur les estimations. Les résultats de l'enquête peuvent néanmoins contenir des erreurs dont l'erreur d'échantillonnage n'est que l'une des composantes. L'erreur d'échantillonnage survient lorsque les observations sont faites uniquement sur un échantillon et non sur l'ensemble de la population. Toutes les autres erreurs commises aux diverses phases de l'enquête sont appelées erreurs non dues à l'échantillonnage. Des erreurs de ce type peuvent survenir, par exemple, quand un répondant fournit des renseignements erronés ou qu'il ne répond pas à certaines questions; quand une unité du champ de l'enquête y est incluse erronément ou que des erreurs sont commises lors du traitement des données, comme des erreurs de codage ou de saisie.

Avant la publication, on analyse les résultats combinés de l'enquête afin d'en évaluer la comparabilité; il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement celles des grandes entreprises), de la conjoncture économique générale et des tendances historiques.

Une mesure habituelle de la qualité des données des enquêtes est le coefficient de variation (CV). Le coefficient de variation, défini comme étant l'erreur-type divisée par l'estimation d'échantillon, est une mesure de la précision relative. Puisque le coefficient de variation est calculé d'après les réponses des unités individuelles, il mesure aussi certaines erreurs non dues à l'échantillonnage.

La formule utilisée pour calculer le coefficient de variation (CV) en pourcentage est :

CV (X) = S(X) * 100%
X
où X représente l'estimation et S(X) représente l'erreur-type de X.

On peut construire les intervalles de confiance autour des estimations en utilisant l'estimation et le CV. Donc, pour notre échantillon, il est possible de déclarer avec un niveau donné de confiance que la valeur prévue sera comprise dans l'intervalle de confiance construit autour de l'estimation. Par exemple, si une estimation de 12 millions de dollars à un CV de 2 %, l'erreur-type sera de 240 000 $ (l'estimation multipliée par le CV). On peut déclarer avec 68 % de confiance que les valeurs prévues seront comprises dans l'intervalle dont la longueur est égale à un écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 760 000 $ et 12 240 000 $. Ou bien, nous pouvons déclarer avec 95 % de confiance que la valeur prévue sera comprise dans l'intervalle dont la longueur est égale à deux écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 520 000 $ et 12 480 000 $.

Enfin, étant donné la faible contribution de la partie non observée de la population aux estimations totales, le biais dans la partie non observée a un effet négligeable sur les CV. Par conséquent, on utilise le CV provenant de la partie observée pour l'estimation totale qui est égale à la somme des estimations pour les parties observée et non observée de la population.

13. Contrôle de la divulgation

La loi interdit à Statistique Canada de rendre publique toute donnée susceptible de révéler l'information recueillie en vertu de la Loi sur la statistique et se rapportant à toute personne, entreprise ou organisation reconnaissable, sans que cette personne, entreprise ou organisation le sache ou y consente par écrit. Diverses règles de confidentialité s'appliquent à toutes les données diffusées ou publiées afin d'empêcher la publication ou la divulgation de toute information jugée confidentielle. Au besoin, des données sont supprimées pour empêcher la divulgation directe ou par recoupement de données reconnaissables.

L'analyse de la confidentialité des données inclut la détection de la « divulgation directe » éventuelle, qui survient lorsque la valeur figurant dans une cellule d'un tableau ne correspond qu'à quelques répondants ou que la cellule est dominée par un petit nombre d'entreprises.

Enquête mensuelle sur le commerce de détail (EMCD) – Énoncé de la qualité des données

Objectifs, utilisation et utilisateurs
Concepts, variables et classifications
Couverture et bases de sondage
Échantillonnage
Conception du questionnaire
Réponse et non réponse
Opérations de collecte et de saisie des données
Vérification
Imputation
Estimation
Révisions et désaisonnalisation
Évaluation de la qualité des données
Contrôle de la divulgation

1. Objectifs, utilisation et utilisateurs

1.1. Objectifs

L’Enquête mensuelle sur le commerce de détail (EMCD) fournit des renseignements sur la performance du secteur du commerce de détail et, quand les données sont combinées à d’autres statistiques, représente un important indicateur de l'état de l’économie canadienne.

1.1. Utilisation

Les estimations fournissent une mesure de la santé et de la performance du secteur du commerce de détail. L'information recueillie est utilisée pour estimer le niveau et la tendance mensuelle des ventes ainsi que le nombre d’emplacements. À la fin de chaque année, les estimations donnent un premier aperçu de la valeur annuelle des ventes au détail et de la performance du secteur.

1.2. Utilisateurs

Divers organismes, associations sectorielles et gouvernements utilisent l'information. Les détaillants utilisent les résultats de l'enquête pour comparer leurs résultats à ceux d'entreprises similaires, ainsi qu'à des fins de marketing. Les associations de détaillants peuvent surveiller la performance de leur industrie et promouvoir les industries du commerce de détail. Les investisseurs peuvent surveiller la croissance de l'industrie, ce qui peut donner aux détaillants un meilleur accès au capital d'investissement. Les données de l'enquête aident les administrations à comprendre le rôle des détaillants dans l'économie, ce qui facilite l'élaboration des politiques et des encouragements fiscaux. Le commerce de détail étant un important secteur de l'économie canadienne, les données permettent aux administrations de déterminer plus exactement la santé globale de l'économie grâce à l'utilisation des estimations dans le calcul du produit intérieur brut (PIB) national.

2. Concepts, variables et classifications

2.1. Concepts

Le secteur du commerce de détail comprend les établissements dont l’activité principale consiste à vendre des marchandises au détail, généralement sans transformation, et à fournir des services connexes.

Le commerce de détail représente le dernier maillon de la chaîne de distribution; les détaillants sont donc organisés pour vendre des marchandises en petites quantités au grand public. Ce secteur comprend deux grands types d’établissements : les détaillants en magasin et les détaillants hors magasin. L’EMCD couvre uniquement les détaillants en magasin. Leurs principales caractéristiques sont décrites ci-après.

Les détaillants en magasin exploitent des points de vente fixes, situés et conçus de manière à attirer un grand nombre de passants. De façon générale, les magasins de détail ont de grands étalages et font de la publicité dans les médias. Ils vendent surtout des biens de consommation qui intéressent les particuliers ou les ménages, mais certains servent aussi les entreprises et une clientèle institutionnelle. Parmi ces établissements, on compte les magasins de fournitures de bureau, les magasins d’ordinateurs et de logiciels, les stations-service, les vendeurs de matériaux de construction, les magasins de fournitures de plomberie et de fournitures électriques.

En plus de vendre des marchandises, certains types de détaillants fournissent des services après-vente, comme des services de réparation et d’installation. Ainsi, les concessionnaires d’automobiles neuves, les magasins d’électronique et d’appareils ménagers, et les magasins d’instruments et de fournitures de musique assurent fréquemment un service de réparation, alors que les magasins de revêtements de sol et les magasins de garnitures de fenêtres fournissent souvent des services d’installation. En règle générale, les établissements qui vendent des marchandises au détail et qui ont un service après-vente sont classés dans ce secteur.

Les salles d’exposition des sociétés de vente sur catalogue, les stations-service et les marchands de maisons mobiles sont assimilés à des détaillants en magasin.

2.2. Variables

Les ventes sont définies comme étant les ventes de toutes les marchandises achetées pour la revente, nettes des rendus et des escomptes. Sont inclus les honoraires et les commissions résultant de la vente de biens et de services pour le compte de tiers, comme la vente de billets de loterie, de billets d’autobus et de cartes de téléphone. Sont également inclus les recettes provenant des pièces et de la main-d’oeuvre utilisées pour les services d'entretien et de réparation, les revenus de location et de location à bail de biens et de matériel, les revenus provenant de services, y compris les services de restauration, les ventes de biens fabriqués en tant qu’activité secondaire et la valeur des marchandises prélevées par le propriétaire pour son usage personnel. Sont exclus les autres revenus de location de biens immobiliers, les frais de placement, les subventions d’exploitation et autres, les redevances et les droits de franchise.

L’emplacement d’affaires comprend le ou les emplacements physiques où a lieu l’activité commerciale dans chaque province et territoire et dont les ventes sont créditées ou comptabilisées dans les états financiers de l’entreprise. Pour les détaillants, il s’agit normalement d’un magasin.

Dollars constants : La valeur du commerce de détail est mesurée de deux façons : par la prise en compte des effets de la variation des prix sur la valeur des ventes et par l’élimination des effets de la variation des prix. La première mesure est la valeur des ventes au détail en dollars courants et la seconde, la valeur des ventes au détail en dollars constants. Pour calculer l’estimation en dollars courants, on agrège la valeur des ventes pondérées de tous les points de vente au détail. Pour calculer l’estimation en dollars constants, il faut d’abord rajuster la valeur des ventes par rapport à une année de base en utilisant l’Indice des prix à la consommation, puis additionner les valeurs résultantes.

2.3. Classification

L’Enquête mensuelle sur le commerce de détail est fondée sur la définition du commerce de détail adoptée dans le SCIAN (Système de classification des industries de l’Amérique du Nord). Le SCIAN est le cadre commun reconnu pour la production de statistiques comparables par les organismes statistiques du Canada, du Mexique et des États-Unis. L’accord définit les limites de 20 secteurs. Le SCIAN est fondé sur un cadre conceptuel axé sur la production, ou l’offre, en ce sens que les établissements sont regroupés en classes ou branches d’activité d’après la similarité des processus utilisés pour produire les biens et les services.

Les estimations sont calculées pour 21 groupes fondés sur des agrégations spéciales du Système de classification des industries de l’Amérique du Nord (SCIAN) de 2012. Les 21 groupes sont en outre agrégés en onze sous-secteurs.

Du point de vue géographique, les estimations des ventes sont produites pour le Canada et pour chaque province et territoire.

3. Couverture et bases de sondage

La base de sondage de l'Enquête mensuelle sur le commerce de détail (EMCD) est le Registre des entreprises (RE) de Statistique Canada. Ce dernier est une liste structurée d'entreprises productrices de biens et de services au Canada. Cette base de données tenue à jour centralement contient des renseignements détaillés sur la plupart des entités commerciales exploitées au Canada. Le RE couvre toutes les entreprises constituées en société, avec ou sans employés. Pour les entreprises non constituées en société, le RE comprend toutes les entreprises ayant des employés, ainsi que les entreprises sans employés ayant des ventes annualisées provenant d'un compte de la taxe sur les produits et services (TPS) ou un revenu annuel provenant de la déclaration d'impôt individuelle.

Dans le RE, les entreprises sont représentées selon une structure hiérarchique à quatre niveaux ayant pour sommet l'entreprise statistique suivie, par ordre décroissant, par la compagnie statistique, l'établissement statistique et l'emplacement statistique. Une entreprise peut être reliée à une ou à plusieurs compagnies statistiques, une compagnie statistique à un ou à plusieurs établissements statistiques et un établissement statistique à un ou à plusieurs emplacements statistiques.

La population cible de l'EMCD comprend tous les établissements statistiques figurant dans le RE, excluant les entreprises non constituées en société n'ayant pas d'employés dont les ventes annuelles sont inférieures à 30 000 $, qui sont classés dans le secteur du commerce de détail d'après le Système de classification des industries de l'Amérique du Nord (SCIAN) (environ 200 000 établissements). La fourchette de codes du SCIAN pour le secteur du commerce de détail varie de 441100 à 453999. Un établissement statistique est l'entité de production ou le plus petit groupe d'entités de production qui produit un ensemble de biens ou de services homogènes, dont les activités ne débordent pas les frontières provinciales/territoriales, et qui est en mesure de fournir des données sur la valeur de la production, ainsi que sur le coût des matières utilisées et le coût et l'importance de la main-d'oeuvre affectée à la production. L'entité de production est l'unité physique où se déroulent les activités de l'entreprise. Elle doit avoir une adresse de voirie et une main-d'oeuvre directement affectée au processus de production.
Sont exclus de la population cible les établissements auxiliaires (producteurs de services de soutien de l'activité de production de biens et services destinés au marché de plus d'un établissement au sein de l'entreprise, et qui sont considérés comme un centre de coûts ou un centre de dépenses discrétionnaires pour lequel les données sur tous les coûts, y compris la main-d'oeuvre et l'amortissement, peuvent être déclarées par l'entreprise), les futurs établissements, les établissements pour lesquels les signaux économiques indiquent un revenu manquant ou nul, et les établissements appartenant aux catégories du SCIAN non couvertes qui suivent :

  • 4541 (entreprises de télémagasinage et de vente par correspondance)
  • 4542 (exploitants de distributeurs automatiques)
  • 45431 (marchands de combustible)
  • 45439 (autres établissements de vente directe)

4. Échantillonnage

L'échantillon de l'EMCD est formé de 10 000 groupes d'établissements (grappes) classés dans le secteur du commerce de détail et sélectionnés à partir du Registre des entreprises de Statistique Canada. Par définition, une grappe d'établissements comprend tous les établissements appartenant à une entreprise statistique qui font partie d'un même groupe industriel et d'une même région géographique. L’EMCD est fondée sur un plan d'échantillonnage stratifié avec sélection d'un échantillon aléatoire simple dans chaque strate. La stratification est faite selon des groupes industriels (majoritairement mais non exclusivement des SCIAN à quatre chiffres) et selon la région géographique, c'est-à-dire selon la province ou le territoire. Ensuite, la population est stratifiée selon la taille de l'établissement. La mesure de taille est créée en combinant des données provenant d'enquêtes indépendantes et trois variables administratives, à savoir le revenu annuel profilé, les ventes assujetties à la TPS exprimées sur une base annuelle et le revenu de la déclaration d’impôt (T1 ou T2).

Les strates de taille comptent une strate à tirage complet (recensement), au moins deux strates à tirage partiel (échantillonnées partiellement) et une strate à tirage nul (non échantillonnée). La strate à tirage nul est destinée à réduire le fardeau de réponse en excluant les entreprises les plus petites de la population observée. Ces entreprises représentent, en principe, au plus 10 % du total des ventes. Au lieu d'envoyer un questionnaire à ces entreprises, on produit les estimations d'après des données administratives.

L'échantillon est réparti de façon optimale afin d'atteindre les coefficients de variation cibles au niveau du Canada dans son ensemble, de la province ou du territoire, de l’industrie et des groupes industriels selon la province ou le territoire. On procède aussi à un suréchantillonnage pour tenir compte des unités disparues, non répondantes ou classées incorrectement.

L'EMCD est une enquête répétée avec maximisation du chevauchement des échantillons mensuels. On retient l'échantillon d’un mois à l’autre et, chaque mois, on y ajoute de nouvelles unités (naissances). Pour découvrir les nouvelles unités visées par l'EMCD, c'est-à-dire les nouvelles grappes d'établissement(s), on examine chaque mois l'univers le plus récent du RE. On stratifie ces nouvelles unités conformément aux mêmes critères que ceux appliqués à la population initiale, puis on les échantillonne conformément à la fraction d'échantillonnage de la strate à laquelle elles appartiennent et on les ajoute à l'échantillon mensuel. Des disparitions d'entité surviennent également chaque mois. Une entité disparue peut être une grappe d'établissements qui ont cessé leurs activités (fermeture) ou dont les activités principales ne se rattachent plus au commerce de détail (hors du champ). La situation de ces entreprises est mise à jour dans le RE d'après des renseignements de source administrative et les commentaires reçus lors des enquêtes, y compris ceux des entreprises prenant part à l'EMCD. Les méthodes suivies pour traiter les unités disparues et les unités classées incorrectement font partie des procédures d'échantillonnage et de mise à jour de la population.

5. Conception du questionnaire

L’Enquête mensuelle sur le commerce de détail englobe les sous-enquêtes suivantes :

Enquête mensuelle sur le commerce de détail – R8

Enquête mensuelle sur le commerce de détail (avec les stocks) – R8

Enquête sur les ventes et stocks de boissons alcooliques

Le questionnaire est conçu pour recueillir mensuellement auprès d'un échantillon de détaillants des données sur les ventes au détail, sur le nombre d'emplacements commerciaux par province ou territoire et sur les stocks de biens possédés et destinés à la revente. Lors du remaniement de 2004, la plupart des questionnaires n'ont subit que des changements de présentation. Le questionnaire sur les ventes et les stocks de boissons alcooliques a subi des modifications plus importantes. Les modifications ont été discutées avec les intervenants et les répondants ont eu l'occasion de faire des commentaires avant que le nouveau questionnaire ne soit finalisé. Si d'autres modifications devaient être apportées à l'un des questionnaires, les changements proposés seraient soumis à un comité d'examen et ferait l'objet d'un essai sur le terrain auprès de répondants et d'utilisateurs de données pour s'assurer de leur pertinence.

6. Réponse et non réponse

6.1. Réponse et non-réponse

Bien que les gestionnaires d'enquête et les employés des opérations fassent tout leur possible pour maximiser la réponse à l'EMCD, un certain degré de non-réponse a lieu. Pour qu'un établissement statistique soit considéré comme répondant, il faut que le degré de réponse partielle (situation où une réponse exacte n'est obtenue que pour certaines questions posées au répondant) atteigne un seuil minimal au-dessous duquel la déclaration fournie par l'établissement serait rejetée et l'établissement, considéré comme une unité non répondante. Le cas échéant, on considère que l'entreprise n'a pas répondu du tout.

La non-réponse a deux effets sur les données : premièrement, elle introduit un biais dans les estimations si les non-répondants diffèrent des répondants en ce qui concerne les caractéristiques mesurées et, deuxièmement, elle fait augmenter la variance d'échantillonnage des estimations, parce que la taille effective de l'échantillon est réduite comparativement à celle considérée au départ.

L'ampleur des efforts déployés pour obtenir une réponse auprès d'un non-répondant dépend des contraintes budgétaires et de temps, de l'effet de la non-réponse sur la qualité globale et du risque de biais dû à la non-réponse.

La méthode principalement utilisée pour réduire l'effet de la non-réponse à l'étape de l'échantillonnage consiste à augmenter la taille de l'échantillon en appliquant un taux de suréchantillonnage déterminé d'après les résultats d'enquêtes similaires.

Les cas de non-réponse qui surviennent malgré les méthodes appliquées aux étapes de l'échantillonnage et de la collecte pour réduire l'effet de la non-réponse sont traités par imputation.

Afin de déterminer l'importance de la non-réponse qui a lieu chaque mois, on calcule divers taux de réponse. Pour un mois de référence donné, on produit les estimations au moins deux fois (estimations provisoires et estimations révisées). Entre les deux exécutions, certaines données fournies par les répondants peuvent être jugées inutilisables et des valeurs imputées peuvent être corrigées au moyen de données fournies par les répondants. Par conséquent, les taux de réponse sont calculés après chaque exécution du processus d'estimation.

Pour l'EMCD, deux types de taux sont calculés (non pondérés et pondérés). Afin d'évaluer l'efficacité du processus de collecte, on calcule les taux de réponse non pondérés. Les taux pondérés, fondés sur le poids d'estimation et la valeur de la variable d'intérêt, évaluent la qualité de l'estimation. À l'intérieur de chacun de ces types de taux, il existe des taux distincts pour les unités faisant partie de l'échantillon et pour les unités qui sont uniquement modélisées à partir de données administratives qui ont été extraites des fichiers de TPS.

Afin d’obtenir une meilleure idée du succès du processus de collecte de données, on calcule deux taux non pondérés appelés « taux de résultat de la collecte » et « taux de résultat de l'extraction ». On calcule ces taux en divisant le nombre de répondants par le nombre d'unités avec lesquelles on a essayé de prendre contact ou pour lesquelles on a essayé de recevoir des données extraites. Les déclarants non mensuels (répondants bénéficiant de modalités de déclaration spéciales leur permettant de ne pas produire de déclaration chaque mois, mais pour lesquels des données réelles sont disponibles lors des révisions subséquentes) sont exclus du numérateur ainsi que du dénominateur pour les mois où aucun contact n'est pris avec eux. Brièvement, les divers taux de réponse se calculent comme suit :

Taux pondérés :

Taux de réponse des unités faisant partie de l'échantillon (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i / Somme des ventes pondérées des unités faisant partie de l'échantillon

i = unités pour lesquelles il existe des données déclarées qui seront utilisées dans l'estimation ou qui sont des refus convertis, ou pour lesquelles il existe des données déclarées qui n'ont pas encore été évaluées pour l'estimation.

Taux de réponse des unités modélisées à partir de données administratives (estimation) = Somme des ventes pondérées des unités avec situation de réponse ii / Somme des ventes pondérées des unités modélisées à partir de données administratives

ii = unités pour lesquelles il existe des données extraites des fichiers administratifs et qui sont utilisables pour l'estimation.

Taux de réponse total (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i ou situation de réponse ii / Somme de toutes les ventes pondérées

Taux non pondérés :

Taux de réponse des unités faisant partie de l'échantillon (collecte) =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse iv

iii = unités pour lesquelles il existe des données déclarées (dont le cas n'est pas résolu, utilisées ou non utilisées pour l'estimation) ou qui sont des refus convertis;

iv = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de répondre, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

Taux de réponse des unités modélisées à partir de données administratives (extraction) =
Nombre de questionnaires avec situation de réponse vi / Nombre de questionnaires avec situation de réponse vii

vi = unités dans le champ d'observation pour lesquelles il existe des données (utilisables ou non utilisables) extraites des fichiers administratifs;

vii = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de déclarer la source de données administratives, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation)

Taux de résultat de la collecte =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse viii

iii = même que iii défini plus haut;

viii = même que iv, à part l'exclusion des unités avec lesquelles on a pris contact, parce que leur réponse n'est pas disponible pour un mois particulier, puisqu'il s'agit de déclarants non mensuels.

Taux de résultat de l'extraction =
Nombre de questionnaires avec situation de réponse ix / Nombre de questionnaires avec situation de réponse vii

ix = même que vi, avec l'ajout des unités extraites qui ont été imputées ou qui étaient hors du champ de l'enquête;

où vii = même que vii défini plus haut.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation que nous avons tenté de recueillir)

Tous les taux pondérés et non pondérés susmentionnés sont calculés au niveau du groupe industriel, de la région et du groupe de taille, ainsi que pour toute combinaison de ces niveaux.

Utilisation des données administratives

Réduire le fardeau de réponse est un défi à long terme pour Statistique Canada. Afin d’alléger le fardeau de réponse et de réduire les coûts reliés à l’enquête, notamment en ce qui a trait aux petites entreprises, l’EMCD a réduit le nombre d’établissements simples de l’échantillon qui sont enquêtés directement et dérive plutôt les chiffres de vente pour ces établissements à partir des fichiers de la TPS en utilisant un modèle statistique. Le modèle explique les différences entre les ventes et les recettes déclarées aux fins de la TPS, ainsi que le décalage entre la période de référence de l’enquête et celle de la TPS.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

Le tableau 1 contient les fractions de réponses pondérées pour tous les groupes industriels ainsi que pour toutes les provinces et territoires. Pour des fractions de réponses pondérées plus détaillées, veuillez contacter la section du marketing et de la diffusion au (613) 951-3549, sans frais: 1-877-421-3067 or par courriel à retailinfo@statcan.

6.2. Méthodes utilisées pour réduire la non-réponse durant la collecte

Beaucoup d’efforts sont déployés en vue de réduire au minimum la non-réponse durant la collecte. Les méthodes utilisées incluent des techniques d'interview, comme l'utilisation de questions d'approfondissement et des techniques de persuasion, la replanification répétée des appels téléphoniques pour obtenir l'information et la mise en place de procédures indiquant aux intervieweurs comment s'y prendre avec les répondants qui refusent de participer à l'enquête.

Si les données demandées ne sont pas disponibles au moment de la collecte, la meilleure estimation fournie par le répondant est acceptée et est révisée par la suite, quand les données réelles sont disponibles.

Pour réduire au minimum la non-réponse totale pour toutes les variables, des réponses partielles sont acceptées. En outre, les questionnaires sont personnalisés pour la collecte de certaines variables, comme les stocks, de sorte que la collecte ait lieu durant les mois où les données sont disponibles.

Enfin, pour établir un climat de confiance entre les intervieweurs et les répondants, les cas sont généralement affectés au même intervieweur chaque mois. Ce dernier peut ainsi établir une relation personnelle avec le répondant et renforcer sa confiance.

7. Opérations de collecte et de saisie des données

La collecte des données est réalisée par les bureaux régionaux de Statistique Canada.

Tableau 1: Fractions de réponse pondérées par SCIAN et pour les provinces et territoires, octobre 2013 :
Sommaire du tableau
Le tableau montre les résultats de Tableau 1: Fractions de réponse pondérées par SCIAN et pour les provinces et territoires Fractions de réponse pondérées(figurant comme en-tête de colonne).
  Fractions de réponse pondérées
Total Enquêté Administrative
SCIAN - Canada  
Concessionnaires de véhicules et de pièces automobiles 93,2 93,8 66,7
Concessionnaires d'automobiles 95,0 95,3 65,1
Concessionnaires d'automobiles neuves Note 1 96,4 96,4  
Concessionnaires d'automobiles d'occasion 72,4 74,0 65,1
Autres concessionnaires de véhicules automobiles 70,3 71,3 61,1
Magasins de pièces, de pneus et d' accessoires pour véhicules automobiles 86,4 88,9 70,7
Magasins de meubles et d'accessoires de maison 89,6 92,9 60,2
Magasins de meubles 93,7 96,0 55,5
Magasins d'accessoires de maison 82,9 87,1 62,7
Magasin d'appareils électroniques et ménagers 89,1 90,1 53,8
Marchands de matériaux de construction et de matériel et fournitures de jardinage 92,1 93,5 82,3
Magasins d'alimentation 92,2 93,6 76,1
Épiceries 92,9 94,2 79,7
Supermarchés et autres épiceries (sauf les dépanneurs) 95,5 96,6 83,2
Dépanneurs 58,1 59,1 52,2
Magasins d'alimentation spécialisés 68,7 72,0 55,3
Magasins de bière, de vin et de spiritueux 95,5 96,2 69,7
Magasins de produits de santé et de soins personnels 90,5 90,7 88,6
Stations-service 81,9 82,2 77,2
Magasins de vêtements et d'accessoires vestimentaires 89,4 91,0 37,8
Magasins de vêtements 90,3 92,0 30,8
Magasins de chaussures 90,0 90,6 54,6
Bijouteries et magasins de bagages et de maroquinerie 80,6 82,4 56,6
Magasins d'articles de sport, d'articles de passe-temps, d'articles de musique et de livres 86,2 92,8 25,1
Magasins de marchandises diverses 98,3 98,9 35,8
Grands magasins 100,0 100,0  
Autres magasins de marchandises diverses 96,9 97,9 35,8
Magasins de détail divers 78,9 82,4 54,7
Total 91,1 92,3 70,7
Régions  
Terre-Neuve-et-Labrador 92,9 93,6 71,8
Île-du-Prince-Édouard 89,9 90,2 70,2
Nouvelle Écosse 92,5 92,7 87,6
Nouveau-Brunswick 88,4 89,9 64,5
Québec 91,0 92,3 75,2
Ontario 92,8 93,9 72,2
Manitoba 89,0 89,6 61,9
Saskatchewan 91,6 92,6 71,6
Alberta 88,3 89,9 58,1
Colombie-Britannique 90,7 91,8 69,4
Territoire du Yukon 86,1 86,1  
Territoires du Nord-Ouest 85,6 85,6  
Nunavut 72,3 72,3  

Ces derniers envoient un questionnaire aux répondants ou communiquent avec ceux-ci par téléphone afin d'obtenir les valeurs de leurs ventes et de leurs stocks, et de confirmer l'ouverture ou la fermeture des emplacements d'affaires. Ils effectuent aussi un suivi auprès des non-répondants. La collecte des données débute environ sept jours ouvrables après la fin du mois de référence et se poursuit pendant tout le mois en question.

Les entités qui participent à l'enquête pour la première fois reçoivent une lettre d'introduction en vue d’informer le répondant qu'un représentant de Statistique Canada l'appellera. Cet appel a pour but de présenter l'enquête, de confirmer l'activité de l'entreprise, d'établir et de commencer la collecte des données, et de répondre à toutes questions que le répondant pourrait avoir.

8. Vérification

La vérification des données est l'application de contrôles pour déceler les entrées manquantes, invalides ou incohérentes, ou pour repérer les enregistrements de données susceptibles d'être erronés. Durant le processus d'enquête de l'EMCD, les données sont vérifiées à deux moments distincts.

Premièrement, une vérification est faite durant la collecte des données. Après leur collecte par téléphone ou au moyen du questionnaire à renvoyer par la poste, les données sont saisies à l'aide d'applications informatiques personnalisées. Toutes sont soumises à une vérification. Les contrôles réalisés durant la collecte des données, appelés contrôles sur le terrain, comprennent généralement des contrôles de validité et certains contrôles de cohérence simples. Ils servent aussi à déceler les erreurs commises durant l'interview par le répondant ou par l'intervieweur et de repérer l'information manquante à l'étape de la collecte en vue de réduire le besoin d'un suivi ultérieur. Les contrôles sur le terrain ont également pour but d'épurer les réponses. Dans le cas de l'EMCD, les réponses du mois courant sont comparées aux réponses fournies par le répondant le mois précédent et (ou) l'année précédente pour le mois courant. Les contrôles sur le terrain permettent de repérer les problèmes que posent les procédures de collecte des données et la conception des questionnaires, et de déterminer s'il faut offrir une formation supplémentaire aux intervieweurs.

Tout enregistrement de données rejeté lors des contrôles préliminaires fait l'objet d'un suivi auprès du répondant afin de valider les données soupçonnées d'être incorrectes. Une fois validé, les données recueillies sont transmises de façon régulière au Bureau central à Ottawa.

Deuxièmement, après la collecte, les données sont soumises à une vérification statistique dont la nature est plus empirique. On exécute la vérification statistique avant l'imputation, afin de repérer les données qui serviront de base pour l'imputation de valeurs pour les non-répondants. Les valeurs très extrêmes risquant de perturber une tendance mensuelle sont exclues des calculs de tendance lors de la vérification statistique. Il convient de souligner qu'aucun ajustement n'est fait à cette étape pour corriger les valeurs extrêmes déclarées.

La première étape de la vérification statistique consiste à repérer les réponses qui seront soumises aux règles de vérification statistique. Les données déclarées pour le mois de référence courant sont soumises à divers contrôles.

Le premier ensemble de contrôles est fondé sur la méthode d'Hidiroglou-Berthelot qui consiste à examiner le rapport des données du mois courant fournies par un répondant à des données historiques (c.-à-d. dernier mois ou même mois l'année précédente) ou administratives. Si le rapport calculé pour le répondant diffère significativement de ceux obtenus pour des répondants dont les caractéristiques sont comparables en ce qui concerne le groupe industriel et/ou la région géographique, la réponse est considérée comme une valeur extrême.

Le deuxième ensemble de contrôles est basé sur la vérification de la part de marché. Cette méthode, qui s'appuie sur les données du mois courant uniquement, permet de vérifier les données fournies par tous les répondants, mêmes ceux pour lesquels on ne dispose pas de données historiques ou de données auxiliaires. Par conséquent, parmi un groupe de répondants présentant des caractéristiques similaires en ce qui concerne le groupe industriel et (ou) la région géographique, toute valeur dont la contribution pondérée au total du groupe est trop importante sera considérée comme une valeur extrême.

Pour les contrôles fondés sur la méthode d'Hidiroglou-Berthelot, les données jugées extrêmes ne sont pas incluses dans les modèles d'imputation (ceux fondés sur les ratios). En outre, les données considérées comme des valeurs extrêmes lors de la vérification de la part de marché ne sont pas incluses dans les modèles d'imputation où les moyennes et les médianes sont calculées pour imputer des valeurs pour les réponses pour lesquelles il n'existe pas de données historiques.

Conjointement avec les vérifications statistiques effectuées après la collecte de données, on procède à la détection d’erreurs des données extraites des fichiers administratifs. Les données modélisées de la TPS sont également assujetties à une phase de vérification approfondie. Chaque fichier sur lequel les données modélisées sont fondées est vérifié de même que les valeurs modélisées. Les vérifications sont effectuées au niveau agrégé (industrie, géographie) afin de détecter les fichiers qui dévient de la norme (soit en exhibant des différences d’un mois à l’autre trop importantes ou qui diffèrent considérablement des autres unités. Toutes les données qui faillissent ces étapes de contrôle sont sujettes à une vérification manuelle, et si nécessaire, à une action corrective.

9. Imputation

Le processus d’imputation de l'EMCD a pour but de remplacer les données manquantes par des valeurs imputées. Des valeurs sont attribuées aux enregistrements pour lesquels la vérification a révélé des valeurs manquantes afin de s'assurer que les estimations soient de haute qualité et d'établir une cohérence interne plausible. Pour des raisons de fardeau de réponse, de coût et d'actualité des données, il est généralement impossible de réaliser auprès des répondants tous les suivis nécessaires pour résoudre les problèmes de réponses manquantes. Puisqu'il est souhaitable de produire un fichier de microdonnées complet et cohérent, on recourt à l'imputation pour traiter les cas persistants de données manquantes.

Dans le cas de l'EMCD, on peut fonder l'imputation des valeurs manquantes sur des données historiques ou sur des données administratives. Le choix de la méthode appropriée est fondé sur une stratégie qui dépend de l'existence de données historiques ou de données administratives et (ou) du mois de référence en question.

Il existe trois types de méthode d'imputation d'après des données historiques. Le premier est l’application d’une tendance générale qui s'appuie sur une source unique de données historiques (mois précédent, données recueillies pour le mois suivant ou données recueillies pour le même mois l'année précédente). Le deuxième est un modèle de régression dans lequel sont utilisées simultanément les données provenant du mois précédent et celles provenant du même mois l'année précédente. La troisième méthode consiste à remplacer directement les valeurs manquantes par des données historiques.

Selon le mois de référence, il existe, pour le choix de la méthode, un ordre de préférence en vue d'assurer une imputation de haute qualité. Le troisième type de méthode d'imputation historique est toujours la dernière option considérée pour chaque mois de référence.

Les méthodes d'imputation fondées sur des données administratives sont sélectionnées automatiquement lorsqu'on ne dispose pas de données historiques pour un non-répondant. La source de données administratives (ventes annuelles assujetties à la TPS) est le fondement de ces méthodes. Les ventes annuelles assujetties à la TPS sont utilisées pour deux types de méthode. L'une est une tendance générale que l'on utilise pour les structures simples, comme les entreprises ne comptant qu'un seul établissement et l'autre, appelée méthode de la médiane-moyenne, est utilisée pour les unités dont la structure est plus complexe.

10. Estimation

L'estimation est un processus qui consiste à calculer une valeur approximative des paramètres de population inconnus en utilisant uniquement la partie de la population qui est incluse dans un échantillon. Des inférences sont ensuite faites au sujet des paramètres inconnus en utilisant les données d'échantillon et les renseignements connexes sur le plan de sondage. Cette étape fait usage du Système généralisé d'estimation (SGE) de Statistique Canada.

Pour les ventes des détaillants, la population est divisée en une partie observée (strates à tirage complet et à tirage partiel) et une partie non observée (strate à tirage nul). D'après l'échantillon tiré à partir de la partie observée, on calcule une estimation pour la population au moyen d'un estimateur d'Horvitz-Thompson où les réponses concernant les ventes sont pondérées par l'inverse des probabilités d'inclusion des unités échantillonnées. Ces poids (appelés poids d'échantillonnage) peuvent être interprétés comme étant le nombre de fois que chaque unité échantillonnée devrait être répétée pour représenter la population complète. Les valeurs pondérées des ventes ainsi calculées sont totalisées par domaine, pour produire une estimation du total des ventes pour chaque combinaison des groupes industriels/région géographique. Un domaine est défini comme correspondant aux valeurs de classification les plus récentes disponibles dans le RE pour l'unité et la période de référence de l'enquête. Les domaines peuvent différer des strates d'échantillonnage originales, parce que les unités peuvent avoir changé de taille, d'industrie ou d'emplacement. Les changements de classification sont reflétés immédiatement dans les estimations et ne sont pas cumulés au cours du temps. Pour la partie non observée de la population, les ventes sont estimées à l’aide de modèles statistiques exploitant les ventes assujetties à la TPS exprimées sous forme mensuelle.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

La variance est la mesure de précision utilisée dans le cas de l'EMCD pour évaluer la qualité de l'estimation des paramètres de population et pour obtenir des inférences valides. Pour la partie observée de la population, la variance est calculée directement à partir d'un échantillon aléatoire simple stratifié sans remise.

Les estimations d'échantillon peuvent différer de la valeur prévue des estimations. Cependant, puisque l'estimation est fondée sur un échantillon probabiliste, il est possible d'évaluer la variabilité de l'estimation d'échantillon par rapport à la valeur prévue. La variance d'une estimation est une mesure de la précision de l'estimation d'échantillon qui est définie comme étant la moyenne, sur tous les échantillons possibles, de l'écart quadratique de l'estimation par rapport à sa valeur prévue.

11. Révisions et désaisonnalisation

Des révisions des données brutes doivent être effectuées pour corriger les erreurs non dues à l'échantillonnage qui sont décelées. Ceci comporte généralement le remplacement de données imputées par des données déclarées, la correction de données déclarées précédemment, et de procéder à des estimations pour les nouvelles entreprises créées dont on ne connaissait pas l'existence au moment des estimations originales.

Les données brutes sont révisées, sur une base mensuelle, pour le mois précédant immédiatement le mois de référence en cours qui fait l'objet de la publication. C'est donc dire que lorsque les données pour décembre sont publiées pour la première fois, on procédera aussi à des révisions, au besoin, à l'égard des données brutes pour novembre. En outre, des révisions sont aussi effectuées une fois par année, au moment de la première publication des données de février, pour tous les mois de l'année précédente. On vise ainsi à corriger tout problème important que l'on ait décelé et qui s'applique pour une période prolongée. La période de révision proprement dite dépend de la nature du problème décelé, mais elle ne dépasse rarement trois ans.

Les séries temporelles ou chronologiques comportent les éléments essentiels à la description, l'explication et la prévision du comportement d'un phénomène économique. « Ce sont des dossiers statistiques de l'évolution des processus économiques dans le temps1 ». Les séries temporelles socio-économiques comme celles de l’Enquête mensuelle sur le commerce de gros peuvent habituellement être décomposées en cinq composantes principales : la tendance-cycle, la saisonnalité, l’effet des jours ouvrables, l’effet de la fête de Pâques et la composante irrégulière.

La tendance représente l’évolution à long terme de la série, tandis que le cycle représente un mouvement lisse, quasi périodique, autour de la tendance qui met en évidence une succession de phases de croissance et de décroissance (ex. le cycle des affaires). Les deux composantes tendance et cycle sont estimées ensemble et la tendance-cycle reflète l'évolution fondamentale de la série. Les autres composantes traduisent des mouvements passagers à court terme. La composante saisonnière représente des fluctuations infra-annuelles, mensuelles ou trimestrielles, qui se répètent plus ou moins régulièrement d'une année à l'autre. Les variations saisonnières sont le produit des effets directs et indirects des saisons climatiques et d’éléments de type institutionnel (attribuable aux conventions sociales ou aux règles administratives, Noël par exemple).

L’effet des jours ouvrables provient du fait que l'importance relative des jours varie systématiquement à l'intérieur de la semaine et que le nombre de chacun des jours dans un mois donné varie d'une année à l'autre. Cet effet est présent lorsque l’activité change en fonction du jour de la semaine. Par exemple, dimanche connaît typiquement moins d'activité que les autres jours, et le nombre de dimanches, lundis, etc., dans un mois donné change d'année en année.
1 La désaisonnalisation des séries temporelles économiques : quelques remarques; tiré de la Revue statistique du Canada , août 1974
2 Pour plus de renseignements, voir X-12-ARIMA Reference Manual Version 0.3 (2007), U.S. Census Bureau.
3 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

L’effet de la fête de Pâques est la variation due au déplacement d’une partie de l’activité d’avril vers mars quand Pâques tombe en mars plutôt qu’en avril.

Enfin, la composante irrégulière regroupe toutes les autres fluctuations plus ou moins erratiques non prises en compte dans les composantes précédentes. Elle représente un résidu qui incorpore, entre autres, les erreurs de mesure sur la variable elle-même ainsi que des événements inhabituels (ex. grèves, sécheresse, inondations, panne d’électricité majeure ou d'autres variations inattendues dans les activités des répondants).

Ainsi, les composantes saisonnière et irrégulière, l’effet des jours ouvrables et l’effet de la fête de Pâques masquent la composante fondamentale de la série, qui est la tendance-cycle. La désaisonnalisation (correction des variations saisonnières) consiste à retirer de la série la composante saisonnière, l’effet des jours ouvrables et l’effet de la fête de Pâques. Elle contribue donc à révéler la tendance-cycle. Bien que la désaisonnalisation permette de mieux comprendre la tendance-cycle fondamentale d'une série, la série désaisonnalisée n'en contient pas moins une composante irrégulière. De légères variations d'un mois à l'autre dans la série désaisonnalisée peuvent n'être que de simples mouvements irréguliers. Pour avoir une meilleure idée de la tendance fondamentale, les utilisateurs doivent donc examiner les séries désaisonnalisées sur un certain nombre de mois.

Depuis avril 2008, l’Enquête mensuelle sur le commerce de gros utilise le logiciel X-12-ARIMA2 pour la désaisonnalisation. La technique utilisée consiste essentiellement, dans un premier temps, à corriger la série initiale de toute sorte d’effets indésirables, tels l’effet des jours ouvrables et l’effet de Pâques, par un module appelé regARIMA. L’estimation de ces effets se fait grâce à l’utilisation de modèles de régression à erreurs ARIMA (modèles autorégressifs à moyennes mobiles intégrées). On peut également extrapoler la série d'au moins une année à l'aide du modèle. Dans un deuxième temps, la série brute, pré-ajustée et extrapolée s’il y a lieu, est désaisonnalisée par la méthode X-11.

La méthode X-11, qui permet d’analyser des séries mensuelles et trimestrielles, repose sur un principe itératif d’estimation des différentes composantes, cette estimation étant faite à chaque étape grâce à des moyennes mobiles adéquates3. Les moyennes mobiles utilisées pour estimer les principales composantes, la tendance et la saisonnalité, sont avant tout des outils de lissage conçus pour éliminer une composante indésirable de la série. Puisque les moyennes mobiles réagissent mal à la présence de valeurs atypiques, la méthode X-11 incorpore un outil de détection et de correction des points atypiques utilisé pour nettoyer la série au cours de la désaisonnalisation. Les valeurs atypiques peuvent également être détectées et corrigées d’avance, à l’aide du module regARIMA.

Finalement, les données désaisonnalisées sont ajustées aux totaux annuels des données brutes. Malheureusement, la désaisonnalisation supprime l’additivité infra-annuelle d’un système de séries; de légères différences peuvent alors être observées entre la somme de séries désaisonnalisées et la désaisonnalisation directe de leur total. Afin d’assurer ou de rétablir l’additivité d’un système de séries, un processus de réconciliation est appliqué ou une désaisonnalisation indirecte est employée, c.-à-d. la désaisonnalisation d’un total est obtenu en faisant la somme des séries désaisonnalisées individuellement.

1 Pour plus de renseignements, voir X-12-ARIMA Référence Manuel Version 0.3 (2007), U.S. Census Bureau. .
2 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

12. Évaluation de la qualité des données

La méthodologie de l'enquête a pour objectif de contrôler les erreurs et de réduire leurs effets éventuels sur les estimations. Les résultats de l'enquête peuvent néanmoins contenir des erreurs dont l'erreur d'échantillonnage n'est que l'une des composantes. L'erreur d'échantillonnage survient lorsque les observations sont faites uniquement sur un échantillon et non sur l'ensemble de la population. Toutes les autres erreurs commises aux diverses phases de l'enquête sont appelées erreurs non dues à l'échantillonnage. Des erreurs de ce type peuvent survenir, par exemple, quand un répondant fournit des renseignements erronés ou qu'il ne répond pas à certaines questions; quand une unité du champ de l'enquête y est incluse erronément ou que des erreurs sont commises lors du traitement des données, comme des erreurs de codage ou de saisie.

Avant la publication, on analyse les résultats combinés de l'enquête afin d'en évaluer la comparabilité; il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement celles des grandes entreprises), de la conjoncture économique générale et des tendances historiques.

Une mesure habituelle de la qualité des données des enquêtes est le coefficient de variation (CV). Le coefficient de variation, défini comme étant l'erreur-type divisée par l'estimation d'échantillon, est une mesure de la précision relative. Puisque le coefficient de variation est calculé d'après les réponses des unités individuelles, il mesure aussi certaines erreurs non dues à l'échantillonnage.

La formule utilisée pour calculer le coefficient de variation (CV) en pourcentage est :

CV (X) = S(X) * 100%
X
où X représente l'estimation et S(X) représente l'erreur-type de X.

On peut construire les intervalles de confiance autour des estimations en utilisant l'estimation et le CV. Donc, pour notre échantillon, il est possible de déclarer avec un niveau donné de confiance que la valeur prévue sera comprise dans l'intervalle de confiance construit autour de l'estimation. Par exemple, si une estimation de 12 millions de dollars à un CV de 2 %, l'erreur-type sera de 240 000 $ (l'estimation multipliée par le CV). On peut déclarer avec 68 % de confiance que les valeurs prévues seront comprises dans l'intervalle dont la longueur est égale à un écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 760 000 $ et 12 240 000 $. Ou bien, nous pouvons déclarer avec 95 % de confiance que la valeur prévue sera comprise dans l'intervalle dont la longueur est égale à deux écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 520 000 $ et 12 480 000 $.

Enfin, étant donné la faible contribution de la partie non observée de la population aux estimations totales, le biais dans la partie non observée a un effet négligeable sur les CV. Par conséquent, on utilise le CV provenant de la partie observée pour l'estimation totale qui est égale à la somme des estimations pour les parties observée et non observée de la population.

13. Contrôle de la divulgation

La loi interdit à Statistique Canada de rendre publique toute donnée susceptible de révéler l'information recueillie en vertu de la Loi sur la statistique et se rapportant à toute personne, entreprise ou organisation reconnaissable, sans que cette personne, entreprise ou organisation le sache ou y consente par écrit. Diverses règles de confidentialité s'appliquent à toutes les données diffusées ou publiées afin d'empêcher la publication ou la divulgation de toute information jugée confidentielle. Au besoin, des données sont supprimées pour empêcher la divulgation directe ou par recoupement de données reconnaissables.

L'analyse de la confidentialité des données inclut la détection de la « divulgation directe » éventuelle, qui survient lorsque la valeur figurant dans une cellule d'un tableau ne correspond qu'à quelques répondants ou que la cellule est dominée par un petit nombre d'entreprises.

Enquête mensuelle sur le commerce de détail (EMCD) – Énoncé de la qualité des données

Objectifs, utilisation et utilisateurs
Concepts, variables et classifications
Couverture et bases de sondage
Échantillonnage
Conception du questionnaire
Réponse et non réponse
Opérations de collecte et de saisie des données
Vérification
Imputation
Estimation
Révisions et désaisonnalisation
Évaluation de la qualité des données
Contrôle de la divulgation

1. Objectifs, utilisation et utilisateurs

1.1. Objectifs

L’Enquête mensuelle sur le commerce de détail (EMCD) fournit des renseignements sur la performance du secteur du commerce de détail et, quand les données sont combinées à d’autres statistiques, représente un important indicateur de l'état de l’économie canadienne.

1.1. Utilisation

Les estimations fournissent une mesure de la santé et de la performance du secteur du commerce de détail. L'information recueillie est utilisée pour estimer le niveau et la tendance mensuelle des ventes ainsi que le nombre d’emplacements. À la fin de chaque année, les estimations donnent un premier aperçu de la valeur annuelle des ventes au détail et de la performance du secteur.

1.2. Utilisateurs

Divers organismes, associations sectorielles et gouvernements utilisent l'information. Les détaillants utilisent les résultats de l'enquête pour comparer leurs résultats à ceux d'entreprises similaires, ainsi qu'à des fins de marketing. Les associations de détaillants peuvent surveiller la performance de leur industrie et promouvoir les industries du commerce de détail. Les investisseurs peuvent surveiller la croissance de l'industrie, ce qui peut donner aux détaillants un meilleur accès au capital d'investissement. Les données de l'enquête aident les administrations à comprendre le rôle des détaillants dans l'économie, ce qui facilite l'élaboration des politiques et des encouragements fiscaux. Le commerce de détail étant un important secteur de l'économie canadienne, les données permettent aux administrations de déterminer plus exactement la santé globale de l'économie grâce à l'utilisation des estimations dans le calcul du produit intérieur brut (PIB) national.

2. Concepts, variables et classifications

2.1. Concepts

Le secteur du commerce de détail comprend les établissements dont l’activité principale consiste à vendre des marchandises au détail, généralement sans transformation, et à fournir des services connexes.

Le commerce de détail représente le dernier maillon de la chaîne de distribution; les détaillants sont donc organisés pour vendre des marchandises en petites quantités au grand public. Ce secteur comprend deux grands types d’établissements : les détaillants en magasin et les détaillants hors magasin. L’EMCD couvre uniquement les détaillants en magasin. Leurs principales caractéristiques sont décrites ci-après.

Les détaillants en magasin exploitent des points de vente fixes, situés et conçus de manière à attirer un grand nombre de passants. De façon générale, les magasins de détail ont de grands étalages et font de la publicité dans les médias. Ils vendent surtout des biens de consommation qui intéressent les particuliers ou les ménages, mais certains servent aussi les entreprises et une clientèle institutionnelle. Parmi ces établissements, on compte les magasins de fournitures de bureau, les magasins d’ordinateurs et de logiciels, les stations-service, les vendeurs de matériaux de construction, les magasins de fournitures de plomberie et de fournitures électriques.

En plus de vendre des marchandises, certains types de détaillants fournissent des services après-vente, comme des services de réparation et d’installation. Ainsi, les concessionnaires d’automobiles neuves, les magasins d’électronique et d’appareils ménagers, et les magasins d’instruments et de fournitures de musique assurent fréquemment un service de réparation, alors que les magasins de revêtements de sol et les magasins de garnitures de fenêtres fournissent souvent des services d’installation. En règle générale, les établissements qui vendent des marchandises au détail et qui ont un service après-vente sont classés dans ce secteur.

Les salles d’exposition des sociétés de vente sur catalogue, les stations-service et les marchands de maisons mobiles sont assimilés à des détaillants en magasin.

2.2. Variables

Les ventes sont définies comme étant les ventes de toutes les marchandises achetées pour la revente, nettes des rendus et des escomptes. Sont inclus les honoraires et les commissions résultant de la vente de biens et de services pour le compte de tiers, comme la vente de billets de loterie, de billets d’autobus et de cartes de téléphone. Sont également inclus les recettes provenant des pièces et de la main-d’oeuvre utilisées pour les services d'entretien et de réparation, les revenus de location et de location à bail de biens et de matériel, les revenus provenant de services, y compris les services de restauration, les ventes de biens fabriqués en tant qu’activité secondaire et la valeur des marchandises prélevées par le propriétaire pour son usage personnel. Sont exclus les autres revenus de location de biens immobiliers, les frais de placement, les subventions d’exploitation et autres, les redevances et les droits de franchise.

L’emplacement d’affaires comprend le ou les emplacements physiques où a lieu l’activité commerciale dans chaque province et territoire et dont les ventes sont créditées ou comptabilisées dans les états financiers de l’entreprise. Pour les détaillants, il s’agit normalement d’un magasin.

Dollars constants : La valeur du commerce de détail est mesurée de deux façons : par la prise en compte des effets de la variation des prix sur la valeur des ventes et par l’élimination des effets de la variation des prix. La première mesure est la valeur des ventes au détail en dollars courants et la seconde, la valeur des ventes au détail en dollars constants. Pour calculer l’estimation en dollars courants, on agrège la valeur des ventes pondérées de tous les points de vente au détail. Pour calculer l’estimation en dollars constants, il faut d’abord rajuster la valeur des ventes par rapport à une année de base en utilisant l’Indice des prix à la consommation, puis additionner les valeurs résultantes.

2.3. Classification

L’Enquête mensuelle sur le commerce de détail est fondée sur la définition du commerce de détail adoptée dans le SCIAN (Système de classification des industries de l’Amérique du Nord). Le SCIAN est le cadre commun reconnu pour la production de statistiques comparables par les organismes statistiques du Canada, du Mexique et des États-Unis. L’accord définit les limites de 20 secteurs. Le SCIAN est fondé sur un cadre conceptuel axé sur la production, ou l’offre, en ce sens que les établissements sont regroupés en classes ou branches d’activité d’après la similarité des processus utilisés pour produire les biens et les services.

Les estimations sont calculées pour 21 groupes fondés sur des agrégations spéciales du Système de classification des industries de l’Amérique du Nord (SCIAN) de 2012. Les 21 groupes sont en outre agrégés en onze sous-secteurs.

Du point de vue géographique, les estimations des ventes sont produites pour le Canada et pour chaque province et territoire.

3. Couverture et bases de sondage

La base de sondage de l'Enquête mensuelle sur le commerce de détail (EMCD) est le Registre des entreprises (RE) de Statistique Canada. Ce dernier est une liste structurée d'entreprises productrices de biens et de services au Canada. Cette base de données tenue à jour centralement contient des renseignements détaillés sur la plupart des entités commerciales exploitées au Canada. Le RE couvre toutes les entreprises constituées en société, avec ou sans employés. Pour les entreprises non constituées en société, le RE comprend toutes les entreprises ayant des employés, ainsi que les entreprises sans employés ayant des ventes annualisées provenant d'un compte de la taxe sur les produits et services (TPS) ou un revenu annuel provenant de la déclaration d'impôt individuelle.

Dans le RE, les entreprises sont représentées selon une structure hiérarchique à quatre niveaux ayant pour sommet l'entreprise statistique suivie, par ordre décroissant, par la compagnie statistique, l'établissement statistique et l'emplacement statistique. Une entreprise peut être reliée à une ou à plusieurs compagnies statistiques, une compagnie statistique à un ou à plusieurs établissements statistiques et un établissement statistique à un ou à plusieurs emplacements statistiques.

La population cible de l'EMCD comprend tous les établissements statistiques figurant dans le RE, excluant les entreprises non constituées en société n'ayant pas d'employés dont les ventes annuelles sont inférieures à 30 000 $, qui sont classés dans le secteur du commerce de détail d'après le Système de classification des industries de l'Amérique du Nord (SCIAN) (environ 200 000 établissements). La fourchette de codes du SCIAN pour le secteur du commerce de détail varie de 441100 à 453999. Un établissement statistique est l'entité de production ou le plus petit groupe d'entités de production qui produit un ensemble de biens ou de services homogènes, dont les activités ne débordent pas les frontières provinciales/territoriales, et qui est en mesure de fournir des données sur la valeur de la production, ainsi que sur le coût des matières utilisées et le coût et l'importance de la main-d'oeuvre affectée à la production. L'entité de production est l'unité physique où se déroulent les activités de l'entreprise. Elle doit avoir une adresse de voirie et une main-d'oeuvre directement affectée au processus de production.
Sont exclus de la population cible les établissements auxiliaires (producteurs de services de soutien de l'activité de production de biens et services destinés au marché de plus d'un établissement au sein de l'entreprise, et qui sont considérés comme un centre de coûts ou un centre de dépenses discrétionnaires pour lequel les données sur tous les coûts, y compris la main-d'oeuvre et l'amortissement, peuvent être déclarées par l'entreprise), les futurs établissements, les établissements pour lesquels les signaux économiques indiquent un revenu manquant ou nul, et les établissements appartenant aux catégories du SCIAN non couvertes qui suivent :

  • 4541 (entreprises de télémagasinage et de vente par correspondance)
  • 4542 (exploitants de distributeurs automatiques)
  • 45431 (marchands de combustible)
  • 45439 (autres établissements de vente directe)

4. Échantillonnage

L'échantillon de l'EMCD est formé de 10 000 groupes d'établissements (grappes) classés dans le secteur du commerce de détail et sélectionnés à partir du Registre des entreprises de Statistique Canada. Par définition, une grappe d'établissements comprend tous les établissements appartenant à une entreprise statistique qui font partie d'un même groupe industriel et d'une même région géographique. L’EMCD est fondée sur un plan d'échantillonnage stratifié avec sélection d'un échantillon aléatoire simple dans chaque strate. La stratification est faite selon des groupes industriels (majoritairement mais non exclusivement des SCIAN à quatre chiffres) et selon la région géographique, c'est-à-dire selon la province ou le territoire. Ensuite, la population est stratifiée selon la taille de l'établissement. La mesure de taille est créée en combinant des données provenant d'enquêtes indépendantes et trois variables administratives, à savoir le revenu annuel profilé, les ventes assujetties à la TPS exprimées sur une base annuelle et le revenu de la déclaration d’impôt (T1 ou T2).

Les strates de taille comptent une strate à tirage complet (recensement), au moins deux strates à tirage partiel (échantillonnées partiellement) et une strate à tirage nul (non échantillonnée). La strate à tirage nul est destinée à réduire le fardeau de réponse en excluant les entreprises les plus petites de la population observée. Ces entreprises représentent, en principe, au plus 10 % du total des ventes. Au lieu d'envoyer un questionnaire à ces entreprises, on produit les estimations d'après des données administratives.

L'échantillon est réparti de façon optimale afin d'atteindre les coefficients de variation cibles au niveau du Canada dans son ensemble, de la province ou du territoire, de l’industrie et des groupes industriels selon la province ou le territoire. On procède aussi à un suréchantillonnage pour tenir compte des unités disparues, non répondantes ou classées incorrectement.

L'EMCD est une enquête répétée avec maximisation du chevauchement des échantillons mensuels. On retient l'échantillon d’un mois à l’autre et, chaque mois, on y ajoute de nouvelles unités (naissances). Pour découvrir les nouvelles unités visées par l'EMCD, c'est-à-dire les nouvelles grappes d'établissement(s), on examine chaque mois l'univers le plus récent du RE. On stratifie ces nouvelles unités conformément aux mêmes critères que ceux appliqués à la population initiale, puis on les échantillonne conformément à la fraction d'échantillonnage de la strate à laquelle elles appartiennent et on les ajoute à l'échantillon mensuel. Des disparitions d'entité surviennent également chaque mois. Une entité disparue peut être une grappe d'établissements qui ont cessé leurs activités (fermeture) ou dont les activités principales ne se rattachent plus au commerce de détail (hors du champ). La situation de ces entreprises est mise à jour dans le RE d'après des renseignements de source administrative et les commentaires reçus lors des enquêtes, y compris ceux des entreprises prenant part à l'EMCD. Les méthodes suivies pour traiter les unités disparues et les unités classées incorrectement font partie des procédures d'échantillonnage et de mise à jour de la population.

5. Conception du questionnaire

L’Enquête mensuelle sur le commerce de détail englobe les sous-enquêtes suivantes :

Enquête mensuelle sur le commerce de détail – R8

Enquête mensuelle sur le commerce de détail (avec les stocks) – R8

Enquête sur les ventes et stocks de boissons alcooliques

Le questionnaire est conçu pour recueillir mensuellement auprès d'un échantillon de détaillants des données sur les ventes au détail, sur le nombre d'emplacements commerciaux par province ou territoire et sur les stocks de biens possédés et destinés à la revente. Lors du remaniement de 2004, la plupart des questionnaires n'ont subit que des changements de présentation. Le questionnaire sur les ventes et les stocks de boissons alcooliques a subi des modifications plus importantes. Les modifications ont été discutées avec les intervenants et les répondants ont eu l'occasion de faire des commentaires avant que le nouveau questionnaire ne soit finalisé. Si d'autres modifications devaient être apportées à l'un des questionnaires, les changements proposés seraient soumis à un comité d'examen et ferait l'objet d'un essai sur le terrain auprès de répondants et d'utilisateurs de données pour s'assurer de leur pertinence.

6. Réponse et non réponse

6.1. Réponse et non-réponse

Bien que les gestionnaires d'enquête et les employés des opérations fassent tout leur possible pour maximiser la réponse à l'EMCD, un certain degré de non-réponse a lieu. Pour qu'un établissement statistique soit considéré comme répondant, il faut que le degré de réponse partielle (situation où une réponse exacte n'est obtenue que pour certaines questions posées au répondant) atteigne un seuil minimal au-dessous duquel la déclaration fournie par l'établissement serait rejetée et l'établissement, considéré comme une unité non répondante. Le cas échéant, on considère que l'entreprise n'a pas répondu du tout.

La non-réponse a deux effets sur les données : premièrement, elle introduit un biais dans les estimations si les non-répondants diffèrent des répondants en ce qui concerne les caractéristiques mesurées et, deuxièmement, elle fait augmenter la variance d'échantillonnage des estimations, parce que la taille effective de l'échantillon est réduite comparativement à celle considérée au départ.

L'ampleur des efforts déployés pour obtenir une réponse auprès d'un non-répondant dépend des contraintes budgétaires et de temps, de l'effet de la non-réponse sur la qualité globale et du risque de biais dû à la non-réponse.

La méthode principalement utilisée pour réduire l'effet de la non-réponse à l'étape de l'échantillonnage consiste à augmenter la taille de l'échantillon en appliquant un taux de suréchantillonnage déterminé d'après les résultats d'enquêtes similaires.

Les cas de non-réponse qui surviennent malgré les méthodes appliquées aux étapes de l'échantillonnage et de la collecte pour réduire l'effet de la non-réponse sont traités par imputation.

Afin de déterminer l'importance de la non-réponse qui a lieu chaque mois, on calcule divers taux de réponse. Pour un mois de référence donné, on produit les estimations au moins deux fois (estimations provisoires et estimations révisées). Entre les deux exécutions, certaines données fournies par les répondants peuvent être jugées inutilisables et des valeurs imputées peuvent être corrigées au moyen de données fournies par les répondants. Par conséquent, les taux de réponse sont calculés après chaque exécution du processus d'estimation.

Pour l'EMCD, deux types de taux sont calculés (non pondérés et pondérés). Afin d'évaluer l'efficacité du processus de collecte, on calcule les taux de réponse non pondérés. Les taux pondérés, fondés sur le poids d'estimation et la valeur de la variable d'intérêt, évaluent la qualité de l'estimation. À l'intérieur de chacun de ces types de taux, il existe des taux distincts pour les unités faisant partie de l'échantillon et pour les unités qui sont uniquement modélisées à partir de données administratives qui ont été extraites des fichiers de TPS.

Afin d’obtenir une meilleure idée du succès du processus de collecte de données, on calcule deux taux non pondérés appelés « taux de résultat de la collecte » et « taux de résultat de l'extraction ». On calcule ces taux en divisant le nombre de répondants par le nombre d'unités avec lesquelles on a essayé de prendre contact ou pour lesquelles on a essayé de recevoir des données extraites. Les déclarants non mensuels (répondants bénéficiant de modalités de déclaration spéciales leur permettant de ne pas produire de déclaration chaque mois, mais pour lesquels des données réelles sont disponibles lors des révisions subséquentes) sont exclus du numérateur ainsi que du dénominateur pour les mois où aucun contact n'est pris avec eux. Brièvement, les divers taux de réponse se calculent comme suit :

Taux pondérés :

Taux de réponse des unités faisant partie de l'échantillon (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i / Somme des ventes pondérées des unités faisant partie de l'échantillon

i = unités pour lesquelles il existe des données déclarées qui seront utilisées dans l'estimation ou qui sont des refus convertis, ou pour lesquelles il existe des données déclarées qui n'ont pas encore été évaluées pour l'estimation.

Taux de réponse des unités modélisées à partir de données administratives (estimation) = Somme des ventes pondérées des unités avec situation de réponse ii / Somme des ventes pondérées des unités modélisées à partir de données administratives

ii = unités pour lesquelles il existe des données extraites des fichiers administratifs et qui sont utilisables pour l'estimation.

Taux de réponse total (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i ou situation de réponse ii / Somme de toutes les ventes pondérées

Taux non pondérés :

Taux de réponse des unités faisant partie de l'échantillon (collecte) =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse iv

iii = unités pour lesquelles il existe des données déclarées (dont le cas n'est pas résolu, utilisées ou non utilisées pour l'estimation) ou qui sont des refus convertis;

iv = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de répondre, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

Taux de réponse des unités modélisées à partir de données administratives (extraction) =
Nombre de questionnaires avec situation de réponse vi / Nombre de questionnaires avec situation de réponse vii

vi = unités dans le champ d'observation pour lesquelles il existe des données (utilisables ou non utilisables) extraites des fichiers administratifs;

vii = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de déclarer la source de données administratives, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation)

Taux de résultat de la collecte =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse viii

iii = même que iii défini plus haut;

viii = même que iv, à part l'exclusion des unités avec lesquelles on a pris contact, parce que leur réponse n'est pas disponible pour un mois particulier, puisqu'il s'agit de déclarants non mensuels.

Taux de résultat de l'extraction =
Nombre de questionnaires avec situation de réponse ix / Nombre de questionnaires avec situation de réponse vii

ix = même que vi, avec l'ajout des unités extraites qui ont été imputées ou qui étaient hors du champ de l'enquête;

où vii = même que vii défini plus haut.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation que nous avons tenté de recueillir)

Tous les taux pondérés et non pondérés susmentionnés sont calculés au niveau du groupe industriel, de la région et du groupe de taille, ainsi que pour toute combinaison de ces niveaux.

Utilisation des données administratives

Réduire le fardeau de réponse est un défi à long terme pour Statistique Canada. Afin d’alléger le fardeau de réponse et de réduire les coûts reliés à l’enquête, notamment en ce qui a trait aux petites entreprises, l’EMCD a réduit le nombre d’établissements simples de l’échantillon qui sont enquêtés directement et dérive plutôt les chiffres de vente pour ces établissements à partir des fichiers de la TPS en utilisant un modèle statistique. Le modèle explique les différences entre les ventes et les recettes déclarées aux fins de la TPS, ainsi que le décalage entre la période de référence de l’enquête et celle de la TPS.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

Le tableau 1 contient les fractions de réponses pondérées pour tous les groupes industriels ainsi que pour toutes les provinces et territoires. Pour des fractions de réponses pondérées plus détaillées, veuillez contacter la section du marketing et de la diffusion au (613) 951-3549, sans frais: 1-877-421-3067 or par courriel à retailinfo@statcan.

6.2. Méthodes utilisées pour réduire la non-réponse durant la collecte

Beaucoup d’efforts sont déployés en vue de réduire au minimum la non-réponse durant la collecte. Les méthodes utilisées incluent des techniques d'interview, comme l'utilisation de questions d'approfondissement et des techniques de persuasion, la replanification répétée des appels téléphoniques pour obtenir l'information et la mise en place de procédures indiquant aux intervieweurs comment s'y prendre avec les répondants qui refusent de participer à l'enquête.

Si les données demandées ne sont pas disponibles au moment de la collecte, la meilleure estimation fournie par le répondant est acceptée et est révisée par la suite, quand les données réelles sont disponibles.

Pour réduire au minimum la non-réponse totale pour toutes les variables, des réponses partielles sont acceptées. En outre, les questionnaires sont personnalisés pour la collecte de certaines variables, comme les stocks, de sorte que la collecte ait lieu durant les mois où les données sont disponibles.

Enfin, pour établir un climat de confiance entre les intervieweurs et les répondants, les cas sont généralement affectés au même intervieweur chaque mois. Ce dernier peut ainsi établir une relation personnelle avec le répondant et renforcer sa confiance.

7. Opérations de collecte et de saisie des données

La collecte des données est réalisée par les bureaux régionaux de Statistique Canada.

Tableau 1: Fractions de réponse pondérées par SCIAN et pour les provinces et territoires, septembre 2013
Sommaire du tableau
Le tableau montre les résultats de tableau 1: fractions de réponse pondérées par scian et pour les provinces et territoires fractions de réponse pondérées, calculées selon total, enquêté et administrative unités de mesure (figurant comme en-tête de colonne).
  Fractions de réponse pondérées
Total Enquêté Administrative
SCIAN - Canada
Concessionnaires de véhicules et de pièces automobiles 93,5 94,2 61,4
Concessionnaires d'automobiles 95,7 96,0 59,7
Concessionnaires d'automobiles neuvesNote 1 96,8 96,8  
Concessionnaires d'automobiles d'occasion 76,9 80,0 59,7
Autres concessionnaires de véhicules automobiles 72,7 71,2 82,0
Magasins de pièces, de pneus et d' accessoires pour véhicules automobiles 79,9 85,6 42,2
Magasins de meubles et d'accessoires de maison 88,9 94,1 40,8
Magasins de meubles 95,1 97,0 58,3
Magasins d'accessoires de maison 78,0 88,2 32,5
Magasin d'appareils électroniques et ménagers 90,4 90,9 73,9
Marchands de matériaux de construction et de matériel et fournitures de jardinage 83,1 85,7 62,6
Magasins d'alimentation 92,0 94,0 66,2
Épiceries 93,7 95,2 76,4
Supermarchés et autres épiceries (sauf les dépanneurs) 95,2 96,1 84,6
Dépanneurs 74,4 83,0 24,5
Magasins d'alimentation spécialisés 63,8 72,3 28,6
Magasins de bière, de vin et de spiritueux 92,1 94,2 18,8
Magasins de produits de santé et de soins personnels 90,9 92,0 74,5
Stations-service 84,4 85,5 66,8
Magasins de vêtements et d'accessoires vestimentaires 90,5 91,9 40,9
Magasins de vêtements 91,9 93,4 36,6
Magasins de chaussures 89,7 91,0 13,1
Bijouteries et magasins de bagages et de maroquinerie 80,2 80,8 69,0
Magasins d'articles de sport, d'articles de passe-temps, d'articles de musique et de livres 88,4 93,0 42,7
Magasins de marchandises diverses 98,6 98,8 84,2
Grands magasins 100,0 100,0  
Autres magasins de marchandises diverses 97,5 97,7 84,2
Magasins de détail divers 84,9 89,1 42,6
Total 91,1 92,7 62,2
Régions
Terre-Neuve-et-Labrador 89,7 90,4 65,9
Île-du-Prince-Édouard 87,0 88,0 21,3
Nouvelle Écosse 91,4 92,5 59,6
Nouveau-Brunswick 85,3 87,2 56,8
Québec 89,7 91,6 64,0
Ontario 93,5 95,0 62,1
Manitoba 89,5 89,7 79,2
Saskatchewan 91,1 93,0 52,7
Alberta 89,3 90,7 62,6
Colombie-Britannique 91,3 92,9 60,0
Territoire du Yukon 82,7 82,7  
Territoires du Nord-Ouest 84,8 84,8  
Nunavut 73,1 73,1  

Ces derniers envoient un questionnaire aux répondants ou communiquent avec ceux-ci par téléphone afin d'obtenir les valeurs de leurs ventes et de leurs stocks, et de confirmer l'ouverture ou la fermeture des emplacements d'affaires. Ils effectuent aussi un suivi auprès des non-répondants. La collecte des données débute environ sept jours ouvrables après la fin du mois de référence et se poursuit pendant tout le mois en question.

Les entités qui participent à l'enquête pour la première fois reçoivent une lettre d'introduction en vue d’informer le répondant qu'un représentant de Statistique Canada l'appellera. Cet appel a pour but de présenter l'enquête, de confirmer l'activité de l'entreprise, d'établir et de commencer la collecte des données, et de répondre à toutes questions que le répondant pourrait avoir.

8. Vérification

La vérification des données est l'application de contrôles pour déceler les entrées manquantes, invalides ou incohérentes, ou pour repérer les enregistrements de données susceptibles d'être erronés. Durant le processus d'enquête de l'EMCD, les données sont vérifiées à deux moments distincts.

Premièrement, une vérification est faite durant la collecte des données. Après leur collecte par téléphone ou au moyen du questionnaire à renvoyer par la poste, les données sont saisies à l'aide d'applications informatiques personnalisées. Toutes sont soumises à une vérification. Les contrôles réalisés durant la collecte des données, appelés contrôles sur le terrain, comprennent généralement des contrôles de validité et certains contrôles de cohérence simples. Ils servent aussi à déceler les erreurs commises durant l'interview par le répondant ou par l'intervieweur et de repérer l'information manquante à l'étape de la collecte en vue de réduire le besoin d'un suivi ultérieur. Les contrôles sur le terrain ont également pour but d'épurer les réponses. Dans le cas de l'EMCD, les réponses du mois courant sont comparées aux réponses fournies par le répondant le mois précédent et (ou) l'année précédente pour le mois courant. Les contrôles sur le terrain permettent de repérer les problèmes que posent les procédures de collecte des données et la conception des questionnaires, et de déterminer s'il faut offrir une formation supplémentaire aux intervieweurs.

Tout enregistrement de données rejeté lors des contrôles préliminaires fait l'objet d'un suivi auprès du répondant afin de valider les données soupçonnées d'être incorrectes. Une fois validé, les données recueillies sont transmises de façon régulière au Bureau central à Ottawa.

Deuxièmement, après la collecte, les données sont soumises à une vérification statistique dont la nature est plus empirique. On exécute la vérification statistique avant l'imputation, afin de repérer les données qui serviront de base pour l'imputation de valeurs pour les non-répondants. Les valeurs très extrêmes risquant de perturber une tendance mensuelle sont exclues des calculs de tendance lors de la vérification statistique. Il convient de souligner qu'aucun ajustement n'est fait à cette étape pour corriger les valeurs extrêmes déclarées.

La première étape de la vérification statistique consiste à repérer les réponses qui seront soumises aux règles de vérification statistique. Les données déclarées pour le mois de référence courant sont soumises à divers contrôles.

Le premier ensemble de contrôles est fondé sur la méthode d'Hidiroglou-Berthelot qui consiste à examiner le rapport des données du mois courant fournies par un répondant à des données historiques (c.-à-d. dernier mois ou même mois l'année précédente) ou administratives. Si le rapport calculé pour le répondant diffère significativement de ceux obtenus pour des répondants dont les caractéristiques sont comparables en ce qui concerne le groupe industriel et/ou la région géographique, la réponse est considérée comme une valeur extrême.

Le deuxième ensemble de contrôles est basé sur la vérification de la part de marché. Cette méthode, qui s'appuie sur les données du mois courant uniquement, permet de vérifier les données fournies par tous les répondants, mêmes ceux pour lesquels on ne dispose pas de données historiques ou de données auxiliaires. Par conséquent, parmi un groupe de répondants présentant des caractéristiques similaires en ce qui concerne le groupe industriel et (ou) la région géographique, toute valeur dont la contribution pondérée au total du groupe est trop importante sera considérée comme une valeur extrême.

Pour les contrôles fondés sur la méthode d'Hidiroglou-Berthelot, les données jugées extrêmes ne sont pas incluses dans les modèles d'imputation (ceux fondés sur les ratios). En outre, les données considérées comme des valeurs extrêmes lors de la vérification de la part de marché ne sont pas incluses dans les modèles d'imputation où les moyennes et les médianes sont calculées pour imputer des valeurs pour les réponses pour lesquelles il n'existe pas de données historiques.

Conjointement avec les vérifications statistiques effectuées après la collecte de données, on procède à la détection d’erreurs des données extraites des fichiers administratifs. Les données modélisées de la TPS sont également assujetties à une phase de vérification approfondie. Chaque fichier sur lequel les données modélisées sont fondées est vérifié de même que les valeurs modélisées. Les vérifications sont effectuées au niveau agrégé (industrie, géographie) afin de détecter les fichiers qui dévient de la norme (soit en exhibant des différences d’un mois à l’autre trop importantes ou qui diffèrent considérablement des autres unités. Toutes les données qui faillissent ces étapes de contrôle sont sujettes à une vérification manuelle, et si nécessaire, à une action corrective.

9. Imputation

Le processus d’imputation de l'EMCD a pour but de remplacer les données manquantes par des valeurs imputées. Des valeurs sont attribuées aux enregistrements pour lesquels la vérification a révélé des valeurs manquantes afin de s'assurer que les estimations soient de haute qualité et d'établir une cohérence interne plausible. Pour des raisons de fardeau de réponse, de coût et d'actualité des données, il est généralement impossible de réaliser auprès des répondants tous les suivis nécessaires pour résoudre les problèmes de réponses manquantes. Puisqu'il est souhaitable de produire un fichier de microdonnées complet et cohérent, on recourt à l'imputation pour traiter les cas persistants de données manquantes.

Dans le cas de l'EMCD, on peut fonder l'imputation des valeurs manquantes sur des données historiques ou sur des données administratives. Le choix de la méthode appropriée est fondé sur une stratégie qui dépend de l'existence de données historiques ou de données administratives et (ou) du mois de référence en question.

Il existe trois types de méthode d'imputation d'après des données historiques. Le premier est l’application d’une tendance générale qui s'appuie sur une source unique de données historiques (mois précédent, données recueillies pour le mois suivant ou données recueillies pour le même mois l'année précédente). Le deuxième est un modèle de régression dans lequel sont utilisées simultanément les données provenant du mois précédent et celles provenant du même mois l'année précédente. La troisième méthode consiste à remplacer directement les valeurs manquantes par des données historiques.

Selon le mois de référence, il existe, pour le choix de la méthode, un ordre de préférence en vue d'assurer une imputation de haute qualité. Le troisième type de méthode d'imputation historique est toujours la dernière option considérée pour chaque mois de référence.

Les méthodes d'imputation fondées sur des données administratives sont sélectionnées automatiquement lorsqu'on ne dispose pas de données historiques pour un non-répondant. La source de données administratives (ventes annuelles assujetties à la TPS) est le fondement de ces méthodes. Les ventes annuelles assujetties à la TPS sont utilisées pour deux types de méthode. L'une est une tendance générale que l'on utilise pour les structures simples, comme les entreprises ne comptant qu'un seul établissement et l'autre, appelée méthode de la médiane-moyenne, est utilisée pour les unités dont la structure est plus complexe.

10. Estimation

L'estimation est un processus qui consiste à calculer une valeur approximative des paramètres de population inconnus en utilisant uniquement la partie de la population qui est incluse dans un échantillon. Des inférences sont ensuite faites au sujet des paramètres inconnus en utilisant les données d'échantillon et les renseignements connexes sur le plan de sondage. Cette étape fait usage du Système généralisé d'estimation (SGE) de Statistique Canada.

Pour les ventes des détaillants, la population est divisée en une partie observée (strates à tirage complet et à tirage partiel) et une partie non observée (strate à tirage nul). D'après l'échantillon tiré à partir de la partie observée, on calcule une estimation pour la population au moyen d'un estimateur d'Horvitz-Thompson où les réponses concernant les ventes sont pondérées par l'inverse des probabilités d'inclusion des unités échantillonnées. Ces poids (appelés poids d'échantillonnage) peuvent être interprétés comme étant le nombre de fois que chaque unité échantillonnée devrait être répétée pour représenter la population complète. Les valeurs pondérées des ventes ainsi calculées sont totalisées par domaine, pour produire une estimation du total des ventes pour chaque combinaison des groupes industriels/région géographique. Un domaine est défini comme correspondant aux valeurs de classification les plus récentes disponibles dans le RE pour l'unité et la période de référence de l'enquête. Les domaines peuvent différer des strates d'échantillonnage originales, parce que les unités peuvent avoir changé de taille, d'industrie ou d'emplacement. Les changements de classification sont reflétés immédiatement dans les estimations et ne sont pas cumulés au cours du temps. Pour la partie non observée de la population, les ventes sont estimées à l’aide de modèles statistiques exploitant les ventes assujetties à la TPS exprimées sous forme mensuelle.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

La variance est la mesure de précision utilisée dans le cas de l'EMCD pour évaluer la qualité de l'estimation des paramètres de population et pour obtenir des inférences valides. Pour la partie observée de la population, la variance est calculée directement à partir d'un échantillon aléatoire simple stratifié sans remise.

Les estimations d'échantillon peuvent différer de la valeur prévue des estimations. Cependant, puisque l'estimation est fondée sur un échantillon probabiliste, il est possible d'évaluer la variabilité de l'estimation d'échantillon par rapport à la valeur prévue. La variance d'une estimation est une mesure de la précision de l'estimation d'échantillon qui est définie comme étant la moyenne, sur tous les échantillons possibles, de l'écart quadratique de l'estimation par rapport à sa valeur prévue.

11. Révisions et désaisonnalisation

Des révisions des données brutes doivent être effectuées pour corriger les erreurs non dues à l'échantillonnage qui sont décelées. Ceci comporte généralement le remplacement de données imputées par des données déclarées, la correction de données déclarées précédemment, et de procéder à des estimations pour les nouvelles entreprises créées dont on ne connaissait pas l'existence au moment des estimations originales.

Les données brutes sont révisées, sur une base mensuelle, pour le mois précédant immédiatement le mois de référence en cours qui fait l'objet de la publication. C'est donc dire que lorsque les données pour décembre sont publiées pour la première fois, on procédera aussi à des révisions, au besoin, à l'égard des données brutes pour novembre. En outre, des révisions sont aussi effectuées une fois par année, au moment de la première publication des données de février, pour tous les mois de l'année précédente. On vise ainsi à corriger tout problème important que l'on ait décelé et qui s'applique pour une période prolongée. La période de révision proprement dite dépend de la nature du problème décelé, mais elle ne dépasse rarement trois ans.

Les séries temporelles ou chronologiques comportent les éléments essentiels à la description, l'explication et la prévision du comportement d'un phénomène économique. « Ce sont des dossiers statistiques de l'évolution des processus économiques dans le temps1 ». Les séries temporelles socio-économiques comme celles de l’Enquête mensuelle sur le commerce de gros peuvent habituellement être décomposées en cinq composantes principales : la tendance-cycle, la saisonnalité, l’effet des jours ouvrables, l’effet de la fête de Pâques et la composante irrégulière.

La tendance représente l’évolution à long terme de la série, tandis que le cycle représente un mouvement lisse, quasi périodique, autour de la tendance qui met en évidence une succession de phases de croissance et de décroissance (ex. le cycle des affaires). Les deux composantes tendance et cycle sont estimées ensemble et la tendance-cycle reflète l'évolution fondamentale de la série. Les autres composantes traduisent des mouvements passagers à court terme. La composante saisonnière représente des fluctuations infra-annuelles, mensuelles ou trimestrielles, qui se répètent plus ou moins régulièrement d'une année à l'autre. Les variations saisonnières sont le produit des effets directs et indirects des saisons climatiques et d’éléments de type institutionnel (attribuable aux conventions sociales ou aux règles administratives, Noël par exemple).

L’effet des jours ouvrables provient du fait que l'importance relative des jours varie systématiquement à l'intérieur de la semaine et que le nombre de chacun des jours dans un mois donné varie d'une année à l'autre. Cet effet est présent lorsque l’activité change en fonction du jour de la semaine. Par exemple, dimanche connaît typiquement moins d'activité que les autres jours, et le nombre de dimanches, lundis, etc., dans un mois donné change d'année en année.
1 La désaisonnalisation des séries temporelles économiques : quelques remarques; tiré de la Revue statistique du Canada , août 1974
2 Pour plus de renseignements, voir X-12-ARIMA Reference Manual Version 0.3 (2007), U.S. Census Bureau.
3 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

L’effet de la fête de Pâques est la variation due au déplacement d’une partie de l’activité d’avril vers mars quand Pâques tombe en mars plutôt qu’en avril.

Enfin, la composante irrégulière regroupe toutes les autres fluctuations plus ou moins erratiques non prises en compte dans les composantes précédentes. Elle représente un résidu qui incorpore, entre autres, les erreurs de mesure sur la variable elle-même ainsi que des événements inhabituels (ex. grèves, sécheresse, inondations, panne d’électricité majeure ou d'autres variations inattendues dans les activités des répondants).

Ainsi, les composantes saisonnière et irrégulière, l’effet des jours ouvrables et l’effet de la fête de Pâques masquent la composante fondamentale de la série, qui est la tendance-cycle. La désaisonnalisation (correction des variations saisonnières) consiste à retirer de la série la composante saisonnière, l’effet des jours ouvrables et l’effet de la fête de Pâques. Elle contribue donc à révéler la tendance-cycle. Bien que la désaisonnalisation permette de mieux comprendre la tendance-cycle fondamentale d'une série, la série désaisonnalisée n'en contient pas moins une composante irrégulière. De légères variations d'un mois à l'autre dans la série désaisonnalisée peuvent n'être que de simples mouvements irréguliers. Pour avoir une meilleure idée de la tendance fondamentale, les utilisateurs doivent donc examiner les séries désaisonnalisées sur un certain nombre de mois.

Depuis avril 2008, l’Enquête mensuelle sur le commerce de gros utilise le logiciel X-12-ARIMA2 pour la désaisonnalisation. La technique utilisée consiste essentiellement, dans un premier temps, à corriger la série initiale de toute sorte d’effets indésirables, tels l’effet des jours ouvrables et l’effet de Pâques, par un module appelé regARIMA. L’estimation de ces effets se fait grâce à l’utilisation de modèles de régression à erreurs ARIMA (modèles autorégressifs à moyennes mobiles intégrées). On peut également extrapoler la série d'au moins une année à l'aide du modèle. Dans un deuxième temps, la série brute, pré-ajustée et extrapolée s’il y a lieu, est désaisonnalisée par la méthode X-11.

La méthode X-11, qui permet d’analyser des séries mensuelles et trimestrielles, repose sur un principe itératif d’estimation des différentes composantes, cette estimation étant faite à chaque étape grâce à des moyennes mobiles adéquates3. Les moyennes mobiles utilisées pour estimer les principales composantes, la tendance et la saisonnalité, sont avant tout des outils de lissage conçus pour éliminer une composante indésirable de la série. Puisque les moyennes mobiles réagissent mal à la présence de valeurs atypiques, la méthode X-11 incorpore un outil de détection et de correction des points atypiques utilisé pour nettoyer la série au cours de la désaisonnalisation. Les valeurs atypiques peuvent également être détectées et corrigées d’avance, à l’aide du module regARIMA.

Finalement, les données désaisonnalisées sont ajustées aux totaux annuels des données brutes. Malheureusement, la désaisonnalisation supprime l’additivité infra-annuelle d’un système de séries; de légères différences peuvent alors être observées entre la somme de séries désaisonnalisées et la désaisonnalisation directe de leur total. Afin d’assurer ou de rétablir l’additivité d’un système de séries, un processus de réconciliation est appliqué ou une désaisonnalisation indirecte est employée, c.-à-d. la désaisonnalisation d’un total est obtenu en faisant la somme des séries désaisonnalisées individuellement.

1 Pour plus de renseignements, voir X-12-ARIMA Référence Manuel Version 0.3 (2007), U.S. Census Bureau. .
2 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

12. Évaluation de la qualité des données

La méthodologie de l'enquête a pour objectif de contrôler les erreurs et de réduire leurs effets éventuels sur les estimations. Les résultats de l'enquête peuvent néanmoins contenir des erreurs dont l'erreur d'échantillonnage n'est que l'une des composantes. L'erreur d'échantillonnage survient lorsque les observations sont faites uniquement sur un échantillon et non sur l'ensemble de la population. Toutes les autres erreurs commises aux diverses phases de l'enquête sont appelées erreurs non dues à l'échantillonnage. Des erreurs de ce type peuvent survenir, par exemple, quand un répondant fournit des renseignements erronés ou qu'il ne répond pas à certaines questions; quand une unité du champ de l'enquête y est incluse erronément ou que des erreurs sont commises lors du traitement des données, comme des erreurs de codage ou de saisie.

Avant la publication, on analyse les résultats combinés de l'enquête afin d'en évaluer la comparabilité; il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement celles des grandes entreprises), de la conjoncture économique générale et des tendances historiques.

Une mesure habituelle de la qualité des données des enquêtes est le coefficient de variation (CV). Le coefficient de variation, défini comme étant l'erreur-type divisée par l'estimation d'échantillon, est une mesure de la précision relative. Puisque le coefficient de variation est calculé d'après les réponses des unités individuelles, il mesure aussi certaines erreurs non dues à l'échantillonnage.

La formule utilisée pour calculer le coefficient de variation (CV) en pourcentage est :

CV (X) = S(X) * 100%
X
où X représente l'estimation et S(X) représente l'erreur-type de X.

On peut construire les intervalles de confiance autour des estimations en utilisant l'estimation et le CV. Donc, pour notre échantillon, il est possible de déclarer avec un niveau donné de confiance que la valeur prévue sera comprise dans l'intervalle de confiance construit autour de l'estimation. Par exemple, si une estimation de 12 millions de dollars à un CV de 2 %, l'erreur-type sera de 240 000 $ (l'estimation multipliée par le CV). On peut déclarer avec 68 % de confiance que les valeurs prévues seront comprises dans l'intervalle dont la longueur est égale à un écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 760 000 $ et 12 240 000 $. Ou bien, nous pouvons déclarer avec 95 % de confiance que la valeur prévue sera comprise dans l'intervalle dont la longueur est égale à deux écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 520 000 $ et 12 480 000 $.

Enfin, étant donné la faible contribution de la partie non observée de la population aux estimations totales, le biais dans la partie non observée a un effet négligeable sur les CV. Par conséquent, on utilise le CV provenant de la partie observée pour l'estimation totale qui est égale à la somme des estimations pour les parties observée et non observée de la population.

13. Contrôle de la divulgation

La loi interdit à Statistique Canada de rendre publique toute donnée susceptible de révéler l'information recueillie en vertu de la Loi sur la statistique et se rapportant à toute personne, entreprise ou organisation reconnaissable, sans que cette personne, entreprise ou organisation le sache ou y consente par écrit. Diverses règles de confidentialité s'appliquent à toutes les données diffusées ou publiées afin d'empêcher la publication ou la divulgation de toute information jugée confidentielle. Au besoin, des données sont supprimées pour empêcher la divulgation directe ou par recoupement de données reconnaissables.

L'analyse de la confidentialité des données inclut la détection de la « divulgation directe » éventuelle, qui survient lorsque la valeur figurant dans une cellule d'un tableau ne correspond qu'à quelques répondants ou que la cellule est dominée par un petit nombre d'entreprises.

Enquête mensuelle sur le commerce de détail (EMCD) – Énoncé de la qualité des données

Objectifs, utilisation et utilisateurs
Concepts, variables et classifications
Couverture et bases de sondage
Échantillonnage
Conception du questionnaire
Réponse et non réponse
Opérations de collecte et de saisie des données
Vérification
Imputation
Estimation
Révisions et désaisonnalisation
Évaluation de la qualité des données
Contrôle de la divulgation

1. Objectifs, utilisation et utilisateurs

1.1. Objectifs

L’Enquête mensuelle sur le commerce de détail (EMCD) fournit des renseignements sur la performance du secteur du commerce de détail et, quand les données sont combinées à d’autres statistiques, représente un important indicateur de l'état de l’économie canadienne.

1.1. Utilisation

Les estimations fournissent une mesure de la santé et de la performance du secteur du commerce de détail. L'information recueillie est utilisée pour estimer le niveau et la tendance mensuelle des ventes ainsi que le nombre d’emplacements. À la fin de chaque année, les estimations donnent un premier aperçu de la valeur annuelle des ventes au détail et de la performance du secteur.

1.2. Utilisateurs

Divers organismes, associations sectorielles et gouvernements utilisent l'information. Les détaillants utilisent les résultats de l'enquête pour comparer leurs résultats à ceux d'entreprises similaires, ainsi qu'à des fins de marketing. Les associations de détaillants peuvent surveiller la performance de leur industrie et promouvoir les industries du commerce de détail. Les investisseurs peuvent surveiller la croissance de l'industrie, ce qui peut donner aux détaillants un meilleur accès au capital d'investissement. Les données de l'enquête aident les administrations à comprendre le rôle des détaillants dans l'économie, ce qui facilite l'élaboration des politiques et des encouragements fiscaux. Le commerce de détail étant un important secteur de l'économie canadienne, les données permettent aux administrations de déterminer plus exactement la santé globale de l'économie grâce à l'utilisation des estimations dans le calcul du produit intérieur brut (PIB) national.

2. Concepts, variables et classifications

2.1. Concepts

Le secteur du commerce de détail comprend les établissements dont l’activité principale consiste à vendre des marchandises au détail, généralement sans transformation, et à fournir des services connexes.

Le commerce de détail représente le dernier maillon de la chaîne de distribution; les détaillants sont donc organisés pour vendre des marchandises en petites quantités au grand public. Ce secteur comprend deux grands types d’établissements : les détaillants en magasin et les détaillants hors magasin. L’EMCD couvre uniquement les détaillants en magasin. Leurs principales caractéristiques sont décrites ci-après.

Les détaillants en magasin exploitent des points de vente fixes, situés et conçus de manière à attirer un grand nombre de passants. De façon générale, les magasins de détail ont de grands étalages et font de la publicité dans les médias. Ils vendent surtout des biens de consommation qui intéressent les particuliers ou les ménages, mais certains servent aussi les entreprises et une clientèle institutionnelle. Parmi ces établissements, on compte les magasins de fournitures de bureau, les magasins d’ordinateurs et de logiciels, les stations-service, les vendeurs de matériaux de construction, les magasins de fournitures de plomberie et de fournitures électriques.

En plus de vendre des marchandises, certains types de détaillants fournissent des services après-vente, comme des services de réparation et d’installation. Ainsi, les concessionnaires d’automobiles neuves, les magasins d’électronique et d’appareils ménagers, et les magasins d’instruments et de fournitures de musique assurent fréquemment un service de réparation, alors que les magasins de revêtements de sol et les magasins de garnitures de fenêtres fournissent souvent des services d’installation. En règle générale, les établissements qui vendent des marchandises au détail et qui ont un service après-vente sont classés dans ce secteur.

Les salles d’exposition des sociétés de vente sur catalogue, les stations-service et les marchands de maisons mobiles sont assimilés à des détaillants en magasin.

2.2. Variables

Les ventes sont définies comme étant les ventes de toutes les marchandises achetées pour la revente, nettes des rendus et des escomptes. Sont inclus les honoraires et les commissions résultant de la vente de biens et de services pour le compte de tiers, comme la vente de billets de loterie, de billets d’autobus et de cartes de téléphone. Sont également inclus les recettes provenant des pièces et de la main-d’oeuvre utilisées pour les services d'entretien et de réparation, les revenus de location et de location à bail de biens et de matériel, les revenus provenant de services, y compris les services de restauration, les ventes de biens fabriqués en tant qu’activité secondaire et la valeur des marchandises prélevées par le propriétaire pour son usage personnel. Sont exclus les autres revenus de location de biens immobiliers, les frais de placement, les subventions d’exploitation et autres, les redevances et les droits de franchise.

L’emplacement d’affaires comprend le ou les emplacements physiques où a lieu l’activité commerciale dans chaque province et territoire et dont les ventes sont créditées ou comptabilisées dans les états financiers de l’entreprise. Pour les détaillants, il s’agit normalement d’un magasin.

Dollars constants : La valeur du commerce de détail est mesurée de deux façons : par la prise en compte des effets de la variation des prix sur la valeur des ventes et par l’élimination des effets de la variation des prix. La première mesure est la valeur des ventes au détail en dollars courants et la seconde, la valeur des ventes au détail en dollars constants. Pour calculer l’estimation en dollars courants, on agrège la valeur des ventes pondérées de tous les points de vente au détail. Pour calculer l’estimation en dollars constants, il faut d’abord rajuster la valeur des ventes par rapport à une année de base en utilisant l’Indice des prix à la consommation, puis additionner les valeurs résultantes.

2.3. Classification

L’Enquête mensuelle sur le commerce de détail est fondée sur la définition du commerce de détail adoptée dans le SCIAN (Système de classification des industries de l’Amérique du Nord). Le SCIAN est le cadre commun reconnu pour la production de statistiques comparables par les organismes statistiques du Canada, du Mexique et des États-Unis. L’accord définit les limites de 20 secteurs. Le SCIAN est fondé sur un cadre conceptuel axé sur la production, ou l’offre, en ce sens que les établissements sont regroupés en classes ou branches d’activité d’après la similarité des processus utilisés pour produire les biens et les services.

Les estimations sont calculées pour 21 groupes fondés sur des agrégations spéciales du Système de classification des industries de l’Amérique du Nord (SCIAN) de 2012. Les 21 groupes sont en outre agrégés en onze sous-secteurs.

Du point de vue géographique, les estimations des ventes sont produites pour le Canada et pour chaque province et territoire.

3. Couverture et bases de sondage

La base de sondage de l'Enquête mensuelle sur le commerce de détail (EMCD) est le Registre des entreprises (RE) de Statistique Canada. Ce dernier est une liste structurée d'entreprises productrices de biens et de services au Canada. Cette base de données tenue à jour centralement contient des renseignements détaillés sur la plupart des entités commerciales exploitées au Canada. Le RE couvre toutes les entreprises constituées en société, avec ou sans employés. Pour les entreprises non constituées en société, le RE comprend toutes les entreprises ayant des employés, ainsi que les entreprises sans employés ayant des ventes annualisées provenant d'un compte de la taxe sur les produits et services (TPS) ou un revenu annuel provenant de la déclaration d'impôt individuelle.

Dans le RE, les entreprises sont représentées selon une structure hiérarchique à quatre niveaux ayant pour sommet l'entreprise statistique suivie, par ordre décroissant, par la compagnie statistique, l'établissement statistique et l'emplacement statistique. Une entreprise peut être reliée à une ou à plusieurs compagnies statistiques, une compagnie statistique à un ou à plusieurs établissements statistiques et un établissement statistique à un ou à plusieurs emplacements statistiques.

La population cible de l'EMCD comprend tous les établissements statistiques figurant dans le RE, excluant les entreprises non constituées en société n'ayant pas d'employés dont les ventes annuelles sont inférieures à 30 000 $, qui sont classés dans le secteur du commerce de détail d'après le Système de classification des industries de l'Amérique du Nord (SCIAN) (environ 200 000 établissements). La fourchette de codes du SCIAN pour le secteur du commerce de détail varie de 441100 à 453999. Un établissement statistique est l'entité de production ou le plus petit groupe d'entités de production qui produit un ensemble de biens ou de services homogènes, dont les activités ne débordent pas les frontières provinciales/territoriales, et qui est en mesure de fournir des données sur la valeur de la production, ainsi que sur le coût des matières utilisées et le coût et l'importance de la main-d'oeuvre affectée à la production. L'entité de production est l'unité physique où se déroulent les activités de l'entreprise. Elle doit avoir une adresse de voirie et une main-d'oeuvre directement affectée au processus de production.
Sont exclus de la population cible les établissements auxiliaires (producteurs de services de soutien de l'activité de production de biens et services destinés au marché de plus d'un établissement au sein de l'entreprise, et qui sont considérés comme un centre de coûts ou un centre de dépenses discrétionnaires pour lequel les données sur tous les coûts, y compris la main-d'oeuvre et l'amortissement, peuvent être déclarées par l'entreprise), les futurs établissements, les établissements pour lesquels les signaux économiques indiquent un revenu manquant ou nul, et les établissements appartenant aux catégories du SCIAN non couvertes qui suivent :

  • 4541 (entreprises de télémagasinage et de vente par correspondance)
  • 4542 (exploitants de distributeurs automatiques)
  • 45431 (marchands de combustible)
  • 45439 (autres établissements de vente directe)

4. Échantillonnage

L'échantillon de l'EMCD est formé de 10 000 groupes d'établissements (grappes) classés dans le secteur du commerce de détail et sélectionnés à partir du Registre des entreprises de Statistique Canada. Par définition, une grappe d'établissements comprend tous les établissements appartenant à une entreprise statistique qui font partie d'un même groupe industriel et d'une même région géographique. L’EMCD est fondée sur un plan d'échantillonnage stratifié avec sélection d'un échantillon aléatoire simple dans chaque strate. La stratification est faite selon des groupes industriels (majoritairement mais non exclusivement des SCIAN à quatre chiffres) et selon la région géographique, c'est-à-dire selon la province ou le territoire. Ensuite, la population est stratifiée selon la taille de l'établissement. La mesure de taille est créée en combinant des données provenant d'enquêtes indépendantes et trois variables administratives, à savoir le revenu annuel profilé, les ventes assujetties à la TPS exprimées sur une base annuelle et le revenu de la déclaration d’impôt (T1 ou T2).

Les strates de taille comptent une strate à tirage complet (recensement), au moins deux strates à tirage partiel (échantillonnées partiellement) et une strate à tirage nul (non échantillonnée). La strate à tirage nul est destinée à réduire le fardeau de réponse en excluant les entreprises les plus petites de la population observée. Ces entreprises représentent, en principe, au plus 10 % du total des ventes. Au lieu d'envoyer un questionnaire à ces entreprises, on produit les estimations d'après des données administratives.

L'échantillon est réparti de façon optimale afin d'atteindre les coefficients de variation cibles au niveau du Canada dans son ensemble, de la province ou du territoire, de l’industrie et des groupes industriels selon la province ou le territoire. On procède aussi à un suréchantillonnage pour tenir compte des unités disparues, non répondantes ou classées incorrectement.

L'EMCD est une enquête répétée avec maximisation du chevauchement des échantillons mensuels. On retient l'échantillon d’un mois à l’autre et, chaque mois, on y ajoute de nouvelles unités (naissances). Pour découvrir les nouvelles unités visées par l'EMCD, c'est-à-dire les nouvelles grappes d'établissement(s), on examine chaque mois l'univers le plus récent du RE. On stratifie ces nouvelles unités conformément aux mêmes critères que ceux appliqués à la population initiale, puis on les échantillonne conformément à la fraction d'échantillonnage de la strate à laquelle elles appartiennent et on les ajoute à l'échantillon mensuel. Des disparitions d'entité surviennent également chaque mois. Une entité disparue peut être une grappe d'établissements qui ont cessé leurs activités (fermeture) ou dont les activités principales ne se rattachent plus au commerce de détail (hors du champ). La situation de ces entreprises est mise à jour dans le RE d'après des renseignements de source administrative et les commentaires reçus lors des enquêtes, y compris ceux des entreprises prenant part à l'EMCD. Les méthodes suivies pour traiter les unités disparues et les unités classées incorrectement font partie des procédures d'échantillonnage et de mise à jour de la population.

5. Conception du questionnaire

L’Enquête mensuelle sur le commerce de détail englobe les sous-enquêtes suivantes :

Enquête mensuelle sur le commerce de détail – R8

Enquête mensuelle sur le commerce de détail (avec les stocks) – R8

Enquête sur les ventes et stocks de boissons alcooliques

Le questionnaire est conçu pour recueillir mensuellement auprès d'un échantillon de détaillants des données sur les ventes au détail, sur le nombre d'emplacements commerciaux par province ou territoire et sur les stocks de biens possédés et destinés à la revente. Lors du remaniement de 2004, la plupart des questionnaires n'ont subit que des changements de présentation. Le questionnaire sur les ventes et les stocks de boissons alcooliques a subi des modifications plus importantes. Les modifications ont été discutées avec les intervenants et les répondants ont eu l'occasion de faire des commentaires avant que le nouveau questionnaire ne soit finalisé. Si d'autres modifications devaient être apportées à l'un des questionnaires, les changements proposés seraient soumis à un comité d'examen et ferait l'objet d'un essai sur le terrain auprès de répondants et d'utilisateurs de données pour s'assurer de leur pertinence.

6. Réponse et non réponse

6.1. Réponse et non-réponse

Bien que les gestionnaires d'enquête et les employés des opérations fassent tout leur possible pour maximiser la réponse à l'EMCD, un certain degré de non-réponse a lieu. Pour qu'un établissement statistique soit considéré comme répondant, il faut que le degré de réponse partielle (situation où une réponse exacte n'est obtenue que pour certaines questions posées au répondant) atteigne un seuil minimal au-dessous duquel la déclaration fournie par l'établissement serait rejetée et l'établissement, considéré comme une unité non répondante. Le cas échéant, on considère que l'entreprise n'a pas répondu du tout.

La non-réponse a deux effets sur les données : premièrement, elle introduit un biais dans les estimations si les non-répondants diffèrent des répondants en ce qui concerne les caractéristiques mesurées et, deuxièmement, elle fait augmenter la variance d'échantillonnage des estimations, parce que la taille effective de l'échantillon est réduite comparativement à celle considérée au départ.

L'ampleur des efforts déployés pour obtenir une réponse auprès d'un non-répondant dépend des contraintes budgétaires et de temps, de l'effet de la non-réponse sur la qualité globale et du risque de biais dû à la non-réponse.

La méthode principalement utilisée pour réduire l'effet de la non-réponse à l'étape de l'échantillonnage consiste à augmenter la taille de l'échantillon en appliquant un taux de suréchantillonnage déterminé d'après les résultats d'enquêtes similaires.

Les cas de non-réponse qui surviennent malgré les méthodes appliquées aux étapes de l'échantillonnage et de la collecte pour réduire l'effet de la non-réponse sont traités par imputation.

Afin de déterminer l'importance de la non-réponse qui a lieu chaque mois, on calcule divers taux de réponse. Pour un mois de référence donné, on produit les estimations au moins deux fois (estimations provisoires et estimations révisées). Entre les deux exécutions, certaines données fournies par les répondants peuvent être jugées inutilisables et des valeurs imputées peuvent être corrigées au moyen de données fournies par les répondants. Par conséquent, les taux de réponse sont calculés après chaque exécution du processus d'estimation.

Pour l'EMCD, deux types de taux sont calculés (non pondérés et pondérés). Afin d'évaluer l'efficacité du processus de collecte, on calcule les taux de réponse non pondérés. Les taux pondérés, fondés sur le poids d'estimation et la valeur de la variable d'intérêt, évaluent la qualité de l'estimation. À l'intérieur de chacun de ces types de taux, il existe des taux distincts pour les unités faisant partie de l'échantillon et pour les unités qui sont uniquement modélisées à partir de données administratives qui ont été extraites des fichiers de TPS.

Afin d’obtenir une meilleure idée du succès du processus de collecte de données, on calcule deux taux non pondérés appelés « taux de résultat de la collecte » et « taux de résultat de l'extraction ». On calcule ces taux en divisant le nombre de répondants par le nombre d'unités avec lesquelles on a essayé de prendre contact ou pour lesquelles on a essayé de recevoir des données extraites. Les déclarants non mensuels (répondants bénéficiant de modalités de déclaration spéciales leur permettant de ne pas produire de déclaration chaque mois, mais pour lesquels des données réelles sont disponibles lors des révisions subséquentes) sont exclus du numérateur ainsi que du dénominateur pour les mois où aucun contact n'est pris avec eux. Brièvement, les divers taux de réponse se calculent comme suit :

Taux pondérés :

Taux de réponse des unités faisant partie de l'échantillon (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i / Somme des ventes pondérées des unités faisant partie de l'échantillon

i = unités pour lesquelles il existe des données déclarées qui seront utilisées dans l'estimation ou qui sont des refus convertis, ou pour lesquelles il existe des données déclarées qui n'ont pas encore été évaluées pour l'estimation.

Taux de réponse des unités modélisées à partir de données administratives (estimation) = Somme des ventes pondérées des unités avec situation de réponse ii / Somme des ventes pondérées des unités modélisées à partir de données administratives

ii = unités pour lesquelles il existe des données extraites des fichiers administratifs et qui sont utilisables pour l'estimation.

Taux de réponse total (estimation) =
Somme des ventes pondérées des unités avec situation de réponse i ou situation de réponse ii / Somme de toutes les ventes pondérées

Taux non pondérés :

Taux de réponse des unités faisant partie de l'échantillon (collecte) =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse iv

iii = unités pour lesquelles il existe des données déclarées (dont le cas n'est pas résolu, utilisées ou non utilisées pour l'estimation) ou qui sont des refus convertis;

iv = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de répondre, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

Taux de réponse des unités modélisées à partir de données administratives (extraction) =
Nombre de questionnaires avec situation de réponse vi / Nombre de questionnaires avec situation de réponse vii

vi = unités dans le champ d'observation pour lesquelles il existe des données (utilisables ou non utilisables) extraites des fichiers administratifs;

vii = toutes les unités susmentionnées, ainsi que les unités qui ont refusé de déclarer la source de données administratives, les unités avec lesquelles on n'a pas pris contact et d'autres types d'unités non répondantes.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation)

Taux de résultat de la collecte =
Nombre de questionnaires avec situation de réponse iii / Nombre de questionnaires avec situation de réponse viii

iii = même que iii défini plus haut;

viii = même que iv, à part l'exclusion des unités avec lesquelles on a pris contact, parce que leur réponse n'est pas disponible pour un mois particulier, puisqu'il s'agit de déclarants non mensuels.

Taux de résultat de l'extraction =
Nombre de questionnaires avec situation de réponse ix / Nombre de questionnaires avec situation de réponse vii

ix = même que vi, avec l'ajout des unités extraites qui ont été imputées ou qui étaient hors du champ de l'enquête;

où vii = même que vii défini plus haut.

(% de questionnaires recueillis par rapport à l'ensemble des questionnaires dans le champ d'observation que nous avons tenté de recueillir)

Tous les taux pondérés et non pondérés susmentionnés sont calculés au niveau du groupe industriel, de la région et du groupe de taille, ainsi que pour toute combinaison de ces niveaux.

Utilisation des données administratives

Réduire le fardeau de réponse est un défi à long terme pour Statistique Canada. Afin d’alléger le fardeau de réponse et de réduire les coûts reliés à l’enquête, notamment en ce qui a trait aux petites entreprises, l’EMCD a réduit le nombre d’établissements simples de l’échantillon qui sont enquêtés directement et dérive plutôt les chiffres de vente pour ces établissements à partir des fichiers de la TPS en utilisant un modèle statistique. Le modèle explique les différences entre les ventes et les recettes déclarées aux fins de la TPS, ainsi que le décalage entre la période de référence de l’enquête et celle de la TPS.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

Le tableau 1 contient les fractions de réponses pondérées pour tous les groupes industriels ainsi que pour toutes les provinces et territoires. Pour des fractions de réponses pondérées plus détaillées, veuillez contacter la section du marketing et de la diffusion au (613) 951-3549, sans frais: 1-877-421-3067 or par courriel à retailinfo@statcan.

6.2. Méthodes utilisées pour réduire la non-réponse durant la collecte

Beaucoup d’efforts sont déployés en vue de réduire au minimum la non-réponse durant la collecte. Les méthodes utilisées incluent des techniques d'interview, comme l'utilisation de questions d'approfondissement et des techniques de persuasion, la replanification répétée des appels téléphoniques pour obtenir l'information et la mise en place de procédures indiquant aux intervieweurs comment s'y prendre avec les répondants qui refusent de participer à l'enquête.

Si les données demandées ne sont pas disponibles au moment de la collecte, la meilleure estimation fournie par le répondant est acceptée et est révisée par la suite, quand les données réelles sont disponibles.

Pour réduire au minimum la non-réponse totale pour toutes les variables, des réponses partielles sont acceptées. En outre, les questionnaires sont personnalisés pour la collecte de certaines variables, comme les stocks, de sorte que la collecte ait lieu durant les mois où les données sont disponibles.

Enfin, pour établir un climat de confiance entre les intervieweurs et les répondants, les cas sont généralement affectés au même intervieweur chaque mois. Ce dernier peut ainsi établir une relation personnelle avec le répondant et renforcer sa confiance.

7. Opérations de collecte et de saisie des données

La collecte des données est réalisée par les bureaux régionaux de Statistique Canada.

Tableau 1
Fractions de réponse pondérées par SCIAN et pour toutes les provinces et territoires, août 2013
Sommaire du tableau
Le tableau montre fractions de réponse pondérées par SCIAN et pour toutes les provinces et territoires, août 2013. Les données sont présentées selon SCIAN - Canada (titres de rangée), Fractions de réponse pondérées, Total, Enquêté, et Administrative (titres des colonnes).
  Fractions de réponse pondérées
Total Enquêté Administrative
SCIAN - Canada
Concessionnaires de véhicules et de pièces automobiles 92,7 93,4 69,9
Concessionnaires d'automobiles 94,0 94,3 60,0
Concessionnaires d'automobiles neuves1 95,6 95,6  
Concessionnaires d'automobiles d'occasion 67,8 69,2 60,0
Autres concessionnaires de véhicules automobiles 81,0 82,3 76,0
Magasins de pièces, de pneus et d' accessoires pour véhicules automobiles 88,2 91,4 68,2
Magasins de meubles et d'accessoires de maison 88,4 92,3 50,5
Magasins de meubles 93,4 95,4 53,7
Magasins d'accessoires de maison 79,3 85,7 48,9
Magasin d'appareils électroniques et ménagers 87,3 88,1 48,0
Marchands de matériaux de construction et de matériel et fournitures de jardinage 88,1 92,1 54,3
Magasins d'alimentation 87,8 90,5 56,2
Épiceries 90,8 93,5 62,3
Supermarchés et autres épiceries (sauf les dépanneurs) 93,5 95,9 67,3
Dépanneurs 55,9 61,1 24,4
Magasins d'alimentation spécialisés 67,5 76,0 31,7
Magasins de bière, de vin et de spiritueux 81,4 82,8 21,8
Magasins de produits de santé et de soins personnels 88,3 88,8 81,2
Stations-service 80,9 81,7 67,4
Magasins de vêtements et d'accessoires vestimentaires 89,6 91,0 43,7
Magasins de vêtements 90,6 91,9 44,0
Magasins de chaussures 91,6 93,0  
Bijouteries et magasins de bagages et de maroquinerie 79,7 81,3 56,0
Magasins d'articles de sport, d'articles de passe-temps, d'articles de musique et de livres 85,1 90,5 33,6
Magasins de marchandises diverses 99,0 99,1 87,8
Grands magasins 100,0 100,0  
Autres magasins de marchandises diverses 98,1 98,3 87,8
Magasins de détail divers 82,0 86,4 35,9
Total 89,5 91,1 59,5
Régions
Terre-Neuve-et-Labrador 90,0 91,7 13,6
Île-du-Prince-Édouard 90,6 91,5 19,5
Nouvelle Écosse 91,3 92,7 58,3
Nouveau-Brunswick 88,2 89,9 64,1
Québec 89,3 92,2 54,7
Ontario 90,0 91,2 66,2
Manitoba 89,7 90,2 61,4
Saskatchewan 90,6 91,8 61,2
Alberta 87,7 89,2 58,5
Colombie-Britannique 89,9 91,5 58,1
Territoire du Yukon 85,9 85,9  
Territoires du Nord-Ouest 82,1 82,1  
Nunavut 72,3 72,3  

Ces derniers envoient un questionnaire aux répondants ou communiquent avec ceux-ci par téléphone afin d'obtenir les valeurs de leurs ventes et de leurs stocks, et de confirmer l'ouverture ou la fermeture des emplacements d'affaires. Ils effectuent aussi un suivi auprès des non-répondants. La collecte des données débute environ sept jours ouvrables après la fin du mois de référence et se poursuit pendant tout le mois en question.

Les entités qui participent à l'enquête pour la première fois reçoivent une lettre d'introduction en vue d’informer le répondant qu'un représentant de Statistique Canada l'appellera. Cet appel a pour but de présenter l'enquête, de confirmer l'activité de l'entreprise, d'établir et de commencer la collecte des données, et de répondre à toutes questions que le répondant pourrait avoir.

8. Vérification

La vérification des données est l'application de contrôles pour déceler les entrées manquantes, invalides ou incohérentes, ou pour repérer les enregistrements de données susceptibles d'être erronés. Durant le processus d'enquête de l'EMCD, les données sont vérifiées à deux moments distincts.

Premièrement, une vérification est faite durant la collecte des données. Après leur collecte par téléphone ou au moyen du questionnaire à renvoyer par la poste, les données sont saisies à l'aide d'applications informatiques personnalisées. Toutes sont soumises à une vérification. Les contrôles réalisés durant la collecte des données, appelés contrôles sur le terrain, comprennent généralement des contrôles de validité et certains contrôles de cohérence simples. Ils servent aussi à déceler les erreurs commises durant l'interview par le répondant ou par l'intervieweur et de repérer l'information manquante à l'étape de la collecte en vue de réduire le besoin d'un suivi ultérieur. Les contrôles sur le terrain ont également pour but d'épurer les réponses. Dans le cas de l'EMCD, les réponses du mois courant sont comparées aux réponses fournies par le répondant le mois précédent et (ou) l'année précédente pour le mois courant. Les contrôles sur le terrain permettent de repérer les problèmes que posent les procédures de collecte des données et la conception des questionnaires, et de déterminer s'il faut offrir une formation supplémentaire aux intervieweurs.

Tout enregistrement de données rejeté lors des contrôles préliminaires fait l'objet d'un suivi auprès du répondant afin de valider les données soupçonnées d'être incorrectes. Une fois validé, les données recueillies sont transmises de façon régulière au Bureau central à Ottawa.

Deuxièmement, après la collecte, les données sont soumises à une vérification statistique dont la nature est plus empirique. On exécute la vérification statistique avant l'imputation, afin de repérer les données qui serviront de base pour l'imputation de valeurs pour les non-répondants. Les valeurs très extrêmes risquant de perturber une tendance mensuelle sont exclues des calculs de tendance lors de la vérification statistique. Il convient de souligner qu'aucun ajustement n'est fait à cette étape pour corriger les valeurs extrêmes déclarées.

La première étape de la vérification statistique consiste à repérer les réponses qui seront soumises aux règles de vérification statistique. Les données déclarées pour le mois de référence courant sont soumises à divers contrôles.

Le premier ensemble de contrôles est fondé sur la méthode d'Hidiroglou-Berthelot qui consiste à examiner le rapport des données du mois courant fournies par un répondant à des données historiques (c.-à-d. dernier mois ou même mois l'année précédente) ou administratives. Si le rapport calculé pour le répondant diffère significativement de ceux obtenus pour des répondants dont les caractéristiques sont comparables en ce qui concerne le groupe industriel et/ou la région géographique, la réponse est considérée comme une valeur extrême.

Le deuxième ensemble de contrôles est basé sur la vérification de la part de marché. Cette méthode, qui s'appuie sur les données du mois courant uniquement, permet de vérifier les données fournies par tous les répondants, mêmes ceux pour lesquels on ne dispose pas de données historiques ou de données auxiliaires. Par conséquent, parmi un groupe de répondants présentant des caractéristiques similaires en ce qui concerne le groupe industriel et (ou) la région géographique, toute valeur dont la contribution pondérée au total du groupe est trop importante sera considérée comme une valeur extrême.

Pour les contrôles fondés sur la méthode d'Hidiroglou-Berthelot, les données jugées extrêmes ne sont pas incluses dans les modèles d'imputation (ceux fondés sur les ratios). En outre, les données considérées comme des valeurs extrêmes lors de la vérification de la part de marché ne sont pas incluses dans les modèles d'imputation où les moyennes et les médianes sont calculées pour imputer des valeurs pour les réponses pour lesquelles il n'existe pas de données historiques.

Conjointement avec les vérifications statistiques effectuées après la collecte de données, on procède à la détection d’erreurs des données extraites des fichiers administratifs. Les données modélisées de la TPS sont également assujetties à une phase de vérification approfondie. Chaque fichier sur lequel les données modélisées sont fondées est vérifié de même que les valeurs modélisées. Les vérifications sont effectuées au niveau agrégé (industrie, géographie) afin de détecter les fichiers qui dévient de la norme (soit en exhibant des différences d’un mois à l’autre trop importantes ou qui diffèrent considérablement des autres unités. Toutes les données qui faillissent ces étapes de contrôle sont sujettes à une vérification manuelle, et si nécessaire, à une action corrective.

9. Imputation

Le processus d’imputation de l'EMCD a pour but de remplacer les données manquantes par des valeurs imputées. Des valeurs sont attribuées aux enregistrements pour lesquels la vérification a révélé des valeurs manquantes afin de s'assurer que les estimations soient de haute qualité et d'établir une cohérence interne plausible. Pour des raisons de fardeau de réponse, de coût et d'actualité des données, il est généralement impossible de réaliser auprès des répondants tous les suivis nécessaires pour résoudre les problèmes de réponses manquantes. Puisqu'il est souhaitable de produire un fichier de microdonnées complet et cohérent, on recourt à l'imputation pour traiter les cas persistants de données manquantes.

Dans le cas de l'EMCD, on peut fonder l'imputation des valeurs manquantes sur des données historiques ou sur des données administratives. Le choix de la méthode appropriée est fondé sur une stratégie qui dépend de l'existence de données historiques ou de données administratives et (ou) du mois de référence en question.

Il existe trois types de méthode d'imputation d'après des données historiques. Le premier est l’application d’une tendance générale qui s'appuie sur une source unique de données historiques (mois précédent, données recueillies pour le mois suivant ou données recueillies pour le même mois l'année précédente). Le deuxième est un modèle de régression dans lequel sont utilisées simultanément les données provenant du mois précédent et celles provenant du même mois l'année précédente. La troisième méthode consiste à remplacer directement les valeurs manquantes par des données historiques.

Selon le mois de référence, il existe, pour le choix de la méthode, un ordre de préférence en vue d'assurer une imputation de haute qualité. Le troisième type de méthode d'imputation historique est toujours la dernière option considérée pour chaque mois de référence.

Les méthodes d'imputation fondées sur des données administratives sont sélectionnées automatiquement lorsqu'on ne dispose pas de données historiques pour un non-répondant. La source de données administratives (ventes annuelles assujetties à la TPS) est le fondement de ces méthodes. Les ventes annuelles assujetties à la TPS sont utilisées pour deux types de méthode. L'une est une tendance générale que l'on utilise pour les structures simples, comme les entreprises ne comptant qu'un seul établissement et l'autre, appelée méthode de la médiane-moyenne, est utilisée pour les unités dont la structure est plus complexe.

10. Estimation

L'estimation est un processus qui consiste à calculer une valeur approximative des paramètres de population inconnus en utilisant uniquement la partie de la population qui est incluse dans un échantillon. Des inférences sont ensuite faites au sujet des paramètres inconnus en utilisant les données d'échantillon et les renseignements connexes sur le plan de sondage. Cette étape fait usage du Système généralisé d'estimation (SGE) de Statistique Canada.

Pour les ventes des détaillants, la population est divisée en une partie observée (strates à tirage complet et à tirage partiel) et une partie non observée (strate à tirage nul). D'après l'échantillon tiré à partir de la partie observée, on calcule une estimation pour la population au moyen d'un estimateur d'Horvitz-Thompson où les réponses concernant les ventes sont pondérées par l'inverse des probabilités d'inclusion des unités échantillonnées. Ces poids (appelés poids d'échantillonnage) peuvent être interprétés comme étant le nombre de fois que chaque unité échantillonnée devrait être répétée pour représenter la population complète. Les valeurs pondérées des ventes ainsi calculées sont totalisées par domaine, pour produire une estimation du total des ventes pour chaque combinaison des groupes industriels/région géographique. Un domaine est défini comme correspondant aux valeurs de classification les plus récentes disponibles dans le RE pour l'unité et la période de référence de l'enquête. Les domaines peuvent différer des strates d'échantillonnage originales, parce que les unités peuvent avoir changé de taille, d'industrie ou d'emplacement. Les changements de classification sont reflétés immédiatement dans les estimations et ne sont pas cumulés au cours du temps. Pour la partie non observée de la population, les ventes sont estimées à l’aide de modèles statistiques exploitant les ventes assujetties à la TPS exprimées sous forme mensuelle.

Pour en savoir plus sur la méthode utilisée lors de la modélisation des ventes tirées de fichiers administratifs, veuillez consulter le document intitulé Enquête mensuelle sur le commerce de détail : Utilisation de données administratives sous la rubrique ‘Documentation’ du BMDI.

La variance est la mesure de précision utilisée dans le cas de l'EMCD pour évaluer la qualité de l'estimation des paramètres de population et pour obtenir des inférences valides. Pour la partie observée de la population, la variance est calculée directement à partir d'un échantillon aléatoire simple stratifié sans remise.

Les estimations d'échantillon peuvent différer de la valeur prévue des estimations. Cependant, puisque l'estimation est fondée sur un échantillon probabiliste, il est possible d'évaluer la variabilité de l'estimation d'échantillon par rapport à la valeur prévue. La variance d'une estimation est une mesure de la précision de l'estimation d'échantillon qui est définie comme étant la moyenne, sur tous les échantillons possibles, de l'écart quadratique de l'estimation par rapport à sa valeur prévue.

11. Révisions et désaisonnalisation

Des révisions des données brutes doivent être effectuées pour corriger les erreurs non dues à l'échantillonnage qui sont décelées. Ceci comporte généralement le remplacement de données imputées par des données déclarées, la correction de données déclarées précédemment, et de procéder à des estimations pour les nouvelles entreprises créées dont on ne connaissait pas l'existence au moment des estimations originales.

Les données brutes sont révisées, sur une base mensuelle, pour le mois précédant immédiatement le mois de référence en cours qui fait l'objet de la publication. C'est donc dire que lorsque les données pour décembre sont publiées pour la première fois, on procédera aussi à des révisions, au besoin, à l'égard des données brutes pour novembre. En outre, des révisions sont aussi effectuées une fois par année, au moment de la première publication des données de février, pour tous les mois de l'année précédente. On vise ainsi à corriger tout problème important que l'on ait décelé et qui s'applique pour une période prolongée. La période de révision proprement dite dépend de la nature du problème décelé, mais elle ne dépasse rarement trois ans.

Les séries temporelles ou chronologiques comportent les éléments essentiels à la description, l'explication et la prévision du comportement d'un phénomène économique. « Ce sont des dossiers statistiques de l'évolution des processus économiques dans le temps1 ». Les séries temporelles socio-économiques comme celles de l’Enquête mensuelle sur le commerce de gros peuvent habituellement être décomposées en cinq composantes principales : la tendance-cycle, la saisonnalité, l’effet des jours ouvrables, l’effet de la fête de Pâques et la composante irrégulière.

La tendance représente l’évolution à long terme de la série, tandis que le cycle représente un mouvement lisse, quasi périodique, autour de la tendance qui met en évidence une succession de phases de croissance et de décroissance (ex. le cycle des affaires). Les deux composantes tendance et cycle sont estimées ensemble et la tendance-cycle reflète l'évolution fondamentale de la série. Les autres composantes traduisent des mouvements passagers à court terme. La composante saisonnière représente des fluctuations infra-annuelles, mensuelles ou trimestrielles, qui se répètent plus ou moins régulièrement d'une année à l'autre. Les variations saisonnières sont le produit des effets directs et indirects des saisons climatiques et d’éléments de type institutionnel (attribuable aux conventions sociales ou aux règles administratives, Noël par exemple).

L’effet des jours ouvrables provient du fait que l'importance relative des jours varie systématiquement à l'intérieur de la semaine et que le nombre de chacun des jours dans un mois donné varie d'une année à l'autre. Cet effet est présent lorsque l’activité change en fonction du jour de la semaine. Par exemple, dimanche connaît typiquement moins d'activité que les autres jours, et le nombre de dimanches, lundis, etc., dans un mois donné change d'année en année.
1 La désaisonnalisation des séries temporelles économiques : quelques remarques; tiré de la Revue statistique du Canada , août 1974
2 Pour plus de renseignements, voir X-12-ARIMA Reference Manual Version 0.3 (2007), U.S. Census Bureau.
3 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

L’effet de la fête de Pâques est la variation due au déplacement d’une partie de l’activité d’avril vers mars quand Pâques tombe en mars plutôt qu’en avril.

Enfin, la composante irrégulière regroupe toutes les autres fluctuations plus ou moins erratiques non prises en compte dans les composantes précédentes. Elle représente un résidu qui incorpore, entre autres, les erreurs de mesure sur la variable elle-même ainsi que des événements inhabituels (ex. grèves, sécheresse, inondations, panne d’électricité majeure ou d'autres variations inattendues dans les activités des répondants).

Ainsi, les composantes saisonnière et irrégulière, l’effet des jours ouvrables et l’effet de la fête de Pâques masquent la composante fondamentale de la série, qui est la tendance-cycle. La désaisonnalisation (correction des variations saisonnières) consiste à retirer de la série la composante saisonnière, l’effet des jours ouvrables et l’effet de la fête de Pâques. Elle contribue donc à révéler la tendance-cycle. Bien que la désaisonnalisation permette de mieux comprendre la tendance-cycle fondamentale d'une série, la série désaisonnalisée n'en contient pas moins une composante irrégulière. De légères variations d'un mois à l'autre dans la série désaisonnalisée peuvent n'être que de simples mouvements irréguliers. Pour avoir une meilleure idée de la tendance fondamentale, les utilisateurs doivent donc examiner les séries désaisonnalisées sur un certain nombre de mois.

Depuis avril 2008, l’Enquête mensuelle sur le commerce de gros utilise le logiciel X-12-ARIMA2 pour la désaisonnalisation. La technique utilisée consiste essentiellement, dans un premier temps, à corriger la série initiale de toute sorte d’effets indésirables, tels l’effet des jours ouvrables et l’effet de Pâques, par un module appelé regARIMA. L’estimation de ces effets se fait grâce à l’utilisation de modèles de régression à erreurs ARIMA (modèles autorégressifs à moyennes mobiles intégrées). On peut également extrapoler la série d'au moins une année à l'aide du modèle. Dans un deuxième temps, la série brute, pré-ajustée et extrapolée s’il y a lieu, est désaisonnalisée par la méthode X-11.

La méthode X-11, qui permet d’analyser des séries mensuelles et trimestrielles, repose sur un principe itératif d’estimation des différentes composantes, cette estimation étant faite à chaque étape grâce à des moyennes mobiles adéquates3. Les moyennes mobiles utilisées pour estimer les principales composantes, la tendance et la saisonnalité, sont avant tout des outils de lissage conçus pour éliminer une composante indésirable de la série. Puisque les moyennes mobiles réagissent mal à la présence de valeurs atypiques, la méthode X-11 incorpore un outil de détection et de correction des points atypiques utilisé pour nettoyer la série au cours de la désaisonnalisation. Les valeurs atypiques peuvent également être détectées et corrigées d’avance, à l’aide du module regARIMA.

Finalement, les données désaisonnalisées sont ajustées aux totaux annuels des données brutes. Malheureusement, la désaisonnalisation supprime l’additivité infra-annuelle d’un système de séries; de légères différences peuvent alors être observées entre la somme de séries désaisonnalisées et la désaisonnalisation directe de leur total. Afin d’assurer ou de rétablir l’additivité d’un système de séries, un processus de réconciliation est appliqué ou une désaisonnalisation indirecte est employée, c.-à-d. la désaisonnalisation d’un total est obtenu en faisant la somme des séries désaisonnalisées individuellement.

1 Pour plus de renseignements, voir X-12-ARIMA Référence Manuel Version 0.3 (2007), U.S. Census Bureau. .
2 Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X-11 Method. New York: Springer-Verlag, Lecture Notes in Statistics #158.

12. Évaluation de la qualité des données

La méthodologie de l'enquête a pour objectif de contrôler les erreurs et de réduire leurs effets éventuels sur les estimations. Les résultats de l'enquête peuvent néanmoins contenir des erreurs dont l'erreur d'échantillonnage n'est que l'une des composantes. L'erreur d'échantillonnage survient lorsque les observations sont faites uniquement sur un échantillon et non sur l'ensemble de la population. Toutes les autres erreurs commises aux diverses phases de l'enquête sont appelées erreurs non dues à l'échantillonnage. Des erreurs de ce type peuvent survenir, par exemple, quand un répondant fournit des renseignements erronés ou qu'il ne répond pas à certaines questions; quand une unité du champ de l'enquête y est incluse erronément ou que des erreurs sont commises lors du traitement des données, comme des erreurs de codage ou de saisie.

Avant la publication, on analyse les résultats combinés de l'enquête afin d'en évaluer la comparabilité; il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement celles des grandes entreprises), de la conjoncture économique générale et des tendances historiques.

Une mesure habituelle de la qualité des données des enquêtes est le coefficient de variation (CV). Le coefficient de variation, défini comme étant l'erreur-type divisée par l'estimation d'échantillon, est une mesure de la précision relative. Puisque le coefficient de variation est calculé d'après les réponses des unités individuelles, il mesure aussi certaines erreurs non dues à l'échantillonnage.

La formule utilisée pour calculer le coefficient de variation (CV) en pourcentage est :

CV (X) = S(X) * 100%
X
où X représente l'estimation et S(X) représente l'erreur-type de X.

On peut construire les intervalles de confiance autour des estimations en utilisant l'estimation et le CV. Donc, pour notre échantillon, il est possible de déclarer avec un niveau donné de confiance que la valeur prévue sera comprise dans l'intervalle de confiance construit autour de l'estimation. Par exemple, si une estimation de 12 millions de dollars à un CV de 2 %, l'erreur-type sera de 240 000 $ (l'estimation multipliée par le CV). On peut déclarer avec 68 % de confiance que les valeurs prévues seront comprises dans l'intervalle dont la longueur est égale à un écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 760 000 $ et 12 240 000 $. Ou bien, nous pouvons déclarer avec 95 % de confiance que la valeur prévue sera comprise dans l'intervalle dont la longueur est égale à deux écart-type de part et d'autre de l'estimation, c'est-à-dire entre 11 520 000 $ et 12 480 000 $.

Enfin, étant donné la faible contribution de la partie non observée de la population aux estimations totales, le biais dans la partie non observée a un effet négligeable sur les CV. Par conséquent, on utilise le CV provenant de la partie observée pour l'estimation totale qui est égale à la somme des estimations pour les parties observée et non observée de la population.

13. Contrôle de la divulgation

La loi interdit à Statistique Canada de rendre publique toute donnée susceptible de révéler l'information recueillie en vertu de la Loi sur la statistique et se rapportant à toute personne, entreprise ou organisation reconnaissable, sans que cette personne, entreprise ou organisation le sache ou y consente par écrit. Diverses règles de confidentialité s'appliquent à toutes les données diffusées ou publiées afin d'empêcher la publication ou la divulgation de toute information jugée confidentielle. Au besoin, des données sont supprimées pour empêcher la divulgation directe ou par recoupement de données reconnaissables.

L'analyse de la confidentialité des données inclut la détection de la « divulgation directe » éventuelle, qui survient lorsque la valeur figurant dans une cellule d'un tableau ne correspond qu'à quelques répondants ou que la cellule est dominée par un petit nombre d'entreprises.

Indice des prix de la construction de bâtiments non résidentiels — Pondérations pour chacune des régions métropolitaines de recensement

Indice des prix de la construction de bâtiments non résidentiels — Pondérations pour chacune des régions métropolitaines de recensement
Sommaire du tableau
Le tableau montre les résultats de indice des prix de la construction de bâtiments non résidentiels — pondérations pour chacune des régions métropolitaines de recensement. Les données sont présentées selon année (titres de rangée) et halifax, nouvelle- écosse, montréal, québec, ottawa-gatineau, partie ontarienne, ontario/québec, toronto, ontario, calgary, alberta, edmonton, alberta, vancouver, colombie- britannique et agrégat des sept régions métropolitaines de recensement(figurant comme en-tête de colonne).
Année Halifax, Nouvelle- Écosse Montréal, Québec Ottawa-Gatineau, partie ontarienne, Ontario/Québec Toronto, Ontario Calgary, Alberta Edmonton, Alberta Vancouver, Colombie- Britannique Agrégat des sept régions métropolitaines de recensement
1992 1,8 18,9 6,1 50,3 3,9 5,3 13,7 100
1993 1,9 18,2 8,4 41,3 5,1 6,4 18,7 100
1994 1,6 15,6 9,9 35,0 5,1 7,3 25,5 100
1995 1,4 17,1 8,8 31,3 4,7 6,9 29,8 100
1996 1,3 16,2 7,2 30,1 5,1 5,1 35,0 100
1997 1,1 14,3 6,6 31,6 6,2 5,1 35,1 100
1998 1,0 12,9 6,1 34,4 8,3 5,4 31,9 100
1999 1,0 12,6 5,9 39,3 12,2 6,8 22,2 100
2000 1,4 12,2 5,7 44,7 11,6 6,4 18,0 100
2001 2,2 13,3 6,9 43,2 11,6 6,7 16,1 100
2002 1,9 17,3 7,5 43,3 9,4 6,6 14,0 100
2003 1,5 20,6 7,9 39,1 9,5 7,1 14,3 100
2004 0,9 19,9 6,6 43,7 9,7 6,8 12,4 100
2005 1,5 16,4 5,6 48,4 9,6 6,4 12,1 100
2006 1,9 14,0 6,1 45,5 13,3 6,8 12,4 100
2007 2,1 13,5 5,9 37,2 17,2 8,1 16,0 100
2008 2,0 14,1 5,5 31,3 22,1 8,6 16,4 100
2009 2,1 13,9 4,2 31,4 22,0 10,0 16,4 100
2010 2,2 13,6 4,8 32,4 21,8 11,1 14,1 100
2011 2,6 13,1 5,4 35,3 16,8 13,4 13,4 100
2012 2,3 15,5 5,8 38,9 13,7 11,6 12,2 100
2013 2,4 16,3 5,7 40,4 10,9 11,0 13,3 100
 
 

Enquête mensuelle sur l'approvisionnement et l'écoulement de l'électricité

Contexte

En 2010, Statistique Canada a lancé le Programme intégré de la statistique des entreprises (PISE) pour avoir un modèle plus efficient pour la production de statistiques économiques. L'objectif principal était d'améliorer le programme de la statistique économique pour qu'il demeure aussi solide et souple que possible tout en allégeant le fardeau des entreprises répondantes.

Le PISE englobe une soixantaine d'enquêtes réparties entre quatre grands secteurs : fabrication, commerce de gros et de détail, services (y compris la culture) et dépenses en immobilisations. En 2019-2020, le PISE comprendra environ 150 enquêtes économiques couvrant tous les secteurs de la statistique économique. La liste d'enquêtes actuellement comprises dans le PISE est disponible en ligne.

Les changements au programme permettront à Statistique Canada de continuer de produire un ensemble uniforme et cohérent de statistiques économiques. De même, les utilisateurs des données et les chercheurs pourront plus facilement combiner les données économiques avec des renseignements d'autres sources pour effectuer leurs analyses.

Le PISE utilise un cadre normalisé pour les enquêtes économiques menées à Statistique Canada. Ce cadre comporte :

  • l'utilisation d'un Registre des entreprises commun comme base de sondage unique
  • l'optimisation de l'utilisation des données administratives pour alléger le fardeau de réponse des entreprises
  • le recours à des questionnaires électroniques comme principal mode de collecte
  • l'harmonisation des concepts et du contenu des questionnaires
  • l'adoption de méthodes communes d'échantillonnage, de collecte et de traitement.

Quels sont quelques-uns des changements les plus importants?

  • Une nouvelle approche de l'échantillonnage permet de veiller à ce que l'on pose uniquement aux entreprises les questions qui se rapportent à leurs activités. Cela crée une situation gagnant-gagnant pour Statistique Canada et les répondants. Statistique Canada réduit ainsi l'effort de collecte et a de meilleures chances de recueillir l'information requise pour produire des statistiques officielles qui soient pertinentes pour les Canadiens. Il réduit du même coup le temps que les répondants dans les entreprises doivent passer à répondre à des questionnaires.
  • L'utilisation accrue des données administratives permet d'alléger le fardeau de réponse des entreprises. Les fichiers de données administratives (comme les fichiers d'impôt sur le revenu des sociétés) sont exploités à fond comme substituts directs d'un sous-ensemble d'unités échantillonnées et pour l'imputation en cas de non-réponse. Pendant la transition au modèle du PISE, on a adapté les méthodes d'imputation afin de tirer plein parti de la disponibilité des données administratives. Cela a permis d'alléger davantage le fardeau de réponse dans l'ensemble des programmes d'enquête. La majorité des entreprises échantillonnées ne sont plus tenues de fournir des données dans le cas des renseignements concernant leurs revenus et leurs dépenses qui sont disponibles dans les données fiscales. Les questionnaires du PISE servent à recueillir de l'information qui n'est pas disponible dans les fichiers de données administratives, comme des données sur les biens et services produits et les pratiques commerciales.
  • Une nouvelle approche cohérente pour produire des estimations provinciales et territoriales utilise les renseignements qui existent déjà dans le Registre des entreprises de Statistique Canada pour déterminer les parts de revenus, de dépenses et de valeur ajoutée des provinces et territoires. Cela permet une approche cohérente et normalisée qui est la même dans toutes les enquêtes du PISE. Auparavant, ces données s'obtenaient directement de chaque répondant, et cette façon de procéder contribuait au fardeau de réponse.
  • Les questionnaires électroniques constituent désormais le principal mode de collecte de données auprès des entreprises répondantes. Les entreprises répondent aux enquêtes en utilisant une application en ligne sécurisée. Ainsi, on obtient un processus de collecte plus efficace et de qualité supérieure. De plus, la qualité des statistiques de l'enquête peut être améliorée parce que les questionnaires électroniques sont assortis de contrôles intégrés conçus pour limiter les erreurs de déclaration qui peuvent se produire dans les questionnaires papier.
  • La couverture accrue de la population d'entreprises permet un ensemble plus complet de statistiques sur les entreprises. À compter de l'année de référence 2013, la population visée par la série de programmes annuels d'enquêtes économiques s'est élargie et englobe désormais toutes les entreprises, quelle que soit leur taille. Les années précédentes, les entreprises dont les ventes étaient relativement petites n'étaient pas incluses dans la base centrale des entreprises de Statistique Canada. Toutefois, grâce à la nouvelle technologie d'autocodage, il est maintenant possible de classer dans cette base centrale toutes les entreprises en activité dans l'économie canadienne, quelles que soient leurs ventes. Par conséquent, grâce à cet élargissement de couverture, les estimations fondées sur le PISE représenteront mieux la population des entreprises opérant au Canada.
  • Les questionnaires ont été mis à jour en fonction de la plus récente terminologie des entreprises et des plus récentes pratiques comptables des entreprises canadiennes. En outre,les questionnaires mettent en application les nouvelles classifications normalisées qu'utilise Statistique Canada, telles que le Système de classification des industries de l'Amérique du Nord et le Système de classification des produits de l'Amérique du Nord.

Ces changements auront-ils des répercussions sur la comparabilité des données dans le temps?

L'étendue des changements au programme des statistiques des entreprises qui font partie du PISE fera que certaines séries pourraient ne plus être compatibles avec les estimations de périodes précédentes. Par exemple, l'augmentation de la population d'entreprises à elle seule signifie que les estimations auront tendance à être plus élevées que celles précédemment publiées.

Pour certaines séries, les changements seront minimes et les comparaisons avec les estimations des périodes de référence précédentes seront cohérentes. Dans d'autres cas, les répercussions pourraient être importantes, donnant lieu à des bris de continuité entre les estimations récentes et les estimations antérieures.

Reconnaissant l'importance de la continuité des données, Statistique Canada continuera à se servir de plusieurs techniques d'évaluation afin d'examiner si les estimations récentes sont directement comparables aux estimations antérieures. Parmi les techniques d'évaluation, on peut mentionner :

  • évaluation des estimations des enquêtes à tous les niveaux de détail (national, infranational, SCIAN);
  • comparaison des estimations obtenues des enquêtes infra-annuelles(là où il y a lieu);
  • comparaison des renseignements fiscaux;
  • analyse des résultats des répondants communs en 2012 et 2013;
  • comparaison des mouvements historiques par répondant et par l'industrie de façon générale.

Dans tous les cas, les utilisateurs sont informés qu'il peut exister des bris de série et qu'ils devraient faire preuve de discernement dans les comparaisons avec les données précédentes.

Lorsque les estimations de l'année de référence récente seront disponibles, on procédera aux révisions des données des années précédentes.

Qui utilisera les nouvelles estimations du PISE?

  • Les entreprises utilisent les estimations pour mieux comprendre leur rendement dans leur industrie donnée par rapport à la moyenne del'industrie.
  • Les analystes de l'industrie utilisent les estimations du PISE pour analyser le rendement de certaines industries dans l'économie canadienne, sur le plan national et régional.
  • Les ministères fédéraux et agences, les ministères et autorités provinciales, la presse, les répondants d'enquête, et le grand public qui utilise les estimations pour déterminer les tendances dans l'économie canadienne.

Les données du PISE sont le principal intrant dans le Système canadien des comptes macroéconomiques. Elles sont d'abord rajustées en fonction des concepts et des définitions de la comptabilité macroéconomique, puis intégrées dans les cadres de comptabilité macroéconomique. Cette intégration oblige à rajuster les données pour respecter les identités des comptes macroéconomiques et veiller à la cohérence dans le temps. Ces données forment les éléments de base de la mesure de référence de Statistique Canada pour ce qui est du produit intérieur brut et elles sont un intrant clé dans les estimations servant à déterminer les paiements de péréquation et la répartition des revenus de la taxe de vente harmonisée.

Périodiquement, Statistique Canada procède à des changements à grande échelle dans le cadre de son processus de renouvellement des enquêtes. Les nouvelles données du PISE seront intégrées aux comptes macroéconomiques. Les nouvelles données peuvent toujours entraîner certains changements ou certaines révisions aux comptes nationaux, mais le cadre du Système de comptabilité nationale donne la garantie que les estimations des comptes nationaux sont solides et cohérentes.

Est-ce qu'il y a d'autres données d'enquête qui ont été diffusées selon le nouveau calendrier PISE ?

Oui. Les premières données d'enquête diffusées à partir de PISE étaient celles de l'Enquête d'aquaculture de 2013 qui ont été publiées dans le Quotidien du 14 novembre 2014. Depuis, plusieurs autres données d'enquêtes annuelles ont été diffusées, et les données de plusieurs enquêtes mensuelles seront disponibles bientôt.

Pour plus d'information

Pour une explication plus détaillée des changements, prière de consulter l'Aperçu du programme intégré de la statistique économique dans le site Web de Statistique Canada.

On peut obtenir plus d'information sur les aspects techniques de l'échantillonnage et de l'estimation sur demande.

Pour plus d'information, communiquer avec les Relations avec les médias (613-951-4636; statcan.mediahotline-ligneinfomedias.statcan@statcan.gc.ca).

This document is also available in English.

Changements apportés à l'Enquête mensuelle sur l'approvisionnement et l'écoulement de l'électricité

À compter de janvier 2016, Statistique Canada mènera une enquête mensuelle plus détaillée relativement à l'industrie de l'électricité au Canada. Les changements apportés à l'enquête sont décrits ci-dessous.

Couverture accrue

La couverture de l'Enquête mensuelle sur l'approvisionnement et l'écoulement de l'électricité sera accrue en réduisant son seuil de déclaration pour le faire passer d'une production annuelle de 20 000 MW à une capacité de production totale de 500 KW pour les services d'électricité et les entreprises qui produisent et/ou distribuent de l'électricité à partir d'au moins une centrale. L'enquête inclura également la production et la distribution d'électricité des services et des entreprises qui possèdent au moins une centrale électrique photovoltaïque dont la puissance génératrice totale de production dépasse 100 KW.

Intégration du contenu de l'enquête trimestrielle dans l'enquête mensuelle

Le contenu de l'Enquête sur l'écoulement de l'électricité – Trimestriel – Secteur résidentiel sera intégré à l'enquête mensuelle sur l'électricité. Plus précisément, ce changement vise les questions liées aux ventes d'électricité dans le secteur résidentiel, comme le nombre de mégawattheures et les coûts.

L'intégration de ce contenu permettra de réduire le nombre de questionnaires que les répondants devront remplir.

Contenu enrichi

En plus des changements décrits ci-dessus, le contenu de l'enquête mensuelle sera enrichi en 2016 de sorte à pouvoir fournir aux utilisateurs finaux des données plus détaillées et à jour sur l'industrie. Parmi les principaux changements figurent l'élargissement des catégories liées à la production d'électricité, ainsi qu'une représentation géographique de l'utilisation d'électricité par les consommateurs. Ces changements se présentent comme suit :

  • Types de production d'électricité
    • Production d'électricité provenant de combustibles
      • Production thermique (types de combustible : charbon, gaz naturel, pétrole, autres sources de combustibles)
      • Production d'électricité totale provenant de biomasse (nouveaux types de combustible : bois, lessive de pâte épuisée, méthane, déchets municipaux et autres résidus)
    • Production d'électricité au moyen de méthodes non combustibles
      • Vague et géothermique
  • Électricité disponible pour utilisation à l'intérieur de frontières géographiques spécifiques
    • Quantité totale d'électricité utilisée par les consommateurs abonnés aux services de détaillants (c.-à-d. les consommateurs industriels, résidentiels et agricoles et commerciaux)
    • Quantité totale et valeur de l'électricité utilisée par les consommateurs « abonnés ultimes » (c.-à-d. les consommateurs industriels, résidentiels et agricoles et commerciaux)
    • Quantité d'électricité non utilisée
    • Quantité totale d'électricité utilisée par les consommateurs

Comparabilité et accessibilité des données

En raison des changements apportés au contenu de l'enquête mensuelle sur l'électricité, de nouveaux tableaux CANSIM seront créés pour l'enquête et diffusés à partir de la fin de 2016. Entre-temps, les tableaux CANSIM 127-0002 et 127-0003 existants continueront d'être produits, mais feront l'objet de changements mineurs.

Les changements au tableau 127-0002 comprennent le regroupement des types de production suivants en une seule catégorie, soit la production totale d'électricité provenant de combustibles : la turbine à vapeur classique, la turbine à combustion interne et la turbine à combustion.

Les changements au tableau 127-0003 comprennent le retrait des catégories liées au total des livraisons souscrites, au total des livraisons non-souscrites, au total des autres livraisons aux États-Unis et aux autres réceptions des États-Unis.

Malgré les changements apportés aux tableaux existants, ceux-ci demeureront accessibles après l'année de référence 2016 à des fins de référence historique. Par conséquent, les utilisateurs devront faire preuve de prudence lorsqu'ils comparent les données des tableaux existants avec celles des nouveaux tableaux qui seront publiés plus tard cette année.

Comment puis-je obtenir de plus amples renseignements sur les changements apportés à l'Enquête mensuelle sur l'approvisionnement et l'écoulement de l'électricité?

Le présent document résume les principaux changements apportés à l'enquête ainsi que leur incidence pour les utilisateurs finaux. Pour obtenir de plus amples renseignements ou pour en savoir davantage sur les concepts, les méthodes ou la qualité des données, communiquez avec nous au 514-283-8300 ou au numéro sans frais 1-800-263-1136 (infostats@statcan.gc.ca), ou communiquez avec les Relations avec les médias au 613-951-4636 (statcan.mediahotline-ligneinfomedias.statcan@statcan.gc.ca).

Taux de réponse pour le Sondage sur les inconduites sexuelles dans les Forces armées canadiennes, 2016

Taux de réponse pour le Sondage sur les inconduites sexuelles dans les Forces armées canadiennes, 2016.
Sommaire du tableau
Le tableau montre les résultats de Taux de réponse pour le Sondage sur les inconduites sexuelles dans les Forces armées canadiennes. Les données sont présentées selon Sous-population (titres de rangée) et Taux de réponse, calculées selon Percent unités de mesure (figurant comme en-tête de colonne).
Sous-population Taux de réponse
  pourcentage
Totale 53
Sexe  
Hommes 51
Femmes 62
Groupe d’âge  
Moins de 25 22
25 à 29 39
30 à 34 51
35 à 39 61
40 à 44 66
45 à 49 71
50 et plus 72
Composante  
Force régulière 61
Première réserve 36
Grade  
Officier supérieur 78
Officier subalterne 66
Militaire du rang (MR) supérieur 70
Militaire du rang (MR) subalterne 41
Description d’élément de capacité (DEC)  
Armée 45
Marine 46
Aviation 70
Chef du personnel militaire (CPM) 57
Autre 66
Élément  
Force aérienne 70
Armée 48
Marine 50

Enquête annuelle sur les distributeurs secondaires de produits pétroliers raffinésGuide de déclaration

1. Instructions de déclaration

Vous trouverez ci-dessous des renseignements qui vous aideront à remplir l'Enquête annuelle sur les distributeurs secondaires de produits pétroliers raffinés.

  • Il y a quatre tableaux de produits distincts : essence à moteurs, carburant diesel, mazout de chauffage et mazout lourd.
  • Pour chaque produit, veuillez déclarer le nombre total de litres vendus du 1er janvier au 31 décembre 2015 au Canada, par province ou territoire et selon le type de consommateur indiqué aux lignes 3 à 26 du questionnaire.
  • Si le nombre exact de litres vendus n'est pas disponible, veuillez nous fournir vos meilleures estimations.
  • Veuillez conserver une copie du questionnaire pour vos dossiers.

2. Définitions

Essence à moteur : Tous les carburants de type « essence » utilisés pour les moteurs à combustion interne, y compris l'éthanol/méthanol et autres additifs similaires.

Carburant diesel : Toutes les catégories de distillats pour moteurs diesel utilisé en transport routier, hors route, maritime et ferroviaire, quelque soit le traitement fiscal du diesel vendu (diesel coloré ou décoloré) y compris tout biodiesel rajouté au diesel.

Mazout de chauffage : Tous les combustibles de type distillat pour brûleurs à mélange surpressé. Comprend le mazout no.1, mazout no.2, le mazout no.3, mazout pour poêles, le mazout de chauffage, le gasoil et les carburants industriels légers, y compris tout biodiesel rajouté au mazout de chauffage.

Mazout lourd : Toutes les catégories de mazout de type résiduel, y compris les combustibles à faible teneur en soufre servant à la génération de vapeur, à la production d'énergie électrique ainsi qu'à l'alimentation de moteurs vapeurs et de moteurs diesels installés à bord de navires maritimes. Comprend les mazouts nos 4, 5 et 6. Également connu sous le nom de combustible de soute B ou C.

3. Section A

Note: Si vous avez vendu des produits pétroliers raffinés mélangés à des biocarburants à vos clients, veuillez cocher le cercle approprié dans la colonne fournie à cet effet sur chaque page du questionnaire.

Distribution du nombre de litres de carburant vendus par type de client (y compris les biocarburants)

Les définitions suivantes se rapportent aux lignes 1 à 27 du questionnaire et fournissent des instructions pour la déclaration de vos ventes selon le type de client.

Ligne 1 - Total, nombre de litres utilisé pour votre propre consommation
Déclarez toutes les quantités de produits pétroliers raffinés que vous avez achetées et que la compagnie a utilisées. (Par exemple, carburant utilisé pour vos véhicules ou mazout de chauffage).

Ligne 2 - Total, nombre de litres vendus (y compris les biocarburants)
Déclarez le nombre total de litres de produits pétroliers raffinés disponible pour la revente. Ce nombre exclut les produits pétroliers raffinés que vous avez achetés et qui ont été utilisés pour le fonctionnement de vos opérations, tel que le chauffage et le carburant pour vos véhicules, et le carburant que vous avez transporté pour une tierce personne.

Ligne 3 - Résidences
Déclarez toutes les ventes destinées aux résidences privées, y compris les maisons unifamiliales, les blocs-appartements, les hôtels-résidences et les condominiums.

Ligne 4 - Ventes aux grossistes et marchands de produits pétroliers raffinés
Déclarez toutes les ventes aux compagnies dont l'activité principale est la vente en gros ou la vente directe (livraisons à domicile) de produits pétroliers raffinés.

Ligne 5 - Stations-service (nombre total de litres vendus à vos stations-service et à celles qui appartiennent à d'autres)
Déclarez toutes les ventes aux compagnies dont l'activité principale est la vente au détail de carburants à moteurs, que les stations-services soient exploitées ou non conjointement avec un dépanneur, un atelier de réparation automobile, un restaurant ou un autre commerce. Les compagnies qui exploitent des stations-service pour le compte de leurs propriétaires et qui perçoivent une commission sur les carburants vendus sont aussi incluses. Exclure les ventes aux marinas - les inclure à la ligne 26, « Autres clients commerciaux et institutionnels ».

Ligne 6 - Transporteurs ferroviaires et activités de soutien
Déclarez toutes les ventes aux compagnies dont l'activité principale est l'exploitation de chemins de fer. Les ventes aux établissements dont l'activité principale consiste à fournir des services de transport ferroviaire de longue distance ou sur ligne principale, de courte distance, des services de transport ferroviaire de voyageurs et des services spécialisés au secteur du transport ferroviaire doivent également être incluses à la ligne 6.

Ligne 7 - Compagnies de transport routier et activités de soutien
Déclarez toutes les ventes aux compagnies dont l'activité principale consiste à fournir des services de transport de marchandises par camion, de transport en commun et de transport terrestre de voyageurs (y compris les services urbains de transport en commun, les compagnies de transport interurbain et rural par autocar, les services de taxis et limousines, les compagnies de transport scolaire et transport d'employés par autobus, les services d'autocars nolisés, les services de taxi et de limousine en direction et en provenance des aérogares et gares, services de navette et compagnies de transport pour passagers aux besoins spéciaux), de transport terrestre de tourisme et d'agrément et les compagnies dont l'activité principale consiste à fournir des services spécialisés aux compagnies de camionnage, aux exploitants d'autobus et à d'autres établissements utilisant le réseau routier (exemples : service de dépanneuse/remorqueuse, service de déneigement)

Ligne 8 - Transporteurs maritimes - navires maritimes canadiens
Déclarez toutes les ventes faites au Canada aux compagnies dont l'activité principale est le transport par eau de passagers et de marchandises par des navires immatriculés au Canada (battant pavillon canadien).

Ligne 9 - Transporteurs maritimes - navires maritimes étrangers
Déclarez toutes les ventes faites au Canada aux compagnies dont l'activité principale est le transport par eau de passagers et de marchandises par des navires immatriculés à l'étranger (battant pavillon étranger).

Ligne 10 - Fabricants de produits alimentaires
Déclarez toutes les ventes aux compagnies dont l'activité principale est la production d'aliments destinés à la consommation humaine ou animale. En général, ces établissements vendent leurs produits à des grossistes ou à des détaillants en vue de leur distribution finale aux consommateurs.

Ligne 11 - Fabricants de papier
Déclarez toutes les ventes aux compagnies dont l'activité principale est la fabrication de pâte à papier, de papier et de produits du papier.

Ligne 12 - Fabricants de produits de fer et d'acier
Déclarez toutes les ventes aux compagnies dont l'activité principale consiste à fondre du minerai de fer et des débris d'acier pour produire du fer en gueuse sous forme liquide ou solide et à transformer du fer de première fonte en acier après avoir retiré le carbone qu'il contient par combustion dans des fours. Inclure également à la ligne 12 toutes les ventes aux compagnies dont l'activité principale consiste à fabriquer des tuyaux et des tubes en fer ou en acier, à fabriquer par étirage du fil en acier, et à laminer à froid des formes en acier à partir d'acier acheté et les ventes aux fonderies de fer et d'acier.

Ligne 13 - Compagnies de production et de transformation d'aluminium et de métaux non ferreux
Déclarez toutes les ventes aux compagnies dont l'activité principale est la fabrication d'aluminium ou dont l'activité principale consiste à fondre, raffiner, laminer, étirer et extruder des métaux non ferreux. Inclure également à la ligne 13 toutes les ventes aux fonderies de métaux non ferreux.

Ligne 14 - Fabricants de ciment
Déclarez toutes les ventes aux compagnies dont l'activité principale consiste à produire du ciment de mâchefer puis à le broyer à sec ou par voie humide.
Ne pas inclure les ventes aux fabricants de béton préparé et de produits en béton; ces ventes devraient être déclarées à la ligne 17 « Autres activités diverses de fabrication ».

Ligne 15 - Fabricants de produits du pétrole et du charbon 
Déclarez toutes les ventes aux compagnies dont l'activité principale est la transformation du pétrole et du charbon brut en produits intermédiaires et finis. Le procédé principal est le raffinage du pétrole, qui exige la séparation du pétrole brut en sous-produits à l'aide de techniques comme le craquage et la distillation.

Ligne 16 - Fabricants de produits chimiques et d'engrais
Déclarez toutes les ventes aux compagnies dont l'activité principale est la fabrication de produits et de préparations chimiques à partir de matières premières organiques et inorganiques.

Ligne 17 - Autres activités diverses de fabrication
Déclarez toutes les ventes aux compagnies non visées aux lignes 10 à 16. Cette catégorie comprend les compagnies dont l'activité principale est la fabrication des produits suivants :

  • Fabrication de boissons et de produits du tabac
  • Usines de textiles
  • Usines de produits textiles
  • Fabrication de vêtements
  • Fabrication de produits en cuir et de produits analogues
  • Fabrication de produit en bois
  • Impression et activités connexes de soutien
  • Fabrication de produits en plastique et en caoutchouc
  • Fabrication de produits en argile et produits réfractaires
  • Fabrication de verre et de produits en verre
  • Fabrication de béton préparé;
  • Fabrication de tuyaux, briques et blocs en béton et fabrication d'autres produits en béton
  • Fabrication de chaux et de produits en gypse
  • Fabrication de produits abrasifs
  • Fabrication de produits métalliques (inclues toutes les ventes aux compagnies de type suivant : Forgeage et estampage; Fabrication de coutellerie et d'outils à main; Fabrication de produits d'architecture et d'éléments de charpentes métalliques; Fabrication de chaudières, de réservoirs et de contenants d'expédition; Fabrication d'articles de quincaillerie; Fabrication de ressorts et de produits en fil métallique; Ateliers d'usinage, Fabrication de produits tournés, de vis, d'écrous et de boulons; Revêtement, gravure, traitement thermique et activités analogues; Fabrication d'autres produits métalliques)
  • Fabrication de machines
  • Fabrication de produits informatiques et électroniques
  • Fabrication de matériel, d'appareils et de composants électriques
  • Fabrication de matériel de transport
  • Fabrication de meubles et de produits connexes
  • Activités diverses de fabrication

Ligne 18 - Mines de fer
Déclarez toutes les ventes aux établissements qui s'occupent principalement de l'extraction, de l'enrichissement et des autres modes de préparation du minerai de fer.

Ligne 19 - Extraction de pétrole et de gaz naturel et activités de soutien à l'extraction de pétrole et de gaz naturel
Déclarez toutes les ventes aux compagnies dont l'activité principale est l'exploration ou la production du pétrole brut et du gaz naturel, selon des méthodes classiques ou non classiques (par exemple extraction de sables bitumineux) et à celles dont l'activité principale est la prestation, en vertu d'ententes contractuelles ou contre rémunération, de services de soutien requis pour l'extraction de pétrole et de gaz. (y compris le forage pétrolier et gazier et le forage en mer).

Ligne 20 - Autres mines et activités de soutien
Déclarez toutes les ventes aux compagnies dont l'activité principale est l'extraction minière, à l'exclusion des mines de fer et aux compagnies dont l'activité principale est la prestation, en vertu d'ententes contractuelles ou contre rémunération, des services de soutien requis par l'extraction minière et l'extraction en carrière de minéraux. Cette catégorie comprend les mines de charbon, de minerais métalliques (à l'exclusion des ventes aux mines de fer déclarées à la ligne 18), de minerais non-métalliques.

Exemples : extraction de charbon, d'or, d'argent, de plomb/zinc, de granite, d'amiante, de potasse et de diamants; extraction de sable, de gravier, d'argile, de céramique et de minerais réfractaires; drainage ou pompage minier, à forfait

Ligne 21 - Foresterie, exploitation forestière, pêche et activités de soutien
Déclarez toutes les ventes aux compagnies dont l'activité principale est la production et la récolte du bois caractérisé par un long cycle de croissance (dix ans ou plus); la prise ou la capture, à des fins commerciales, de poissons, de mollusques et crustacés et d'autres animaux aquatiques, dans leur habitat naturel; et l'offre des services de soutien essentiels à la production forestière et à la pêche.

Exclusion : Aquaculture (veuillez déclarer les ventes aux compagnies d'aquaculture à la ligne 22).

Ligne 22 - Agriculteurs, chasseurs, piégeurs et activités de soutien
Déclarez toutes les ventes aux compagnies dont l'activité principale est la culture agricole, la culture de plantes, de plantes grimpantes, d'arbres et de leurs semences; la production de produits d'origine animale et l'engraissement des animaux; la chasse et le piégeage à des fins commerciales de même que l'exploitation et la gestion de parcs commerciaux à gibier; et l'offre de services de soutien essentiels à la production agricole et forestière.

Exemples : Culture de plantes oléagineuses et de céréales; culture de légumes, de fruits et de noix; culture en serre et en pépinière et floriculture; culture du tabac et coton; élevage de bovins; élevage de porcs; élevage de volailles et production d'oeufs; élevage de moutons et de chèvres; aquaculture; apiculture; service de moissonnage des récoltes; plantation de cultures; service de reproduction d'animaux; service de reboisement.

Ligne 23 - Compagnies de construction et activités connexes
Déclarez toutes les ventes aux compagnies dont l'activité principale est la construction, la réparation et la rénovation d'immeubles et d'ouvrages de génie civil, et le lotissement et l'aménagement de terrain; cette catégorie comprend aussi les compagnies dont l'activité première consiste à effectuer des travaux habituellement requis pour la construction des bâtiments et des structures, comme la maçonnerie, la peinture ou l'électricité.

Exemples : Construction de bâtiments (construction résidentielle et non résidentielle); travaux de génie civil (construction d'installations de services publics, de routes, de rues et de ponts et lotissement de terrains); entrepreneurs en travaux de fondations, de structure, et d'extérieur de bâtiment (ex. entrepreneurs en charpenterie, en travaux de maçonnerie, en travaux de vitrage et de vitrerie, en travaux de toiture, en travaux de parements, etc.); entrepreneurs en installations d'équipements techniques (ex. entrepreneurs en travaux d'électricité et en installation de câblage et en plomberie, chauffage et climatisation); entrepreneurs en travaux de finition de bâtiments (ex. entrepreneurs en installation de cloisons sèches et travaux d'isolation, en peinture et tapisserie, en travaux de revêtements de sol, en pose de carreaux et coulage de terrazzo et en travaux de finition de bâtiment); autres entrepreneurs spécialisés telle que la location de grues avec conducteur, et les compagnies dont l'activité principale consiste à effectuer des activités de préparation du terrain, comme l'excavation, le nivellement et la démolition de bâtiments.

Ligne 24 - Administrations publiques
Déclarez toutes les ventes aux organismes dont l'activité principale est de nature gouvernementale : promulgation et interprétation judiciaire des lois et de leurs règlements d'application et administration des programmes établis sous le régime de ces lois et règlements d'application.

Exemples : administrations publiques fédérales, provinciales/territoriales, locales, municipales et régionales; sociétés de la Couronne; tribunaux fédéraux, provinciaux et municipaux; services d'immigration; Gendarmerie royale du Canada, services de police provinciaux et municipaux; services correctionnels fédéraux, provinciaux et municipaux; services provinciaux et municipaux de lutte contre les incendies; services fédéraux et provinciaux relatifs à la main-d'œuvre et à l'emploi; services de réglementation fédéraux et provinciaux (ex. service d'administration du gouvernement fédéral sur la santé et la sécurité au travail, commissions de contrôle des alcools); administrations publiques autochtones; etc.

Ligne 25 - Compagnies de production d'électricité
Déclarez toutes les ventes aux compagnies dont l'activité principale consiste à produire de l'électricité en bloc à partir de l'énergie hydraulique, des combustibles fossiles, des combustibles nucléaires ou d'autres processus. Les ventes aux compagnies de transport et distribution d'électricité doivent être déclarées dans la catégorie « Autres ventes commerciales et institutionnelles » (ligne 26).

Ligne 26 - Autres clients commerciaux et institutionnels
Déclarez à la ligne 26, toutes les ventes (nombre total de litres vendus) aux compagnies non incluses aux lignes 3 à 25 du questionnaire.

La catégorie 'Autres clients commerciaux et institutionnels' comprend les compagnies dont l'activité principale est une des suivantes:

  • Transport et distribution d'électricité
  • Distribution de gaz naturel
  • Réseaux d'aqueduc et d'égout et autres systèmes
  • Commerce de gros (à l'exclusion des grossistes en produits pétroliers)
  • Commerce de détail (à l'exclusion des stations-service)
  • Transport aérien et activités de soutien au transport aérien
  • Transport par pipeline
  • Services postaux
  • Messageries et services de messagers
  • Entreposage
  • Industrie de l'information et industrie culturelle (éditeurs de logiciels, radiodiffusion et télévision, télécommunications par fil)
  • Finances et assurances (banque centrale, sociétés d'assurance, caisses de retraite)
  • Services immobiliers et services de location et de location à bail (bailleurs de biens immobiliers, activités liées à l'immobilier, location de biens de consommation)
  • Services professionnels, scientifiques et techniques (services juridiques, services de comptabilité, de préparation des déclarations de revenus, de tenue de livres et de paye)
  • Gestion de sociétés et d'entreprises
  • Services administratifs, services de soutien, services de gestion, des déchets et services d'assainissement (services emploi, services de soutien d'entreprises, collecte des déchets)
  • Services d'enseignement (p. ex., écoles primaires et secondaires, collèges communautaires, universités)
  • Soins de santé et assistance sociale (p. ex., services de soins ambulatoires, hôpitaux, établissements de soins infirmiers et des soins pour bénéficiaires internes)
  • Industries d'arts, spectacles et loisirs (p. ex., compagnies d'arts d'interprétations, établissement du patrimoine, parcs d'attractions, centres de ski, marinas et salles de jeux électroniques)
  • Hébergement et services de restauration (hébergement des voyageurs, maisons de chambres et pensions de famille, restaurant à service complet)
  • Autres services (sauf les administrations publiques), par exemple réparation et entretien, organismes religieux, services funéraires

Exemple : Si votre compagnie a vendu du carburant diesel à des marinas, hôpitaux, universités et des compagnies de services immobiliers, veuillez calculer le nombre total de litres de diesel vendus à ces compagnies et le déclarer à la ligne 26.

Ligne 27 - Total, nombre de litres vendu, y compris les biocarburants
Déclarez le nombre total de litres de carburant, y compris le nombre total de litres de biocarburant rajouté aux carburants, vendus au cours de l'année civile. La ligne 27 est la somme des lignes 3 à 26.Veuillez noter que le nombre déclaré à la ligne 27 doit être égal à celui déclaré à la ligne 2.

4. Section B: Biocarburants

Essence à moteur

Si vous rajoutez de l'éthanol ou achetez de l'essence déjà mélangée à de l'éthanol, veuillez déclarer le nombre total de litres d'éthanol vendus aux lignes 1a et/ou 1b. Ne déclarez pas les ventes d'éthanol non mélangé à de l'essence.

Ligne 1a – Total, nombre de litres d'éthanol vendus (que vous avez vous-même mélangé à l'essence)

Si vous avez acheté de l'essence à moteur qui ne contenait pas d'éthanol, veuillez déclarer le nombre total de litres d'éthanol que vous avez vous-même mélangé à l'essence que vous avez vendue.

Ligne 1b – Veuillez indiquer ci-dessous la ou les sources d'éthanol utilisées; cochez toutes les sources qui s'appliquent
Cochez la case appropriée pour indiquer la source de l'éthanol utilisée. Cochez toutes les sources qui s'appliquent.
Si la source n'est pas le blé ou le maïs, veuillez cocher la case « Autre » et préciser la source dans la case réservée à cet effet.

Ligne 2a - Total, nombre de litres d'éthanol vendus (achetés prémélangés)
Si vous avez acheté de l'essence déjà mélangée à de l'éthanol, veuillez déclarer le nombre total de litres d'éthanol contenus dans l'essence que vous avez vendue.

Ligne 2b – Veuillez indiquer ci-dessous la ou les sources d'éthanol utilisées; cochez toutes les sources qui s'appliquent
Cochez la case appropriée pour indiquer la source de l'éthanol utilisée. Cochez toutes les sources qui s'appliquent.
Si la source n'est pas le blé ou le maïs, veuillez cocher la case « Autre » et préciser la source dans la case réservée à cet effet.

Carburant diesel et mazout de chauffage

Les instructions suivantes se rapportent aux biocarburants que vous avez mélangés au carburant diesel et au mazout de chauffage que vous avez vendus. Ne déclarez pas les ventes de biodiesel non mélangé à du diesel ou à du mazout de chauffage.

Ligne 1 - Total, nombre de litres du biodiesel vendus
Si vous vendez du carburant diesel ou du mazout de chauffage mélangé à du biodiesel, veuillez indiquer le nombre de litres de biodiesel vendus.

Ligne 2 – Veuillez indiquer ci-dessous la ou les sources de biodiesel utilisées; cochez toutes les sources qui s'appliquent
Cochez tous les cercles qui s'appliquent.

Si la source du biodiesel utilisée n'est pas contenue dans la liste fournie, veuillez cocher la case « Autre » et préciser la source dans la case réservée à cet effet.

Compte de l’énergie

Ce compte décrit les emplois annuels des produits énergétiques par les industries, les administrations publiques, les institutions et les ménages. Il couvre les sources d’énergie suivantes : charbon, gaz naturel, essence pour moteurs, mazout, mazout léger (y compris le kérosène), mazout lourd, gaz carburant de raffinerie, gaz de cokerie, gaz de pétrole liquéfiés (y compris les liquides de gaz naturel), électricité, coke, vapeur, bois et liqueurs résiduaires. L’unité de mesure est le térajoule. Ne sont publiés que les emplois des produits énergétiques en raison de leur contenu énergétique – les emplois des produits énergétiques comme intrants de matières (p. ex. l’emploi de produits pétroliers pour produire des plastiques) ne sont pas inclus dans le compte des emplois de l’énergie, mais les données sont disponibles sur demande.

En général, les enquêtes sur l’énergie fournissent des données pour les grands consommateurs d’énergie. Quand les données de consommation exprimées en unités physiques ne sont pas disponibles, des estimations sont faites sur la base des données sur les dépenses qui figurent dans les comptes d’entrées-sorties.

Le Bulletin sur la disponibilité et écoulement d’énergie au Canada (BDEE) fournit les totaux de contrôle pour la consommation des types de carburants. Il fournit aussi les données de base sur la consommation par les producteurs et sur les emplois non énergétiques des carburants. L’Enquête sur la consommation industrielle d’énergie réalisée par Statistique Canada fournit des données détaillées sur la consommation de carburant par les industries manufacturières. Ces données sont combinées à celles du BDEE pour obtenir les estimations pour les industries manufacturières.

Les données pour le secteur de l’extraction minière et de l’extraction de pétrole et de gaz sont étalonnées sur les totaux du BDEE en ajoutant des données pour la transformation d’énergie et la consommation par les producteurs. Les données détaillées de consommation de carburant par les industries sont tirées du Recensement des mines produit par Ressources naturelles Canada.

Les données pour les secteurs de l’agriculture et de la construction sont tirées directement du BDEE et réparties entre les diverses sous-industries en fonction des données sur les dépenses en carburant qui figurent dans les comptes d’entrées-sorties.

Les enquêtes sur les transports fournissent les données sur la consommation de carburant pour les compagnies aériennes. Ces données portent sur les emplois internationaux de carburant d’aviation par les transporteurs canadiens, conformément aux lignes directrices du SCEE. Les enquêtes sur les transports fournissent aussi les données sur la consommation de carburant pour les compagnies ferroviaires et de transport de passagers par autobus et du transport urbain.

Les achats d’essence pour moteurs et de mazout sont étalonnés sur les données du BDEE, mais sont répartis entre les industries en fonction des données sur les dépenses des comptes provinciaux d’entrées-sorties. L’utilisation des données des comptes provinciaux permet de tenir compte des variations des prix d’une province à l’autre. Cela permet de répartir les ventes au détail à la pompe, qui ne sont pas désagrégées selon l’industrie acheteuse dans le BDEE et pour lesquelles des données détaillées de consommation physique par industrie n’existent pas.

Les données sur la consommation d’énergie des ménages sont tirées directement de la catégorie résidentielle du BDEE, sauf celles sur la consommation d’essence pour moteurs et de mazout, qui font partie de la répartition des ventes au détail à la pompe susmentionnées.

Les données sur la consommation de bois et de liqueurs résiduaires sont tirées directement de l’Enquête sur la consommation industrielle d’énergie.

Message important à l’intention de tous les répondants

Programme d’économie d’énergie dans l’industrie canadienne logo

Au nom du conseil exécutif du Programme d’économie d’énergie dans l’industrie canadienne (PEEIC), je souhaite remercier tous ceux qui ont participé à l’enquête de l’an dernier sur la consommation industrielle d’énergie (CIE).

Votre participation à l’enquête sur la CIE nous permet de suivre les progrès de l’industrie en matière d’efficacité énergétique et, par conséquent, d’évaluer sa participation au cadre pancanadien pour la croissance verte et le changement climatique. Les données sur la CIE servent à établir le bilan de rentabilité de la gestion de l’énergie, dont le renouvellement de financement et de programmes, pour effectuer le suivi des progrès sectoriels et souligner les réalisations de l’industrie en matière d’efficacité énergétique dans le cadre du rapport annuel PEEIC disponible en ligne au peeic.ca sous « À propos du PEEIC ».

Afin de favoriser et d’appuyer les efforts de l’industrie canadienne en matière d’efficacité énergétique, Ressources naturelles Canada offre des outils et des services dans le cadre du PEEIC, tels que des ateliers en gestion de l’énergie (Le gros Bon $ens) grâce à l’Institut canadien de formation en énergie (CIET), des rapports d’étalonnage, des guides de pratiques exemplaires et d’assistance financière à coûts partagés. Le PEEIC croit que les organisations canadiennes peuvent améliorer leur performance énergétique en utilisant un système intégré de gestion de l’énergie, tel qu’ISO 50001, la norme de gestion de l’énergie au Canada. Actuellement, 17 organisations sont certifiées ISO 50001 au Canada. La norme ENERGY STAR pour l’industrie sera également appliquée au Canada au printemps 2017.

On peut rapidement mettre en œuvre les systèmes de gestion de l’énergie et obtenir des résultats immédiatement. Souvent, grâce à des mesures incitatives sur les services publics, il est possible de déterminer des occasions en matière d’économie d’énergie qui peuvent aboutir à une période de récupération de moins de deux ans. Si les organisations canadiennes étaient en mesure de réaliser une amélioration de l’efficacité énergétique de 5 %, selon la moyenne du mélange énergétique au Canada, les facteurs d’émission et les coûts de l’énergie, les entreprises pourraient s’attendre à des économies d’énergie d’un à 1 375 milliards de dollars. Une telle réduction dans la consommation d’énergie de l’industrie représenterait également une réduction des émissions de GES équivalant au retrait de 1,6 à 2,4 millions de voitures des routes canadiennes.

Le PEEIC encourage une gestion efficace de l’énergie et une amélioration continue en matière d’efficacité énergétique dans l’industrie. En effet, elle améliore le résultat net des entreprises tout en permettant au Canada d’atteindre ses objectifs en matière de lutte contre le changement climatique. Pour de plus amples renseignements sur la façon dont le PEEIC peut soutenir votre organisation à atteindre et dépasser ses objectifs en matière d’efficacité énergétique, veuillez prendre contact avec nous.

Andy Mahut
Gestionnaire, Pratiques énergétiques, U.S. Steel Canada Inc.
Président, Conseil exécutif du PEEIC

PEEIC
580, rue Booth
12e étage
Ottawa (Ontario)
K1A 0E4
Tél. : (343) 292-8798
Téléc : (613) 992-3161
cipec-peeic@rncan.gc.ca
peeic.ca