Inférence bayésienne prédictive sur une proportion sous un modèle double pour petits domaines avec corrélations hétérogènes
Section 2. Modèles doubles bayésiens pour petits domaines et calculs

Nous considérons une population finie de l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWgaaa@352F@ domaines et de M i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGPbaabeaaaaa@35EA@ grappes dans le i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ domaine, et nous supposons qu’il existe N i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36DA@ individus dans la j e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaCa aaleqabaGaaeyzaaaaaaa@3602@ grappe dans le i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ domaine. Les réponses binaires sont y i j k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaamOAaiaadUgaaeqaaaaa@37F5@ pour i = 1, , l , j = 1, , M i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacqWItecBcaaISaGaamOAaiaa i2dacaaIXaGaaGilaiablAciljaaiYcacaWGnbWaaSbaaSqaaiaadM gaaeqaaOGaaGilaaaa@428E@ k = 1, , N i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGobWaaSbaaSqaaiaadMga caWGQbaabeaakiaac6caaaa@3C96@ Nous supposons qu’un échantillon aléatoire simple de m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGPbaabeaaaaa@360A@ grappes est tiré du i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ petit domaine et qu’un échantillon aléatoire simple de n i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FA@ individus est tiré des m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGPbaabeaaaaa@360A@ grappes échantillonnées provenant du i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ domaine. Ici, nous supposons que les poids de sondage sont les mêmes dans toutes les grappes dans chaque domaine. Soit n i = j = 1 m i n i j , s i j = k = 1 n i j y i j k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqaaiaad6gadaWgaaWcbaGa amyAaiaadQgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaaiaad2gada WgaaadbaGaamyAaaqabaaaniabggHiLdGccaaISaGaaGjbVlaaykW7 caWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaai2dadaaeWaqaai aadMhadaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaaaeaacaWGRbGa aGypaiaaigdaaeaacaWGUbWaaSbaaWqaaiaadMgacaWGQbaabeaaa0 GaeyyeIuoaaaa@5354@ et s i = j = 1 m i s i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqaaiaadohadaWgaaWcbaGa amyAaiaadQgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaaiaad2gada WgaaadbaGaamyAaaqabaaaniabggHiLdGccaGGUaaaaa@4113@

Notre cible est la proportion du i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ domaine dans la population finie, qui est donnée par

P i = j = 1 M i k = 1 N i j y i j k N i , i = 1, , l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaai2dadaWcaaqaamaaqahabeWcbaGaamOA aiaai2dacaaIXaaabaGaamytamaaBaaameaacaWGPbaabeaaa0Gaey yeIuoakmaaqahabaGaamyEamaaBaaaleaacaWGPbGaamOAaiaadUga aeqaaaqaaiaadUgacaaI9aGaaGymaaqaaiaad6eadaWgaaadbaGaam yAaiaadQgaaeqaaaqdcqGHris5aaGcbaGaamOtamaaBaaaleaacaWG PbaabeaaaaGccaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacq WIMaYscaaISaGaeS4eHWMaaGilaaaa@541F@

N i = j = 1 M i N i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqaaiaad6eadaWgaaWcbaGa amyAaiaadQgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaaiaad2eada WgaaadbaGaamyAaaqabaaaniabggHiLdGccaGGUaaaaa@40A9@ Soit T i j ( 1 ) = k = n i j + 1 N i j y i j k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMca aaaakiaai2dadaaeWaqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaca WGRbaabeaaaeaacaWGRbGaaGypaiaad6gadaWgaaadbaGaamyAaiaa dQgaaeqaaSGaey4kaSIaaGymaaqaaiaad6eadaWgaaadbaGaamyAai aadQgaaeqaaaqdcqGHris5aaaa@491D@ les totaux des unités non échantillonnées des grappes échantillonnées ( j = 1, , m i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGQbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaad2gadaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3D4C@ et T i j ( 2 ) = k = 1 N i j y i j k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMca aaaakiaai2dadaaeWaqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaca WGRbaabeaaaeaacaWGRbGaaGypaiaaigdaaeaacaWGobWaaSbaaWqa aiaadMgacaWGQbaabeaaa0GaeyyeIuoakiaacYcaaaa@45EE@ les totaux des grappes non échantillonnées ( j = m i + 1, , M i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGQbGaaGypaiaad2gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaI XaGaaGilaiablAciljaaiYcacaWGnbWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaGaaiOlaaaa@4026@ En posant que n i = j = 1 m i n i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWaqaaiaad6gadaWgaaWcbaGa amyAaiaadQgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaaiaad2gada WgaaadbaGaamyAaaqabaaaniabggHiLdGccaGGSaaaaa@4107@ p ^ i = j = 1 m i k = 1 n i j y i j k / n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja WaaSbaaSqaaiaadMgaaeqaaOGaaGypamaaqadabeWcbaGaamOAaiaa i2dacaaIXaaabaGaamyBamaaBaaameaacaWGPbaabeaaa0GaeyyeIu oakmaaqadabaWaaSGbaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbGa am4AaaqabaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaaaaaeaaca WGRbGaaGypaiaaigdaaeaacaWGUbWaaSbaaWqaaiaadMgacaWGQbaa beaaa0GaeyyeIuoakiaacYcaaaa@4BBD@ nous pouvons exprimer notre cible, P i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@36A7@ sous la forme

P i = n i p ^ i + j = 1 m i T i j ( 1 ) + j = m i + 1 M i T i j ( 2 ) N i , i = 1, , l . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaad6gadaWgaaWcbaGa amyAaaqabaGcceWGWbGbaKaadaWgaaWcbaGaamyAaaqabaGccqGHRa WkdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad2gadaWgaaad baGaamyAaaqabaaaniabggHiLdGccaaMc8UaamivamaaDaaaleaaca WGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiab gUcaRmaaqahabeWcbaGaamOAaiaai2dacaWGTbWaaSbaaWqaaiaadM gaaeqaaSGaey4kaSIaaGymaaqaaiaad2eadaWgaaadbaGaamyAaaqa baaaniabggHiLdGccaWGubWaa0baaSqaaiaadMgacaWGQbaabaWaae WaaeaacaaIYaaacaGLOaGaayzkaaaaaaGcbaGaamOtamaaBaaaleaa caWGPbaabeaaaaGccaaISaGaaGjbVlaaywW7caWGPbGaaGypaiaaig dacaaISaGaeSOjGSKaaGilaiabloriSjaai6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaGGPaaaaa@7126@

Pour faire une inférence au sujet de P i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@36A7@ nous ajustons des modèles bayésiens hiérarchiques aux données. En utilisant la représentation bêta-binomiale, ces modèles s’adaptent à la structure du plan double. Nous décrivons deux modèles, l’un avec une corrélation homogène et l’autre avec des corrélations hétérogènes, ce qui représente notre principale contribution à l’extension du modèle de Nandram (2015). À la section 2.1, nous examinons le modèle bayésien hiérarchique avec corrélation homogène de Nandram (2015) et nous montrons comment le rendre comparable à notre modèle bayésien hiérarchique avec corrélations hétérogènes que nous décrivons à la section 2.2. À la section 2.3, nous décrivons l’échantillonneur de Gibbs par blocs utilisé pour ajuster notre modèle avec corrélations hétérogènes.

2.1 Une revue du modèle double avec corrélation homogène

Nandram (2015) a décrit le modèle double pour petits domaines avec corrélation homogène. Ici, nous examinons brièvement les principales hypothèses qui le sous-tendent, à savoir

y i j k | p i j ind Bernoulli ( p i j ) , ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WG5bWaaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaaMc8oacaGL iWoacaaMc8UaamiCamaaBaaaleaacaWGPbGaamOAaaqabaGccaaMe8 UaaGPaVpaaxacabaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOdaleqa baGaaeyAaiaab6gacaqGKbaaaOGaaGjbVlaaykW7caqGcbGaaeyzai aabkhacaqGUbGaae4BaiaabwhacaqGSbGaaeiBaiaabMgadaqadaqa aiaadchadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaa GaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikda caGGUaGaaGOmaiaacMcaaaa@6789@

μ i | θ , γ iid Bêta [ θ 1 γ γ , ( 1 θ ) 1 γ γ ] , ( 2.3 ) ρ , θ , γ iid Uniforme ( 0,1 ) , ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaamaaeiaabaGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaGPaVdGa ayjcSdGaaGPaVlabeI7aXjaaiYcacaaMe8Uaeq4SdCgabaWaaCbiae aarqqr1ngBPrgifHhDYfgaiuaacqWF8iIoaSqabeaacaqGPbGaaeyA aiaabsgaaaGccaaMe8UaaGPaVlaabkeacaqGQdGaaeiDaiaabggada WadaqaaiabeI7aXnaalaaabaGaaGymaiabgkHiTiabeo7aNbqaaiab eo7aNbaacaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiUdehacaGLOa GaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4SdCga aaGaay5waiaaw2faaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaykW7caGGOaGaaGOmaiaac6cacaaIZaGaaiykaaqaaiabeg8a YjaaiYcacaaMe8UaeqiUdeNaaGilaiaaysW7cqaHZoWzaeaadaWfGa qaaiab=XJi6aWcbeqaaiaabMgacaqGPbGaaeizaaaakiaaysW7caaM c8Uaaeyvaiaab6gacaqGPbGaaeOzaiaab+gacaqGYbGaaeyBaiaabw gadaqadaqaaiaaicdacaaISaGaaGymaaGaayjkaiaawMcaaiaaiYca caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aaywW7caGGOaGaaGOmaiaac6cacaaI0aGaaiykaaaaaaa@A032@

ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@35BE@ et γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@35A5@ représentent les corrélations intragrappe et intergrappes, respectivement. L’hypothèse est que 0 < θ , ρ , γ < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH4oqCcaaISaGaaGjbVlabeg8aYjaaiYcacaaMe8Uaeq4SdCMa aGipaiaaigdaaaa@40A2@ strictement. Notons que, dans un même domaine, la corrélation intragrappe ρ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaai ilaaaa@366E@ c’est-à-dire la corrélation entre deux unités dans une même grappe, est cor ( y i j k , y i j k | μ i , γ , ρ ) = ρ , k k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGYbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbGaam4A aaqabaGccaGGSaGaaGjbVpaaeiaabaGaamyEamaaBaaaleaacaWGPb GaamOAaiqadUgagaqbaaqabaGccaaMc8oacaGLiWoacaaMc8UaeqiV d02aaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaysW7cqaHZoWzcaaISa GaaGjbVlabeg8aYbGaayjkaiaawMcaaiaai2dacqaHbpGCcaaISaGa aGiiaiaadUgacqGHGjsUceWGRbGbauaacaaIUaaaaa@5A5E@ Semblablement, dans un même domaine, la corrélation intergrappes γ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai ilaaaa@3655@ c’est-à-dire la corrélation entre deux unités dans deux grappes différentes, est cor ( y i j k , y i j k | θ , γ , ρ ) = γ , j j , k k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGYbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbGaam4A aaqabaGccaaISaGaaGjbVpaaeiaabaGaamyEamaaBaaaleaacaWGPb GabmOAayaafaGabm4AayaafaaabeaakiaaykW7aiaawIa7aiaaykW7 cqaH4oqCcaaISaGaaGjbVlabeo7aNjaaiYcacaaMe8UaeqyWdihaca GLOaGaayzkaaGaaGypaiabeo7aNjaaiYcacaaMe8UaamOAaiabgcMi 5kqadQgagaqbaiaaiYcacaaMe8Uaam4AaiabgcMi5kqadUgagaqbai aai6caaaa@6010@ Ici, c’est ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@35BE@ qui fait la distinction entre les modèles simple et double, et quand ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@35BE@ tend vers zéro, le modèle double devient le modèle simple, Nandram (2015).

Pour ajuster le modèle spécifié par (2.2) à (2.4), Nandram (2015) a recouru à l’échantillonnage aléatoire et à la quadrature gaussienne pour exécuter des intégrations numériques unidimensionnelles. Il a également utilisé l’échantillonnage de Gibbs pour la comparaison et constaté de légères différences. Cependant, notre généralisation aux corrélations hétérogènes (nombre accru de paramètres) aboutit à des paramètres faiblement identifiés supplémentaires et l’ajustement du modèle devient plus difficile. Donc, nous intégrons des contraintes d’unimodalité sur les distributions a priori des paramètres de domaine, ce qui permet d’analyser des données éparses. Pour faire des comparaisons entre les deux modèles, l’un avec des corrélations homogènes et l’autre avec des corrélations hétérogènes, nous imposons aussi des contraintes d’unimodalité dans le modèle spécifié par (2.2) à (2.4). Nos résultats sous ce modèle homogène légèrement modifié sont semblables à ceux de Nandram (2015).

Les méthodes exposées dans le présent article permettent d’imposer l’unimodalité sur certaines distributions pour faciliter l’estimation des paramètres faiblement identifiés. Les conditions d’unimodalité sont suffisamment flexibles pour éviter de contraindre excessivement les modèles. Pour une procédure bayésienne non paramétrique complète, consulter Damien, Laud et Smith (1997). Donc, tout au long de nos calculs, nous appliquons la contrainte d’unimodalité aux hyperparamètres de μ i ( i = 1, , l ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaOWaaeWaaeaacaWGPbGaaGypaiaaigdacaaI SaGaeSOjGSKaaGilaiabloriSbGaayjkaiaawMcaaiaacYcaaaa@3F40@

γ 1 γ < θ < 1 2 γ 1 γ , 0 < γ < 1 3 . ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdCgaaiaaiYdacqaH4oqCcaaI 8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabeo7aNbqaaiaaigdacq GHsislcqaHZoWzaaGaaGilaiaaiccacaaIGaGaaGimaiaaiYdacqaH ZoWzcaaI8aWaaSaaaeaacaaIXaaabaGaaG4maaaacaaIUaGaaGzbVl aaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaI1aGa aiykaaaa@5732@

Nous imposons aussi des contraintes d’unimodalité similaires à la section 2.2 pour le modèle avec corrélations hétérogènes. D’où, nous donnons au modèle spécifié par (2.2) à (2.5) le nom de modèle CHO (pour corrélation homogène).

Pour ajuster le modèle, Nandram (2015) utilise la règle de multiplication en obtenant p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ après le tirage d’échantillons aléatoires de ( μ , ρ , θ , et γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaahY 7acaGGSaGaaGjbVlabeg8aYjaaiYcacaaMe8UaeqiUdeNaaiilaiaa ysW7caaMc8UaaeyzaiaabshacaaMe8UaaGPaVlabeo7aNjaacMcaaa a@48FB@ à partir de leur densité a posteriori conjointe, où μ = ( μ 1 , , μ l ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiVdiabg2 da9maabmaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab lAciljaaiYcacqaH8oqBdaWgaaWcbaGaeS4eHWgabeaaaOGaayjkai aawMcaamaaCaaaleqabaGccWaGyBOmGikaaiaac6caaaa@43F0@ La densité a posteriori conditionnelle des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ est donnée par

p i j | s i j , μ i , ρ ind Bêta { s i j + μ i 1 ρ ρ , n i j s i j + ( 1 μ i ) 1 ρ ρ } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaiYcacaaMe8 UaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7cqaHbpGC caaMe8UaaGPaVpaaxacabaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIO daleqabaGaaeyAaiaab6gacaqGKbaaaOGaaGjbVlaaykW7caqGcbGa aeO6aiaabshacaqGHbWaaiWaaeaacaWGZbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabgUcaRiabeY7aTnaaBaaaleaacaWGPbaabeaakmaa laaabaGaaGymaiabgkHiTiabeg8aYbqaaiabeg8aYbaacaaISaGaam OBamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcaWGZbWaaSba aSqaaiaadMgacaWGQbaabeaakiabgUcaRmaabmaabaGaaGymaiabgk HiTiabeY7aTnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaa laaabaGaaGymaiabgkHiTiabeg8aYbqaaiabeg8aYbaaaiaawUhaca GL9baacaaISaaaaa@7DA8@

et, en posant que s i j = k = 1 n i j y i j k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aWaaabmaeaacaWG5bWaaSba aSqaaiaadMgacaWGQbGaam4AaaqabaaabaGaam4Aaiaai2dacaaIXa aabaGaamOBamaaBaaameaacaWGPbGaamOAaaqabaaaniabggHiLdaa aa@432D@ et en agrégeant sur les p i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@37B6@ nous obtenons

π ( μ , ρ , θ , γ | y ) i = 1 l j = 1 m i B ( s i j + μ i 1 ρ ρ , n i j s i j + ( 1 μ i ) 1 ρ ρ ) B ( μ i 1 ρ ρ , ( 1 μ i ) 1 ρ ρ ) × μ i θ 1 γ γ 1 ( 1 μ i ) ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) , 0 < μ i , ρ < 1, i = 1, , l , γ 1 γ < θ < 1 2 γ 1 γ , 0 < γ < 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabec8aWnaabmaabaWaaqGaaeaacaWH8oGaaGilaiaaysW7cqaH bpGCcaaISaGaaGjbVlabeI7aXjaaiYcacaaMe8Uaeq4SdCMaaGPaVd GaayjcSdGaaGPaVlaahMhaaiaawIcacaGLPaaaaeaacqGHDisTdaqe WbqabSqaaiaadMgacaaI9aGaaGymaaqaaiabloriSbqdcqGHpis1aO WaaebCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGTbWaaSbaaWqa aiaadMgaaeqaaaqdcqGHpis1aOWaaSaaaeaacaWGcbWaaeWaaeaaca WGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeY7aTnaa BaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiabeg8aYb qaaiabeg8aYbaacaaISaGaamOBamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcaWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgU caRmaabmaabaGaaGymaiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabeg8aYb qaaiabeg8aYbaaaiaawIcacaGLPaaaaeaacaWGcbWaaeWaaeaacqaH 8oqBdaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaaigdacqGHsislcq aHbpGCaeaacqaHbpGCaaGaaiilamaabmaabaGaaGymaiabgkHiTiab eY7aTnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaalaaaba GaaGymaiabgkHiTiabeg8aYbqaaiabeg8aYbaaaiaawIcacaGLPaaa aaaabaaabaGaey41aq7aaSaaaeaacqaH8oqBdaqhaaWcbaGaamyAaa qaaiabeI7aXjaaykW7daWcaaqaaiaaigdacqGHsislcqaHZoWzaeaa cqaHZoWzaaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOWaaeWaaeaaca aIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaadaqadaqaaiaaigdacqGHsislcqaH4oqCai aawIcacaGLPaaacaaMc8+aaSaaaeaacaaIXaGaeyOeI0Iaeq4SdCga baGaeq4SdCgaaiaaykW7cqGHsislcaaMc8UaaGymaaaaaOqaaiaadk eadaqadaqaaiabeI7aXnaalaaabaGaaGymaiabgkHiTiabeo7aNbqa aiabeo7aNbaacaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiUdehaca GLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4S dCgaaaGaayjkaiaawMcaaaaacaaISaGaaGjbVlaaykW7caaIWaGaaG ipaiabeY7aTnaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaeqyW diNaaGipaiaaigdacaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiY cacqWIMaYscaaISaGaeS4eHWMaaGilaiaaysW7caaMe8+aaSaaaeaa cqaHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdCgaaiaaiYdacqaH4oqCca aI8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabeo7aNbqaaiaaigda cqGHsislcqaHZoWzaaGaaGilaiaaiccacaaIGaGaaGimaiaaiYdacq aHZoWzcaaI8aWaaSaaaeaacaaIXaaabaGaaG4maaaacaaIUaaaaaaa @FE1D@

Parce que T i j ( 1 ) | p i j ind Binomiale ( N i j n i j , p i j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGubWaa0baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaaacaGL OaGaayzkaaaaaOGaaGPaVdGaayjcSdGaaGPaVlaadchadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaGjbVlaaykW7daWfGaqaaebbfv3ySLgz GueE0jxyaGqbaiab=XJi6aWcbeqaaiaabMgacaqGUbGaaeizaaaaki aaysW7caaMc8UaaeOqaiaabMgacaqGUbGaae4Baiaab2gacaqGPbGa aeyyaiaabYgacaqGLbWaaeWaaeaacaWGobWaaSbaaSqaaiaadMgaca WGQbaabeaakiabgkHiTiaad6gadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaaGilaiaadchadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOa Gaayzkaaaaaa@642E@ et T i j ( 2 ) | p i j ind Binomiale ( N i j , p i j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGubWaa0baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIYaaacaGL OaGaayzkaaaaaOGaaGPaVdGaayjcSdGaaGPaVlaadchadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaGjbVlaaykW7daWfGaqaaebbfv3ySLgz GueE0jxyaGqbaiab=XJi6aWcbeqaaiaabMgacaqGUbGaaeizaaaaki aaysW7caaMc8UaaeOqaiaabMgacaqGUbGaae4Baiaab2gacaqGPbGa aeyyaiaabYgacaqGLbWaaeWaaeaacaWGobWaaSbaaSqaaiaadMgaca WGQbaabeaakiaaiYcacaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaa aOGaayjkaiaawMcaaaaa@603C@ et que, sachant p i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@37B6@ T i j ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMca aaaaaaa@3925@ et T i j ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMca aaaaaaa@3926@ sont indépendants, après avoir obtenu les échantillons des p i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@37B6@ il est facile de faire une inférence bayésienne prédictive. Voir Nandram (2015) pour des renseignements détaillés.

2.2 Un modèle double avec corrélations hétérogènes

Nous étendons le modèle CHO pour pouvoir traiter les corrélations hétérogènes. Nos hypothèses sont

y i j k | p i j ind Bernoulli ( p i j ) , ( 2.6 ) p i j | μ i , ρ i ind Bêta [ μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ] , ( 2.7 ) μ i | θ , γ iid Bêta [ θ 1 γ γ , ( 1 θ ) 1 γ γ ] , ( 2.8 ) ρ i | ϕ , δ iid Bêta [ ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ] , ( 2.9 ) θ , γ , ϕ , δ iid Uniforme ( 0,1 ) . ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaWaaqGaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbGaam4Aaaqa baGccaaMc8oacaGLiWoacaaMc8UaamiCamaaBaaaleaacaWGPbGaam OAaaqabaaakeaadaWfGaqaaebbfv3ySLgzGueE0jxyaGqbaiab=XJi 6aWcbeqaaiaabMgacaqGUbGaaeizaaaakiaaysW7caaMc8UaaeOqai aabwgacaqGYbGaaeOBaiaab+gacaqG1bGaaeiBaiaabYgacaqGPbWa aeWaaeaacaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkai aawMcaaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaGPaVlaacIcacaaIYaGaaiOlai aaiAdacaGGPaaabaWaaqGaaeaacaWGWbWaaSbaaSqaaiaadMgacaWG QbaabeaakiaaykW7aiaawIa7aiaaykW7cqaH8oqBdaWgaaWcbaGaam yAaaqabaGccaaISaGaaGjbVlabeg8aYnaaBaaaleaacaWGPbaabeaa aOqaamaaxacabaGae8hpIOdaleqabaGaaeyAaiaab6gacaqGKbaaaO GaaGjbVlaaykW7caqGcbGaaeO6aiaabshacaqGHbWaamWaaeaacqaH 8oqBdaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaaigdacqGHsislcq aHbpGCdaWgaaWcbaGaamyAaaqabaaakeaacqaHbpGCdaWgaaWcbaGa amyAaaqabaaaaOGaaGilamaabmaabaGaaGymaiabgkHiTiabeY7aTn aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaalaaabaGaaGym aiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYn aaBaaaleaacaWGPbaabeaaaaaakiaawUfacaGLDbaacaaISaGaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaI3a GaaiykaaqaamaaeiaabaGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlabeI7aXjaaiYcacaaMe8Uaeq4SdCgaba WaaCbiaeaacqWF8iIoaSqabeaacaqGPbGaaeyAaiaabsgaaaGccaaM e8UaaGPaVlaabkeacaqGQdGaaeiDaiaabggadaWadaqaaiabeI7aXn aalaaabaGaaGymaiabgkHiTiabeo7aNbqaaiabeo7aNbaacaaISaWa aeWaaeaacaaIXaGaeyOeI0IaeqiUdehacaGLOaGaayzkaaWaaSaaae aacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4SdCgaaaGaay5waiaaw2fa aiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMc8 UaaGPaVlaacIcacaaIYaGaaiOlaiaaiIdacaGGPaaabaWaaqGaaeaa cqaHbpGCdaWgaaWcbaGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8 Uaeqy1dyMaaGilaiaaysW7cqaH0oazaeaadaWfGaqaaiab=XJi6aWc beqaaiaabMgacaqGPbGaaeizaaaakiaaysW7caaMc8UaaeOqaiaabQ oacaqG0bGaaeyyamaadmaabaGaeqy1dy2aaSaaaeaacaaIXaGaeyOe I0IaeqiTdqgabaGaeqiTdqgaaiaaiYcadaqadaqaaiaaigdacqGHsi slcqaHvpGzaiaawIcacaGLPaaadaWcaaqaaiaaigdacqGHsislcqaH 0oazaeaacqaH0oazaaaacaGLBbGaayzxaaGaaGilaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaykW7caaMc8Uaaiikaiaaikda caGGUaGaaGyoaiaacMcaaeaacqaH4oqCcaaISaGaaGjbVlabeo7aNj aaiYcacaaMe8Uaeqy1dyMaaGilaiaaysW7cqaH0oazaeaadaWfGaqa aiab=XJi6aWcbeqaaiaabMgacaqGPbGaaeizaaaakiaaysW7caaMc8 Uaaeyvaiaab6gacaqGPbGaaeOzaiaab+gacaqGYbGaaeyBaiaabwga daqadaqaaiaaicdacaaISaGaaGymaaGaayjkaiaawMcaaiaai6caca aMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaicdacaGGPaaaaa aa@5CC3@

Notons que le coefficient de corrélation intragrappe ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@35BE@ introduit dans le modèle CHO est remplacé par ρ i ( i = 1, , l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaOGaaGiiamaabmaabaGaamyAaiaai2dacaaI XaGaaGilaiablAciljaaiYcacqWItecBaiaawIcacaGLPaaaaaa@3F44@ pour fournir le modèle bayésien hiérarchique avec corrélations hétérogènes.

Comme pour le modèle CHO, nous imposons aussi a priori deux ensembles de contraintes d’unimodalité,

γ 1γ <θ< 12γ 1γ , 0<γ< 1 3   et   δ 1δ <ϕ< 12δ 1δ , 0<δ< 1 3 .(2.11) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdCgaaiaaiYdacqaH4oqCcaaI 8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabeo7aNbqaaiaaigdacq GHsislcqaHZoWzaaGaaGilaiaaiccacaaIGaGaaGimaiaaiYdacqaH ZoWzcaaI8aWaaSaaaeaacaaIXaaabaGaaG4maaaacaqGGaGaaeiiai aabwgacaqG0bGaaeiiaiaabccacaaIGaWaaSaaaeaacqaH0oazaeaa caaIXaGaeyOeI0IaeqiTdqgaaiaaiYdacqaHvpGzcaaI8aWaaSaaae aacaaIXaGaeyOeI0IaaGOmaiabes7aKbqaaiaaigdacqGHsislcqaH 0oazaaGaaGilaiaaiccacaaIGaGaaGimaiaaiYdacqaH0oazcaaI8a WaaSaaaeaacaaIXaaabaGaaG4maaaacaaIUaGaaGzbVlaaywW7caaM f8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIXaGaaGymaiaacM caaaa@7437@

L’annexe B donne des preuves simples des inégalités susmentionnées en tant que critères d’unimodalité et la façon d’intégrer ces contraintes dans nos calculs. Donc, nous dénommons modèle CHE (pour corrélations hétérogènes) le modèle bayésien hiérarchique spécifié par (2.6) à (2.11).

De nouveau, à l’instar de Nandram (2015), nous montrons à l’annexe A que, sous le modèle CHE,   

cor ( y i j k , y i j k | μ i , γ , ρ i ) = ρ i , k k , ( 2.12 ) cor ( y i j k , y i j k | θ , γ , ρ i ) = γ , j j , k k . ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpmpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaabogacaqGVbGaaeOCamaabmaabaGaamyEamaaBaaaleaacaWG PbGaamOAaiaadUgaaeqaaOGaaGilaiaaysW7daabcaqaaiaadMhada WgaaWcbaGaamyAaiaadQgaceWGRbGbauaaaeqaaOGaaGPaVdGaayjc SdGaaGPaVlabeY7aTnaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8 Uaeq4SdCMaaGilaiaaysW7cqaHbpGCdaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaaaeaacaaI9aGaeqyWdi3aaSbaaSqaaiaadMgaae qaaOGaaGilaiaaywW7caWGRbGaeyiyIKRabm4AayaafaGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGPaVlaaykW7caaMc8UaaG PaVlaacIcacaaIYaGaaiOlaiaaigdacaaIYaGaaiykaaqaaiaaboga caqGVbGaaeOCamaabmaabaGaamyEamaaBaaaleaacaWGPbGaamOAai aadUgaaeqaaOGaaGilaiaaysW7daabcaqaaiaadMhadaWgaaWcbaGa amyAaiqadQgagaqbaiqadUgagaqbaaqabaGccaaMc8oacaGLiWoaca aMc8UaeqiUdeNaaGilaiaaysW7cqaHZoWzcaaISaGaaGjbVlabeg8a YnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaai2dacq aHZoWzcaaISaGaaGzbVlaadQgacqGHGjsUceWGQbGbauaacaaISaGa aGzbVlaadUgacqGHGjsUceWGRbGbauaacaaIUaGaaGzbVlaaywW7ca aMf8UaaiikaiaaikdacaGGUaGaaGymaiaaiodacaGGPaaaaaaa@A5BA@

En d’autres mots, à l’intérieur du i e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeyzaaaaaaa@3601@ domaine, le coefficient de corrélation intragrappe est ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaaaa@36D8@ et le coefficient de corrélation intergrappes est γ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai Olaaaa@3657@

En appliquant le théorème de Bayes dans le modèle CHE, la densité conjointe a posteriori π ( p , μ , ρ , θ , γ , ϕ , δ | y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaadaabcaqaaiaahchacaGGSaGaaGjbVlaahY7acaGGSaGaaGjb Vlaahg8acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaai ilaiaaysW7cqaHvpGzcaGGSaGaaGjbVlabes7aKjaaykW7aiaawIa7 aiaaykW7caWH5baacaGLOaGaayzkaaaaaa@54B8@ est facile à écrire. (Il s’agit de la densité sans la constante de normalisation.) Donc, nous pourrions donner à cette densité conjointe a posteriori le nom de posterior CHE.

Pour faire une inférence sur la proportion dans la population finie, P i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@36A7@ nous tirons des échantillons de π ( p , μ , ρ , θ , γ , ϕ , δ | y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaadaabcaqaaiaahchacaGGSaGaaGjbVlaahY7acaGGSaGaaGjb Vlaahg8acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaai ilaiaaysW7cqaHvpGzcaGGSaGaaGjbVlabes7aKjaaykW7aiaawIa7 aiaaykW7caWH5baacaGLOaGaayzkaaaaaa@54B8@ en utilisant la règle de multiplication et l’échantillonneur de Gibbs par blocs. Cette procédure est décrite à la section 2.3.

2.3 Calculs du posterior CHE

En premier lieu, notons que nous agrégeons le posterior CHE sur les p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ et que nous utilisons ensuite l’échantillonneur de Gibbs pour ajuster la densité a posteriori marginale conjointe. Après avoir obtenu les échantillons, nous pouvons tirer des échantillons des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ à partir de densités a posteriori conditionnelles des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ en appliquant la règle de multiplication.

Comme dans le modèle CHO, la densité a posteriori conditionnelle des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ est

p i j | μ i , ρ i , θ , γ , ϕ , δ , y ind Bêta { s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i } , 0 < p i j < 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7cqaH8oqBdaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlabeg 8aYnaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaeqiUdeNaaGil aiaaysW7cqaHZoWzcaaISaGaaGjbVlabew9aMjaaiYcacaaMe8Uaeq iTdqMaaGilaiaaysW7caWH5bGaaGjbVlaaykW7daWfGaqaaebbfv3y SLgzGueE0jxyaGqbaiab=XJi6aWcbeqaaiaabMgacaqGUbGaaeizaa aakiaaysW7caaMc8UaaeOqaiaabQoacaqG0bGaaeyyamaacmaabaGa am4CamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkcqaH8oqBda WgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaaigdacqGHsislcqaHbpGC daWgaaWcbaGaamyAaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyAaa qabaaaaOGaaGilaiaad6gadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaam4CamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkda qadaqaaiaaigdacqGHsislcqaH8oqBdaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaadaWcaaqaaiaaigdacqGHsislcqaHbpGCdaWgaa WcbaGaamyAaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyAaaqabaaa aaGccaGL7bGaayzFaaGaaGilaiaaywW7caaIWaGaaGipaiaadchada WgaaWcbaGaamyAaiaadQgaaeqaaOGaaGipaiaaigdacaaIUaaaaa@9978@

Donc, il est facile de tirer des échantillons des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ une fois que les échantillons sont obtenus à partir de la densité a posteriori conjointe de ( μ , ρ , θ , γ , ϕ , δ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WH8oGaaiilaiaaysW7caWHbpGaaiilaiaaysW7cqaH4oqCcaGGSaGa aGjbVlabeo7aNjaacYcacaaMe8Uaeqy1dyMaaiilaiaaysW7cqaH0o azaiaawIcacaGLPaaacaGGUaaaaa@4AC9@ Après élimination des p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@36FC@ du posterior CHE par intégration, la densité a posteriori conjointe marginale est donnée par

π ( μ , ρ , θ , γ , ϕ , δ | y ) i = 1 l j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) × μ i θ 1 γ γ 1 ( 1 μ i ) ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) × ρ i ϕ 1 δ δ 1 ( 1 ρ i ) ( 1 ϕ ) 1 δ δ 1 B ( ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ) , 0 < μ i , ρ i < 1, i = 1, , l , γ 1 γ < θ < 1 2 γ 1 γ , 0 < γ < 1 3 , δ 1 δ < ϕ < 1 2 δ 1 δ , 0 < δ < 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=jFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabec8aWnaabmaabaWaaqGaaeaacaWH8oGaaGilaiaaysW7caWH bpGaaGilaiaaysW7cqaH4oqCcaaISaGaaGjbVlabeo7aNjaaiYcaca aMe8Uaeqy1dyMaaGilaiaaysW7cqaH0oazcaaMc8oacaGLiWoacaaM c8UaaCyEaaGaayjkaiaawMcaaaqaaiabg2Hi1oaarahabeWcbaGaam yAaiaai2dacaaIXaaabaGaeS4eHWganiabg+GivdGcdaqeWbqabSqa aiaadQgacaaI9aGaaGymaaqaaiaad2gadaWgaaadbaGaamyAaaqaba aaniabg+GivdGcdaWcaaqaaiaadkeadaqadaqaaiaadohadaWgaaWc baGaamyAaiaadQgaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaadM gaaeqaaOWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaa dMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaakiaaiY cacaWGUbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadoha daWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSYaaeWaaeaacaaIXa GaeyOeI0IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzk aaWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaae qaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaa wMcaaaqaaiaadkeadaqadaqaaiabeY7aTnaaBaaaleaacaWGPbaabe aakmaalaaabaGaaGymaiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaa beaaaOqaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaaGccaaISaWaae WaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaS qaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaa aOGaayjkaiaawMcaaaaaaeaaaeaacqGHxdaTdaWcaaqaaiabeY7aTn aaDaaaleaacaWGPbaabaGaeqiUdeNaaGPaVpaalaaabaGaaGymaiab gkHiTiabeo7aNbqaaiabeo7aNbaacaaMc8UaeyOeI0IaaGPaVlaaig daaaGcdaqadaqaaiaaigdacqGHsislcqaH8oqBdaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaadaahaaWcbeqaamaabmaabaGaaGymai abgkHiTiabeI7aXbGaayjkaiaawMcaaiaaykW7daWcaaqaaiaaigda cqGHsislcqaHZoWzaeaacqaHZoWzaaGaaGPaVlabgkHiTiaaykW7ca aIXaaaaaGcbaGaamOqamaabmaabaGaeqiUde3aaSaaaeaacaaIXaGa eyOeI0Iaeq4SdCgabaGaeq4SdCgaaiaaiYcadaqadaqaaiaaigdacq GHsislcqaH4oqCaiaawIcacaGLPaaadaWcaaqaaiaaigdacqGHsisl cqaHZoWzaeaacqaHZoWzaaaacaGLOaGaayzkaaaaaiabgEna0oaala aabaGaeqyWdi3aa0baaSqaaiaadMgaaeaacqaHvpGzcaaMc8+aaSaa aeaacaaIXaGaeyOeI0IaeqiTdqgabaGaeqiTdqgaaiaaykW7cqGHsi slcaaMc8UaaGymaaaakmaabmaabaGaaGymaiabgkHiTiabeg8aYnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWaae WaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaaGPaVpaa laaabaGaaGymaiabgkHiTiabes7aKbqaaiabes7aKbaacaaMc8Uaey OeI0IaaGPaVlaaigdaaaaakeaacaWGcbWaaeWaaeaacqaHvpGzdaWc aaqaaiaaigdacqGHsislcqaH0oazaeaacqaH0oazaaGaaGilamaabm aabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaalaaabaGa aGymaiabgkHiTiabes7aKbqaaiabes7aKbaaaiaawIcacaGLPaaaaa GaaGilaiaaykW7caaMe8UaaGimaiaaiYdacqaH8oqBdaWgaaWcbaGa amyAaaqabaGccaaISaGaaGjbVlabeg8aYnaaBaaaleaacaWGPbaabe aakiaaiYdacaaIXaGaaGilaiaaykW7caaMc8UaamyAaiaai2dacaaI XaGaaGilaiablAciljaaiYcacqWItecBcaaISaaabaaabaGaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaeq4SdCgabaGaaGymaiabgkHi Tiabeo7aNbaacaaI8aGaeqiUdeNaaGipamaalaaabaGaaGymaiabgk HiTiaaikdacqaHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdCgaaiaaiYca caaIGaGaaGiiaiaaicdacaaI8aGaeq4SdCMaaGipamaalaaabaGaaG ymaaqaaiaaiodaaaGaaGilaiaaiccacaaIGaWaaSaaaeaacqaH0oaz aeaacaaIXaGaeyOeI0IaeqiTdqgaaiaaiYdacqaHvpGzcaaI8aWaaS aaaeaacaaIXaGaeyOeI0IaaGOmaiabes7aKbqaaiaaigdacqGHsisl cqaH0oazaaGaaGilaiaaiccacaaIGaGaaGimaiaaiYdacqaH0oazca aI8aWaaSaaaeaacaaIXaaabaGaaG4maaaacaaIUaaaaaaa@6B0A@

Les densités a posteriori conditionnelles sont

π ( μ i | ρ i , θ , γ , ϕ , δ , y ) j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) × μ i θ 1 γ γ 1 ( 1 μ i ) ( 1 θ ) 1 γ γ 1 , π ( ρ i | μ i , θ , γ , ϕ , δ , y ) j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) × ρ i ϕ 1 δ δ 1 ( 1 ρ i ) ( 1 δ ) 1 δ δ 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpmpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabec8aWnaabmaabaWaaqGaaeaacqaH8oqBdaWgaaWcbaGaamyA aaqabaGccaaMc8oacaGLiWoacaaMc8UaeqyWdi3aaSbaaSqaaiaadM gaaeqaaOGaaGilaiaaysW7cqaH4oqCcaaISaGaaGjbVlabeo7aNjaa iYcacaaMe8Uaeqy1dyMaaGilaiaaysW7cqaH0oazcaaISaGaaGjbVl aahMhaaiaawIcacaGLPaaaaeaacqGHDisTdaqeWbqabSqaaiaadQga caaI9aGaaGymaaqaaiaad2gadaWgaaadbaGaamyAaaqabaaaniabg+ GivdGcdaWcaaqaaiaadkeadaqadaqaaiaadohadaWgaaWcbaGaamyA aiaadQgaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaadMgaaeqaaO WaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqa aaGcbaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaakiaaiYcacaWGUb WaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadohadaWgaaWc baGaamyAaiaadQgaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0 IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaa aeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcba GaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaqa aiaadkeadaqadaqaaiabeY7aTnaaBaaaleaacaWGPbaabeaakmaala aabaGaaGymaiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaOqa aiabeg8aYnaaBaaaleaacaWGPbaabeaaaaGccaaISaWaaeWaaeaaca aIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadM gaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjk aiaawMcaaaaacqGHxdaTcqaH8oqBdaqhaaWcbaGaamyAaaqaaiabeI 7aXjaaykW7daWcaaqaaiaaigdacqGHsislcqaHZoWzaeaacqaHZoWz aaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOWaaeWaaeaacaaIXaGaey OeI0IaeqiVd02aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaadaqadaqaaiaaigdacqGHsislcqaH4oqCaiaawIcaca GLPaaacaaMc8+aaSaaaeaacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4S dCgaaiaaykW7cqGHsislcaaMc8UaaGymaaaakiaaiYcaaeaacqaHap aCdaqadaqaamaaeiaabaGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaOGa aGPaVdGaayjcSdGaaGPaVlabeY7aTnaaBaaaleaacaWGPbaabeaaki aacYcacaaMe8UaeqiUdeNaaGilaiaaysW7cqaHZoWzcaaISaGaaGjb Vlabew9aMjaaiYcacaaMe8UaeqiTdqMaaGilaiaaysW7caWH5baaca GLOaGaayzkaaaabaGaeyyhIu7aaebCaeqaleaacaWGQbGaaGypaiaa igdaaeaacaWGTbWaaSbaaWqaaiaadMgaaeqaaaqdcqGHpis1aOWaaS aaaeaacaWGcbWaaeWaaeaacaWGZbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgUcaRiabeY7aTnaaBaaaleaacaWGPbaabeaakmaalaaaba GaaGymaiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiab eg8aYnaaBaaaleaacaWGPbaabeaaaaGccaaISaGaamOBamaaBaaale aacaWGPbGaamOAaaqabaGccqGHsislcaWGZbWaaSbaaSqaaiaadMga caWGQbaabeaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeY7aTn aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaalaaabaGaaGym aiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYn aaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaeaacaWGcbWa aeWaaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaaig dacqGHsislcqaHbpGCdaWgaaWcbaGaamyAaaqabaaakeaacqaHbpGC daWgaaWcbaGaamyAaaqabaaaaOGaaGilamaabmaabaGaaGymaiabgk HiTiabeY7aTnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaa laaabaGaaGymaiabgkHiTiabeg8aYnaaBaaaleaacaWGPbaabeaaaO qaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaa aaGaey41aqRaeqyWdi3aa0baaSqaaiaadMgaaeaacqaHvpGzcaaMc8 +aaSaaaeaacaaIXaGaeyOeI0IaeqiTdqgabaGaeqiTdqgaaiaaykW7 cqGHsislcaaMc8UaaGymaaaakmaabmaabaGaaGymaiabgkHiTiabeg 8aYnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqa baWaaeWaaeaacaaIXaGaeyOeI0IaeqiTdqgacaGLOaGaayzkaaGaaG PaVpaalaaabaGaaGymaiabgkHiTiabes7aKbqaaiabes7aKbaacaaM c8UaeyOeI0IaaGPaVlaaigdaaaGccaaISaaaaaaa@5B94@

et, en posant G 1 = { i = 1 l μ i } 1 / l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaakiaai2dadaGadaqaamaaradabaGaeqiVd02a aSbaaSqaaiaadMgaaeqaaaqaaiaadMgacaaI9aGaaGymaaqaaiablo riSbqdcqGHpis1aaGccaGL7bGaayzFaaWaaWbaaSqabeaadaWcgaqa aiaaigdaaeaacqWItecBaaaaaaaa@4343@ et G 2 = { i = 1 l ( 1 μ i ) } 1 / l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaai2dadaGadaqaamaaradabeWcbaGaamyA aiaai2dacaaIXaaabaGaeS4eHWganiabg+GivdGcdaqadaqaaiaaig dacqGHsislcqaH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaaaiaawUhacaGL9baadaahaaWcbeqaamaalyaabaGaaGymaaqaai abloriSbaaaaGccaGGSaaaaa@4745@

π ( θ | μ , ρ , γ , ϕ , δ , y ) { G 1 θ 1 γ γ 1 G 2 ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) } l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaadaabcaqaaiabeI7aXjaaykW7aiaawIa7aiaaykW7caWH8oGa aGilaiaaysW7caWHbpGaaGilaiaaysW7cqaHZoWzcaaISaGaaGjbVl abew9aMjaaiYcacaaMe8UaeqiTdqMaaGilaiaaysW7caWH5baacaGL OaGaayzkaaGaeyyhIu7aaiWaaeaadaWcaaqaaiaadEeadaqhaaWcba GaaGymaaqaaiabeI7aXjaaykW7daWcaaqaaiaaigdacqGHsislcqaH ZoWzaeaacqaHZoWzaaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOGaam 4ramaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0IaeqiU dehacaGLOaGaayzkaaGaaGPaVpaalaaabaGaaGymaiabgkHiTiabeo 7aNbqaaiabeo7aNbaacaaMc8UaeyOeI0IaaGPaVlaaigdaaaaakeaa caWGcbWaaeWaaeaacqaH4oqCdaWcaaqaaiaaigdacqGHsislcqaHZo WzaeaacqaHZoWzaaGaaGilamaabmaabaGaaGymaiabgkHiTiabeI7a XbGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabeo7aNbqaai abeo7aNbaaaiaawIcacaGLPaaaaaaacaGL7bGaayzFaaWaaWbaaSqa beaacqWItecBaaGccaaISaaaaa@8BE5@

et

π ( γ | μ , ρ , θ , ϕ , δ , y ) { G 1 θ 1 γ γ 1 G 2 ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) } l . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae Waaeaadaabcaqaaiabeo7aNjaaykW7aiaawIa7aiaaykW7caWH8oGa aGilaiaaysW7caWHbpGaaGilaiaaysW7cqaH4oqCcaGGSaGaaGjbVl abew9aMjaaiYcacaaMe8UaeqiTdqMaaGilaiaaysW7caWH5baacaGL OaGaayzkaaGaeyyhIu7aaiWaaeaadaWcaaqaaiaadEeadaqhaaWcba GaaGymaaqaaiabeI7aXjaaykW7daWcaaqaaiaaigdacqGHsislcqaH ZoWzaeaacqaHZoWzaaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOGaam 4ramaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0IaeqiU dehacaGLOaGaayzkaaGaaGPaVpaalaaabaGaaGymaiabgkHiTiabeo 7aNbqaaiabeo7aNbaacaaMc8UaeyOeI0IaaGPaVlaaigdaaaaakeaa caWGcbWaaeWaaeaacqaH4oqCdaWcaaqaaiaaigdacqGHsislcqaHZo WzaeaacqaHZoWzaaGaaGilamaabmaabaGaaGymaiabgkHiTiabeI7a XbGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabeo7aNbqaai abeo7aNbaaaiaawIcacaGLPaaaaaaacaGL7bGaayzFaaWaaWbaaSqa beaacqWItecBaaGccaGGUaaaaa@8BDB@

De même, en posant H 1 = { i = 1 l ρ i } 1 / l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIXaaabeaakiaai2dadaGadaqaamaaradabaGaeqyWdi3a aSbaaSqaaiaadMgaaeqaaaqaaiaadMgacaaI9aGaaGymaaqaaiablo riSbqdcqGHpis1aaGccaGL7bGaayzFaaWaaWbaaSqabeaadaWcgaqa aiaaigdaaeaacqWItecBaaaaaaaa@434E@ et H 2 = { i = 1 l ( 1 ρ i ) } 1 / l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaaabeaakiaai2dadaGadaqaamaaradabeWcbaGaamyA aiaai2dacaaIXaaabaGaeS4eHWganiabg+GivdGcdaqadaqaaiaaig dacqGHsislcqaHbpGCdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaaaiaawUhacaGL9baadaahaaWcbeqaamaalyaabaGaaGymaaqaai abloriSbaaaaGccaGGSaaaaa@4750@

π ( ϕ | μ , ρ , θ , γ , δ , y ) { H 1 ϕ 1 δ δ 1 H 2 ( 1 ϕ ) 1 δ δ 1 B ( ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ) } l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae Waaeaadaabcaqaaiabew9aMjaaykW7aiaawIa7aiaaykW7caWH8oGa aGilaiaaysW7caWHbpGaaGilaiaaysW7cqaH4oqCcaGGSaGaaGjbVl abeo7aNjaaiYcacaaMe8UaeqiTdqMaaGilaiaaysW7caWH5baacaGL OaGaayzkaaGaeyyhIu7aaiWaaeaadaWcaaqaaiaadIeadaqhaaWcba GaaGymaaqaaiabew9aMjaaykW7daWcaaqaaiaaigdacqGHsislcqaH 0oazaeaacqaH0oazaaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOGaam isamaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1 dygacaGLOaGaayzkaaGaaGPaVpaalaaabaGaaGymaiabgkHiTiabes 7aKbqaaiabes7aKbaacaaMc8UaeyOeI0IaaGPaVlaaigdaaaaakeaa caWGcbWaaeWaaeaacqaHvpGzdaWcaaqaaiaaigdacqGHsislcqaH0o azaeaacqaH0oazaaGaaGilamaabmaabaGaaGymaiabgkHiTiabew9a MbGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabes7aKbqaai abes7aKbaaaiaawIcacaGLPaaaaaaacaGL7bGaayzFaaWaaWbaaSqa beaacqWItecBaaGccaaISaaaaa@8C19@

et

π ( δ | μ , ρ , θ , γ , ϕ , y ) { H 1 ϕ 1 δ δ 1 H 2 ( 1 ϕ ) 1 δ δ 1 B ( ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ) } l . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae Waaeaadaabcaqaaiabes7aKjaaykW7aiaawIa7aiaaykW7caWH8oGa aGilaiaaysW7caWHbpGaaGilaiaaysW7cqaH4oqCcaGGSaGaaGjbVl abeo7aNjaaiYcacaaMe8Uaeqy1dyMaaGilaiaaysW7caWH5baacaGL OaGaayzkaaGaeyyhIu7aaiWaaeaadaWcaaqaaiaadIeadaqhaaWcba GaaGymaaqaaiabew9aMjaaykW7daWcaaqaaiaaigdacqGHsislcqaH 0oazaeaacqaH0oazaaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOGaam isamaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1 dygacaGLOaGaayzkaaGaaGPaVpaalaaabaGaaGymaiabgkHiTiabes 7aKbqaaiabes7aKbaacaaMc8UaeyOeI0IaaGPaVlaaigdaaaaakeaa caWGcbWaaeWaaeaacqaHvpGzdaWcaaqaaiaaigdacqGHsislcqaH0o azaeaacqaH0oazaaGaaGilamaabmaabaGaaGymaiabgkHiTiabew9a MbGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabes7aKbqaai abes7aKbaaaiaawIcacaGLPaaaaaaacaGL7bGaayzFaaWaaWbaaSqa beaacqWItecBaaGccaGGUaaaaa@8C15@

Le problème de cette procédure est que θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@35B4@ et γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@35A5@ sont corrélés, parce qu’intuitivement, ils dépendent tous deux uniquement de { μ i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaaa@3909@ à travers deux nombres, G 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@35B1@ et G 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaacYcaaaa@366C@ et non les données, y . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEaiaac6 caaaa@35B1@ Cela donne un mauvais mélange dans l’échantillonneur de Gibbs. Par exemple, E ( μ i | θ , γ ) = θ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaWaaqGaaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaGccaaMc8oa caGLiWoacaaMc8UaeqiUdeNaaiilaiaaysW7cqaHZoWzaiaawIcaca GLPaaacqGH9aqpcqaH4oqCcaGGSaaaaa@4783@ É .-T . ( μ i | θ , γ ) = θ γ ( 1 θ ) / θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyYaiaab6 cacaqGTaGaaeivaiaab6cadaqadaqaamaaeiaabaGaeqiVd02aaSba aSqaaiaadMgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlabeI7aXjaacY cacaaMe8Uaeq4SdCgacaGLOaGaayzkaaGaeyypa0JaeqiUde3aaOaa aeaacqaHZoWzdaWcgaqaamaabmaabaGaaGymaiabgkHiTiabeI7aXb GaayjkaiaawMcaaaqaaiabeI7aXbaaaSqabaaaaa@52B3@ et μ i θ { 1 + z i γ ( 1 θ ) / θ } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaOGaeyisISRaeqiUde3aaiWaaeaacaaIXaGa ey4kaSIaamOEamaaBaaaleaacaWGPbaabeaakmaakaaabaGaeq4SdC 2aaSGbaeaadaqadaqaaiaaigdacqGHsislcqaH4oqCaiaawIcacaGL PaaaaeaacqaH4oqCaaaaleqaaaGccaGL7bGaayzFaaGaaiilaaaa@4A05@ E ( z i ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaamOEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiab g2da9iaaicdaaaa@3ADA@ et Var ( z i ) = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvaiaabg gacaqGYbWaaeWaaeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaaGccaGL OaGaayzkaaGaeyypa0JaaGymaiaacYcaaaa@3D73@ Nandram (2015). Autrement dit, { μ i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaaa@39AF@ est corrélé à θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@365A@ et γ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai Olaaaa@36FD@ Un problème similaire se manifeste dans ( ρ , ϕ , δ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGaaGjbVlabes7aKbGaayjk aiaawMcaaiaac6caaaa@4013@ Par conséquent, afin de résoudre ces problèmes de faible identifiabilité, nous utilisons l’échantillonneur de Gibbs par blocs pour tirer des échantillons aléatoires de ( μ , ρ , θ , γ , ϕ , δ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WH8oGaaiilaiaaysW7caWHbpGaaiilaiaaysW7cqaH4oqCcaGGSaGa aGjbVlabeo7aNjaacYcacaaMe8Uaeqy1dyMaaiilaiaaysW7cqaH0o azaiaawIcacaGLPaaacaGGUaaaaa@4B6F@

L’échantillonneur de Gibbs par blocs s’obtient en tirant ( μ , θ , γ | ρ , ϕ , δ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada abcaqaaiaahY7acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4S dCMaaGPaVdGaayjcSdGaaGPaVlaahg8acaGGSaGaaGjbVlabew9aMj aacYcacaaMe8UaeqiTdqMaaiilaiaaysW7caWH5baacaGLOaGaayzk aaaaaa@506B@ et ( ρ , ϕ , δ | μ , θ , γ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada abcaqaaiaahg8acaGGSaGaaGjbVlabew9aMjaacYcacaaMe8UaeqiT dqMaaGPaVdGaayjcSdGaaGPaVlaahY7acaGGSaGaaGjbVlabeI7aXj aacYcacaaMe8Uaeq4SdCMaaiilaiaaysW7caWH5baacaGLOaGaayzk aaaaaa@506B@ à tour de rôle de la densité a posteriori conditionnelle jusqu’à la convergence, comme nous le décrivons plus bas. Les deux densités a posteriori conditionnelles conjointes sont

π 1 ( μ , θ , γ | ρ , ϕ , δ , y ) i = 1 l j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) × μ i θ 1 γ γ 1 ( 1 μ i ) ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) , 0 < μ i < 1, i = 1, , l , γ 1 γ < θ < 1 2 γ 1 γ , 0 < γ < 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpmpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabec8aWnaaBaaaleaacaaIXaaabeaakmaabmaabaWaaqGaaeaa caWH8oGaaGilaiaaysW7cqaH4oqCcaaISaGaaGjbVlabeo7aNjaayk W7aiaawIa7aiaaykW7caWHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGa aGjbVlabes7aKjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaaqaai abg2Hi1oaarahabeWcbaGaamyAaiaai2dacaaIXaaabaGaeS4eHWga niabg+GivdGcdaqeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad2 gadaWgaaadbaGaamyAaaqabaaaniabg+GivdGcdaWcaaqaaiaadkea daqadaqaaiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaS IaeqiVd02aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaaIXaGaeyOe I0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaS qaaiaadMgaaeqaaaaakiaaiYcacaWGUbWaaSbaaSqaaiaadMgacaWG QbaabeaakiabgkHiTiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Iaeq yWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaa dMgaaeqaaaaaaOGaayjkaiaawMcaaaqaaiaadkeadaqadaqaaiabeY 7aTnaaBaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiab eg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaaca WGPbaabeaaaaGccaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02a aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXa GaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3a aSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaeaaaeaacq GHxdaTdaWcaaqaaiabeY7aTnaaDaaaleaacaWGPbaabaGaeqiUdeNa aGPaVpaalaaabaGaaGymaiabgkHiTiabeo7aNbqaaiabeo7aNbaaca aMc8UaeyOeI0IaaGPaVlaaigdaaaGcdaqadaqaaiaaigdacqGHsisl cqaH8oqBdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaa WcbeqaamaabmaabaGaaGymaiabgkHiTiabeI7aXbGaayjkaiaawMca aiaaykW7daWcaaqaaiaaigdacqGHsislcqaHZoWzaeaacqaHZoWzaa GaaGPaVlabgkHiTiaaykW7caaIXaaaaaGcbaGaamOqamaabmaabaGa eqiUde3aaSaaaeaacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4SdCgaai aaiYcadaqadaqaaiaaigdacqGHsislcqaH4oqCaiaawIcacaGLPaaa daWcaaqaaiaaigdacqGHsislcqaHZoWzaeaacqaHZoWzaaaacaGLOa GaayzkaaaaaiaacYcacaaMc8UaaGjbVlaaicdacaaI8aGaeqiVd02a aSbaaSqaaiaadMgaaeqaaOGaaGipaiaaigdacaaISaGaaGzbVlaadM gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaeS4eHWMaaGilaiaa ykW7caaMe8+aaSaaaeaacqaHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdC gaaiaaiYdacqaH4oqCcaaI8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOm aiabeo7aNbqaaiaaigdacqGHsislcqaHZoWzaaGaaGilaiaaiccaca aIGaGaaGimaiaaiYdacqaHZoWzcaaI8aWaaSaaaeaacaaIXaaabaGa aG4maaaaaaaaaa@0AEA@

et

π 2 ( ρ , ϕ , δ | μ , θ , γ , y ) i = 1 l j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) × ρ i ϕ 1 δ δ 1 ( 1 ρ i ) ( 1 ϕ ) 1 δ δ 1 B ( ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ) , 0 < ρ i < 1, i = 1, , l , δ 1 δ < ϕ < 1 2 δ 1 δ , 0 < δ < 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpmpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0dXdbba9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabec8aWnaaBaaaleaacaaIYaaabeaakmaabmaabaWaaqGaaeaa caWHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGaaGjbVlabes7aKjaayk W7aiaawIa7aiaaykW7caWH8oGaaGilaiaaysW7cqaH4oqCcaaISaGa aGjbVlabeo7aNjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaaqaai abg2Hi1oaarahabeWcbaGaamyAaiaai2dacaaIXaaabaGaeS4eHWga niabg+GivdGcdaqeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad2 gadaWgaaadbaGaamyAaaqabaaaniabg+GivdGcdaWcaaqaaiaadkea daqadaqaaiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaS IaeqiVd02aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaaIXaGaeyOe I0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaS qaaiaadMgaaeqaaaaakiaaiYcacaWGUbWaaSbaaSqaaiaadMgacaWG QbaabeaakiabgkHiTiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Iaeq yWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaa dMgaaeqaaaaaaOGaayjkaiaawMcaaaqaaiaadkeadaqadaqaaiabeY 7aTnaaBaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiab eg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaaca WGPbaabeaaaaGccaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02a aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXa GaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3a aSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaeaaaeaacq GHxdaTdaWcaaqaaiabeg8aYnaaDaaaleaacaWGPbaabaGaeqy1dyMa aGPaVpaalaaabaGaaGymaiabgkHiTiabes7aKbqaaiabes7aKbaaca aMc8UaeyOeI0IaaGPaVlaaigdaaaGcdaqadaqaaiaaigdacqGHsisl cqaHbpGCdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaa WcbeqaamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca aiaaykW7daWcaaqaaiaaigdacqGHsislcqaH0oazaeaacqaH0oazaa GaaGPaVlabgkHiTiaaykW7caaIXaaaaaGcbaGaamOqamaabmaabaGa eqy1dy2aaSaaaeaacaaIXaGaeyOeI0IaeqiTdqgabaGaeqiTdqgaai aaiYcadaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaa daWcaaqaaiaaigdacqGHsislcqaH0oazaeaacqaH0oazaaaacaGLOa GaayzkaaaaaiaacYcacaaMc8UaaGjbVlaaicdacaaI8aGaeqyWdi3a aSbaaSqaaiaadMgaaeqaaOGaaGipaiaaigdacaaISaGaaGzbVlaadM gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaeS4eHWMaaGilaiaa ykW7caaMe8+aaSaaaeaacqaH0oazaeaacaaIXaGaeyOeI0IaeqiTdq gaaiaaiYdacqaHvpGzcaaI8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOm aiabes7aKbqaaiaaigdacqGHsislcqaH0oazaaGaaGilaiaaiccaca aIGaGaaGimaiaaiYdacqaH0oazcaaI8aWaaSaaaeaacaaIXaaabaGa aG4maaaacaGGUaaaaaaa@0BFB@

Pour exécuter l’échantillonneur de Gibbs par blocs, nous appliquons la règle de multiplication dans π 1 ( μ , θ , γ | ρ , ϕ , δ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiaahY7acaGGSaGa aGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaaGPaVdGaayjcSdGaaG PaVlaahg8acaGGSaGaaGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaaaaa@5319@ et π 2 ( ρ , ϕ , δ | μ , θ , γ , y ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiaahg8acaGGSaGa aGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMaaGPaVdGaayjcSdGaaG PaVlaahY7acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaGaai4oaaaa@53D9@ voir, par exemple, Molina et coll. (2014) et Toto et Nandram (2010).

D’abord, nous considérons π 1 ( μ , θ , γ | ρ , ϕ , δ , y ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiaahY7acaGGSaGa aGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaaGPaVdGaayjcSdGaaG PaVlaahg8acaGGSaGaaGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaGaaiOlaaaa@53CB@ Nous éliminons μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiVdaaa@35EC@ par intégration et obtenons la densité a posteriori conditionnelle conjointe de ( θ , γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH4oqCcaGGSaGaaGjbVlabeo7aNbGaayjkaiaawMcaaaaa@3BC7@ sachant ρ , ϕ , δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyWdiaacY cacaaMe8Uaeqy1dyMaaiilaiaaysW7cqaH0oazaaa@3DD8@ et y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEaiaacY caaaa@3656@

p ( θ , γ | ρ , ϕ , δ , y ) i = 1 l { 0 1 [ j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) ] × μ i θ 1 γ γ 1 ( 1 μ i ) ( 1 θ ) 1 γ γ 1 B ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) d μ i } , 0 < μ i < 1, i = 1, , l , γ 1 γ < θ < 1 2 γ 1 γ , 0 < γ < 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadchadaqadaqaamaaeiaabaGaeqiUdeNaaiilaiaaysW7cqaH ZoWzcaaMc8oacaGLiWoacaaMc8UaaCyWdiaacYcacaaMe8Uaeqy1dy MaaiilaiaaysW7cqaH0oazcaGGSaGaaGjbVlaahMhaaiaawIcacaGL PaaaaeaacqGHDisTdaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaai abloriSbqdcqGHpis1aOWaaiqaaeaadaWdXaqaamaadmaabaWaaebC aeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGTbWaaSbaaWqaaiaadM gaaeqaaaqdcqGHpis1aOWaaSaaaeaacaWGcbWaaeWaaeaacaWGZbWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeY7aTnaaBaaale aacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiabeg8aYnaaBaaa leaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaa GccaaISaGaamOBamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisl caWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRmaabmaaba GaaGymaiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaamaalaaabaGaaGymaiabgkHiTiabeg8aYnaaBaaaleaaca WGPbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaaaakiaa wIcacaGLPaaaaeaacaWGcbWaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yAaaqabaGcdaWcaaqaaiaaigdacqGHsislcqaHbpGCdaWgaaWcbaGa amyAaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyAaaqabaaaaOGaaG ilamaabmaabaGaaGymaiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaamaalaaabaGaaGymaiabgkHiTiabeg8aYn aaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGPbaa beaaaaaakiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaleaacaaIWa aabaGaaGymaaqdcqGHRiI8aaGccaGL7baaaeaaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGacaqaaiabgEna0oaa laaabaGaeqiVd02aa0baaSqaaiaadMgaaeaacqaH4oqCcaaMc8+aaS aaaeaacaaIXaGaeyOeI0Iaeq4SdCgabaGaeq4SdCgaaiaaykW7cqGH sislcaaMc8UaaGymaaaakmaabmaabaGaaGymaiabgkHiTiabeY7aTn aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWa aeWaaeaacaaIXaGaeyOeI0IaeqiUdehacaGLOaGaayzkaaGaaGPaVp aalaaabaGaaGymaiabgkHiTiabeo7aNbqaaiabeo7aNbaacaaMc8Ua eyOeI0IaaGPaVlaaigdaaaaakeaacaWGcbWaaeWaaeaacqaH4oqCda WcaaqaaiaaigdacqGHsislcqaHZoWzaeaacqaHZoWzaaGaaGilamaa bmaabaGaaGymaiabgkHiTiabeI7aXbGaayjkaiaawMcaamaalaaaba GaaGymaiabgkHiTiabeo7aNbqaaiabeo7aNbaaaiaawIcacaGLPaaa aaGaamizaiabeY7aTnaaBaaaleaacaWGPbaabeaaaOGaayzFaaGaai ilaiaaykW7caaMe8UaaGimaiaaiYdacqaH8oqBdaWgaaWcbaGaamyA aaqabaGccaaI8aGaaGymaiaaiYcacaaMf8UaamyAaiaai2dacaaIXa GaaGilaiablAciljaaiYcacqWItecBcaaISaaabaaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacqaHZoWzaeaacaaIXaGaeyOeI0Iaeq4SdCgaaiaaiY dacqaH4oqCcaaI8aWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabeo7a NbqaaiaaigdacqGHsislcqaHZoWzaaGaaGilaiaaiccacaaIGaGaaG imaiaaiYdacqaHZoWzcaaI8aWaaSaaaeaacaaIXaaabaGaaG4maaaa caGGUaaaaaaa@42CF@

Ici, nous utilisons la somme de Riemann par la méthode du point milieu pour éliminer par intégration tous les μ i , i = 1 , , l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMgaaeqaaOGaaiilaiaaysW7caaMc8UaamyAaiabg2da 9iaaigdacaGGSaGaeSOjGSKaaiilaiabloriSjaac6caaaa@425E@ Nous subdivisons l’intervalle (0, 1) en G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@3574@ sous-intervalles ( a 0 , a 1 ] , ( a 1 , a 2 ] , , [ a G 1 , a G ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKamaeaaca WGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadggadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLDbaacaGGSaWaaKamaeaacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadggadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLDbaacaGGSaGaeSOjGSKaaiilamaadmaabaGaam yyamaaBaaaleaacaWGhbGaeyOeI0IaaGymaaqabaGccaGGSaGaamyy amaaBaaaleaacaWGhbaabeaaaOGaay5waiaaw2faaiaacYcaaaa@4D44@ a 0 = 0 , a i = i / G , i = 1 , G . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiabg2da9iaaicdacaGGSaGaaGjbVlaaykW7 caWGHbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGPb aabaGaam4raaaacaGGSaGaaGjbVlaaykW7caWGPbGaeyypa0JaaGym aiaacYcacqWIMaYscaWGhbGaaiOlaaaa@4AAD@ Alors, nous pouvons calculer la distribution a posteriori conditionnelle conjointe de ( θ , γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH4oqCcaGGSaGaaGjbVlabeo7aNbGaayjkaiaawMcaaaaa@3BCB@ comme il suit.

p ( θ , γ | ρ , ϕ , δ , y ) i = 1 l [ lim G v = 1 G g i ( a v 1 + a v 2 ) { F 1 ( a v 1 ) F 1 ( a v ) } ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaH4oqCcaGGSaGaaGjbVlabeo7aNjaaykW7aiaa wIa7aiaaykW7caWHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGaaGjbVl abes7aKjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiaaysW7caaM e8UaeyyhIuRaaGjbVlaaysW7daqeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiabloriSbqdcqGHpis1aOWaamWaaeaadaWfqaqaaiGacYga caGGPbGaaiyBaaWcbaGaam4raiabgkziUkabg6HiLcqabaGcdaaeWb qaaiaadEgadaWgaaWcbaGaamyAaaqabaGcdaqadaqaamaalaaabaGa amyyamaaBaaaleaacaWG2bGaeyOeI0IaaGymaaqabaGccqGHRaWkca WGHbWaaSbaaSqaaiaadAhaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGL PaaaaSqaaiaadAhacqGH9aqpcaaIXaaabaGaam4raaqdcqGHris5aO WaaiWaaeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG HbWaaSbaaSqaaiaadAhacqGHsislcaaIXaaabeaaaOGaayjkaiaawM caaiabgkHiTiaadAeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaa dggadaWgaaWcbaGaamODaaqabaaakiaawIcacaGLPaaaaiaawUhaca GL9baaaiaawUfacaGLDbaacaGGSaaaaa@85BD@

g i ( μ i ) = j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakmaabmaabaGaeqiVd02aaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaebCaeaadaWcaaqaaiaadk eadaqadaqaaiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4k aSIaeqiVd02aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaaIXaGaey OeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSba aSqaaiaadMgaaeqaaaaakiaaiYcacaWGUbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabgkHiTiaadohadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Ia eqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaai aadMgaaeqaaaaaaOGaayjkaiaawMcaaaqaaiaadkeadaqadaqaaiab eY7aTnaaBaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTi abeg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaa caWGPbaabeaaaaGccaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaI XaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi 3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaSqaaiaa dQgacqGH9aqpcaaIXaaabaGaamyBamaaBaaameaacaWGPbaabeaaa0 Gaey4dIunaaaa@8417@

et F 1 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakmaabmaabaGaeyyXICnacaGLOaGaayzkaaaa aa@3A37@ est la fonction de répartition correspondant à f 1 ( ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakmaabmaabaGaeyyXICnacaGLOaGaayzkaaGa aiilaaaa@3B07@ qui est une fonction de densité de Bêta ( θ 1 γ γ , ( 1 θ ) 1 γ γ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabQ oacaqG0bGaaeyyamaabmaabaGaeqiUde3aaSqaaSqaaiaaigdacqGH sislcqaHZoWzaeaacqaHZoWzaaGccaGGSaWaaeWaaeaacaaIXaGaey OeI0IaeqiUdehacaGLOaGaayzkaaWaaSqaaSqaaiaaigdacqGHsisl cqaHZoWzaeaacqaHZoWzaaaakiaawIcacaGLPaaacaGGUaaaaa@4C75@ Ensuite, nous éliminons également θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@365E@ par intégration en utilisant la quadrature gaussienne au moyen des polynômes orthogonaux de Legendre,

p ( γ | ρ , ϕ , δ , y ) g = 1 G ω g { i = 1 l 0 1 π 1 ( μ i , x g , γ | ρ i , ϕ , δ , y ) d μ i } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaHZoWzcaaMc8oacaGLiWoacaaMc8UaaCyWdiaa cYcacaaMe8Uaeqy1dyMaaiilaiaaysW7cqaH0oazcaGGSaGaaGjbVl aahMhaaiaawIcacaGLPaaacqGHijYUdaaeWbqaaiabeM8a3naaBaaa leaacaWGNbaabeaaaeaacaWGNbGaeyypa0JaaGymaaqaaiaadEeaa0 GaeyyeIuoakmaacmaabaWaaebCaeqaleaacaWGPbGaaGypaiaaigda aeaacqWItecBa0Gaey4dIunakmaapedabaGaeqiWda3aaSbaaSqaai aaigdaaeqaaOWaaeWaaeaadaabcaqaaiabeY7aTnaaBaaaleaacaWG PbaabeaakiaacYcacaaMe8UaamiEamaaBaaaleaacaWGNbaabeaaki aacYcacaaMe8Uaeq4SdCMaaGPaVdGaayjcSdGaaGPaVlabeg8aYnaa BaaaleaacaWGPbaabeaakiaacYcacaaMe8Uaeqy1dyMaaiilaiaays W7cqaH0oazcaGGSaGaaGjbVlaahMhaaiaawIcacaGLPaaacaWGKbGa eqiVd02aaSbaaSqaaiaadMgaaeqaaaqaaiaaicdaaeaacaaIXaaani abgUIiYdaakiaawUhacaGL9baacaGGSaaaaa@8656@

{ ω g } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aHjpWDdaWgaaWcbaGaam4zaaqabaaakiaawUhacaGL9baaaaa@39C8@ sont les poids et { x g } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaSbaaSqaaiaadEgaaeqaaaGccaGL7bGaayzFaaaaaa@38F8@ sont les racines du polynôme de Legendre sur l’intervalle [ γ 1 γ , 1 2 γ 1 γ ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcbaWcbaGaeq4SdCgabaGaaGymaiabgkHiTiabeo7aNbaakiaacYca daWcbaWcbaGaaGymaiabgkHiTiaaikdacqaHZoWzaeaacaaIXaGaey OeI0Iaeq4SdCgaaaGccaGLBbGaayzxaaGaaiOlaaaa@4498@ Nous avons pris G = 20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2 da9iaaikdacaaIWaaaaa@37F0@ dans nos calculs (de plus grandes valeurs de G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@3574@ ne font guère de différence).

Maintenant, nous pouvons utiliser une méthode à grille univariée (par exemple, Molina, Nandram et Rao 2014 et Toto et Nandram 2010) en vue de tirer des échantillons de la densité a posteriori de γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@364F@ conditionnellement à ρ , ϕ , δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyWdiaacY cacaaMe8Uaeqy1dyMaaiilaiaaysW7cqaH0oazaaa@3DDC@ et y ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEaiaacU daaaa@3669@ voir Ritter et Tanner (1992) pour une description de l’échantillonneur de Gibbs «à grille ». Alors, conditionnellement à γ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaai ilaaaa@36FF@ nous obtenons la densité a posteriori de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@365E@ comme il suit,

p ( θ | γ , ρ , ϕ , δ , y ) g = 1 G ω g { i = 1 l 0 1 π 1 ( μ i , θ | γ , ρ i , ϕ , δ , y ) d μ i } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaH4oqCcaaMc8oacaGLiWoacaaMc8Uaeq4SdCMa aiilaiaaysW7caWHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGaaGjbVl abes7aKjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiabgIKi7oaa qahabaGaeqyYdC3aaSbaaSqaaiaadEgaaeqaaaqaaiaadEgacqGH9a qpcaaIXaaabaGaam4raaqdcqGHris5aOWaaiWaaeaadaqeWbqabSqa aiaadMgacaaI9aGaaGymaaqaaiabloriSbqdcqGHpis1aOWaa8qmae aacqaHapaCdaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaaeiaabaGa eqiVd02aaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaysW7cqaH4oqCca aMc8oacaGLiWoacaaMc8Uaeq4SdCMaaiilaiaaysW7cqaHbpGCdaWg aaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlabew9aMjaacYcacaaMe8 UaeqiTdqMaaiilaiaaysW7caWH5baacaGLOaGaayzkaaGaamizaiab eY7aTnaaBaaaleaacaWGPbaabeaaaeaacaaIWaaabaGaaGymaaqdcq GHRiI8aaGccaGL7bGaayzFaaGaaiOlaaaa@89E2@

Les échantillons sont tirés de la densité a posteriori conditionnelle de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@35B4@ en utilisant de nouveau l’échantillonneur à grille univariée. Par la suite, conditionnellement à ( θ , γ ) , μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH4oqCcaaISaGaaGjbVlabeo7aNbGaayjkaiaawMcaaiaacYcacaaM e8UaaGPaVlaahY7aaaa@4036@ est tiré de p ( μ | θ , γ , ρ , ϕ , δ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacaWH8oGaaGPaVdGaayjcSdGaaGPaVlabeI7aXjaa cYcacaaMe8Uaeq4SdCMaaiilaiaaysW7caWHbpGaaiilaiaaysW7cq aHvpGzcaGGSaGaaGjbVlabes7aKjaacYcacaaMe8UaaCyEaaGaayjk aiaawMcaaaaa@5163@ en utilisant l’échantillonneur à grille univariée.

Pour la méthode à grille, nous divisons l’intervalle unitaire en sous-intervalles de 0,01 de largeur, et nous approximons la densité a posteriori conjointe par une distribution discrète avec probabilités proportionnelles aux hauteurs de la distribution continue aux points milieu de ces sous-intervalles. Notons que nous introduisons un bruit aléatoire (jittering) uniforme à l’intérieur de chaque intervalle sélectionné pour permettre différents écarts avec probabilité de un (Nandram 2015). Même quand nous avons utilisé des sous-intervalles plus fins (par exemple, largeur de 0,005), les résultats d’inférence ont été presque les mêmes. Donc, nous utilisons les sous-intervalles de 0,01 de largeur; voir Molina et coll. (2014). Lorsque la plupart de la distribution se trouve près de l’une des bornes (par exemple, 0 ou 1), nous créons des intervalles de plus petite largeur pour saisir les petites ou les grandes valeurs du paramètre.

Deuxièmement, nous considérons π 2 ( ρ , ϕ , δ | μ , θ , γ , y ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiaahg8acaGGSaGa aGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMaaGPaVdGaayjcSdGaaG PaVlaahY7acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaGaaiOlaaaa@53D0@ Nous éliminons ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyWdaaa@35F5@ par intégration et obtenons la densité a posteriori conditionnelle conjointe de ( ϕ , δ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHvpGzcaGGSaGaaGjbVlabes7aKbGaayjkaiaawMcaaaaa@3BDB@ sachant μ , θ , γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiVdiaacY cacaaMe8UaeqiUdeNaaiilaiaaysW7cqaHZoWzaaa@3DC7@ et y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEaiaacY caaaa@365A@

p( ϕ,δ|μ,θ,γ,y ) i=1 l { 0 1 [ j=1 m i B( s ij + μ i 1 ρ i ρ i , n ij s ij +( 1 μ i ) 1 ρ i ρ i ) B( μ i 1 ρ i ρ i ,( 1 μ i ) 1 ρ i ρ i ) ] × ρ i ϕ 1δ δ 1 ( 1 ρ i ) ( 1ϕ ) 1δ δ 1 B( ϕ 1δ δ ,( 1ϕ ) 1δ δ ) },0< ρ i <1,i=1,,l, δ 1δ <ϕ< 12δ 1δ ,0<δ< 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpmpu0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadchadaqadaqaamaaeiaabaGaeqy1dyMaaiilaiaaysW7cqaH 0oazcaaMc8oacaGLiWoacaaMc8UaaCiVdiaacYcacaaMe8UaeqiUde NaaiilaiaaysW7cqaHZoWzcaGGSaGaaGjbVlaahMhaaiaawIcacaGL PaaaaeaacqGHDisTdaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaai abloriSbqdcqGHpis1aOWaaiqaaeaadaWdXaqaamaadmaabaWaaebC aeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGTbWaaSbaaWqaaiaadM gaaeqaaaqdcqGHpis1aOWaaSaaaeaacaWGcbWaaeWaaeaacaWGZbWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeY7aTnaaBaaale aacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiabeg8aYnaaBaaa leaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGPbaabeaaaa GccaaISaGaaGjbVlaaykW7caWGUbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey 4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0IaeqyWdi 3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMga aeqaaaaaaOGaayjkaiaawMcaaaqaaiaadkeadaqadaqaaiabeY7aTn aaBaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTiabeg8a YnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGPb aabeaaaaGccaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaey OeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSba aSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDb aaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaakiaawUhaaaqaaaqa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaciaa baGaey41aq7aaSaaaeaacqaHbpGCdaqhaaWcbaGaamyAaaqaaiabew 9aMjaaykW7daWcaaqaaiaaigdacqGHsislcqaH0oazaeaacqaH0oaz aaGaaGPaVlabgkHiTiaaykW7caaIXaaaaOWaaeWaaeaacaaIXaGaey OeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaadaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcaca GLPaaacaaMc8+aaSaaaeaacaaIXaGaeyOeI0IaeqiTdqgabaGaeqiT dqgaaiaaykW7cqGHsislcaaMc8UaaGymaaaaaOqaaiaadkeadaqada qaaiabew9aMnaalaaabaGaaGymaiabgkHiTiabes7aKbqaaiabes7a KbaacaaISaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaay zkaaWaaSaaaeaacaaIXaGaeyOeI0IaeqiTdqgabaGaeqiTdqgaaaGa ayjkaiaawMcaaaaaaiaaw2haaiaacYcacaaMc8UaaGjbVlaaicdaca aI8aGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaOGaaGipaiaaigdacaaI SaGaaGjbVlaaykW7caWGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaG ilaiabloriSjaaiYcacaaMe8UaaGjbVpaalaaabaGaeqiTdqgabaGa aGymaiabgkHiTiabes7aKbaacaaI8aGaeqy1dyMaaGipamaalaaaba GaaGymaiabgkHiTiaaikdacqaH0oazaeaacaaIXaGaeyOeI0IaeqiT dqgaaiaaiYcacaaMe8UaaGPaVlaaicdacaaI8aGaeqiTdqMaaGipam aalaaabaGaaGymaaqaaiaaiodaaaGaaiOlaaaaaaa@2D2A@

De nouveau, nous appliquons la somme de Riemann par la méthode du point milieu pour éliminer par intégration tous les ρ i , i = 1 , , l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgaaeqaaOGaaiilaiaaysW7caaMc8UaamyAaiabg2da 9iaaigdacaGGSaGaeSOjGSKaaiilaiabloriSbaa@41B6@ et calculer la distribution a posteriori conditionnelle conjointe de ( ϕ , δ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHvpGzcaGGSaGaaGjbVlabes7aKbGaayjkaiaawMcaaiaacYcaaaa@3C8B@

p ( ϕ , δ | μ , θ , γ , y ) i = 1 l [ lim G v = 1 G h i ( a v 1 + a v 2 ) { F 2 ( a v 1 ) F 2 ( a v ) } ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaHvpGzcaGGSaGaaGjbVlabes7aKjaaykW7aiaa wIa7aiaaykW7caWH8oGaaiilaiaaysW7cqaH4oqCcaGGSaGaaGjbVl abeo7aNjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiabg2Hi1oaa rahabeWcbaGaamyAaiaai2dacaaIXaaabaGaeS4eHWganiabg+Givd GcdaWadaqaamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWGhbGa eyOKH4QaeyOhIukabeaakmaaqahabaGaamiAamaaBaaaleaacaWGPb aabeaakmaabmaabaWaaSaaaeaacaWGHbWaaSbaaSqaaiaadAhacqGH sislcaaIXaaabeaakiabgUcaRiaadggadaWgaaWcbaGaamODaaqaba aakeaacaaIYaaaaaGaayjkaiaawMcaaaWcbaGaamODaiabg2da9iaa igdaaeaacaWGhbaaniabggHiLdGcdaGadaqaaiaadAeadaWgaaWcba GaaGOmaaqabaGcdaqadaqaaiaadggadaWgaaWcbaGaamODaiabgkHi TiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamOramaaBaaale aacaaIYaaabeaakmaabmaabaGaamyyamaaBaaaleaacaWG2baabeaa aOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaGaay5waiaaw2faaiaacY caaaa@7EDD@

h i ( ρ i ) = j = 1 m i B ( s i j + μ i 1 ρ i ρ i , n i j s i j + ( 1 μ i ) 1 ρ i ρ i ) B ( μ i 1 ρ i ρ i , ( 1 μ i ) 1 ρ i ρ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGPbaabeaakmaabmaabaGaeqyWdi3aaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaebCaeaadaWcaaqaaiaadk eadaqadaqaaiaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4k aSIaeqiVd02aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaaIXaGaey OeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSba aSqaaiaadMgaaeqaaaaakiaaiYcacaWGUbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabgkHiTiaadohadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaGaeyOeI0Ia eqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaai aadMgaaeqaaaaaaOGaayjkaiaawMcaaaqaaiaadkeadaqadaqaaiab eY7aTnaaBaaaleaacaWGPbaabeaakmaalaaabaGaaGymaiabgkHiTi abeg8aYnaaBaaaleaacaWGPbaabeaaaOqaaiabeg8aYnaaBaaaleaa caWGPbaabeaaaaGccaaISaWaaeWaaeaacaaIXaGaeyOeI0IaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacaaI XaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeqyWdi 3aaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaSqaaiaa dQgacqGH9aqpcaaIXaaabaGaamyBamaaBaaameaacaWGPbaabeaaa0 Gaey4dIunaaaa@8422@

et F 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakmaabmaabaGaeyyXICnacaGLOaGaayzkaaaa aa@3A38@ est la fonction de répartition correspondant à f 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIYaaabeaakmaabmaabaGaeyyXICnacaGLOaGaayzkaaaa aa@3A58@ qui est une fonction de densité de Bêta ( ϕ 1 δ δ , ( 1 ϕ ) 1 δ δ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabQ oacaqG0bGaaeyyamaabmaabaGaeqy1dy2aaSqaaSqaaiaaigdacqGH sislcqaH0oazaeaacqaH0oazaaGccaGGSaWaaeWaaeaacaaIXaGaey OeI0Iaeqy1dygacaGLOaGaayzkaaWaaSqaaSqaaiaaigdacqGHsisl cqaH0oazaeaacqaH0oazaaaakiaawIcacaGLPaaacaGGUaaaaa@4C91@ En utilisant la quadrature gaussienne au moyen des polynômes orthogonaux de Legendre, nous pouvons éliminer ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dygaaa@3670@ par intégration et obtenir la densité a posteriori conditionnelle de δ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaai ilaaaa@36FD@

p ( δ | μ , θ , γ , y ) g = 1 G ω g { i = 1 l 0 1 π 2 ( ρ i , x g , δ | μ i , θ , γ , y ) d ρ i } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaH0oazcaaMc8oacaGLiWoacaaMc8UaaCiVdiaa cYcacaaMe8UaeqiUdeNaaiilaiaaysW7cqaHZoWzcaGGSaGaaGjbVl aahMhaaiaawIcacaGLPaaacqGHijYUdaaeWbqaaiqbeM8a3zaafaWa aSbaaSqaaiaadEgaaeqaaaqaaiaadEgacqGH9aqpcaaIXaaabaGaam 4raaqdcqGHris5aOWaaiWaaeaadaqeWbqabSqaaiaadMgacaaI9aGa aGymaaqaaiabloriSbqdcqGHpis1aOWaa8qmaeaacqaHapaCdaWgaa WcbaGaaGOmaaqabaGcdaqadaqaamaaeiaabaGaeqyWdi3aaSbaaSqa aiaadMgaaeqaaOGaaiilaiaaysW7ceWG4bGbauaadaWgaaWcbaGaam 4zaaqabaGccaGGSaGaaGjbVlabes7aKjaaykW7aiaawIa7aiaaykW7 cqaH8oqBdaWgaaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlabeI7aXj aacYcacaaMe8Uaeq4SdCMaaiilaiaaysW7caWH5baacaGLOaGaayzk aaGaamizaiabeg8aYnaaBaaaleaacaWGPbaabeaaaeaacaaIWaaaba GaaGymaaqdcqGHRiI8aaGccaGL7bGaayzFaaGaaiilaaaa@8650@

{ ω g } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacu aHjpWDgaqbamaaBaaaleaacaWGNbaabeaaaOGaay5Eaiaaw2haaaaa @392A@ sont les poids et { x g } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaace WG4bGbauaadaWgaaWcbaGaam4zaaqabaaakiaawUhacaGL9baaaaa@385A@ sont les racines du polynôme de Legendre sur l’intervalle [ δ 1 δ , 1 2 δ 1 δ ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcbaWcbaGaeqiTdqgabaGaaGymaiabgkHiTiabes7aKbaakiaacYca daWcbaWcbaGaaGymaiabgkHiTiaaikdacqaH0oazaeaacaaIXaGaey OeI0IaeqiTdqgaaaGccaGLBbGaayzxaaGaaiOlaaaa@43E6@

Alors, nous appliquons la méthode à grille univariée afin de tirer des échantillons de la densité a posteriori de δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@35A3@ conditionnellement à μ , θ , γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiVdiaacY cacaaMe8UaeqiUdeNaaGilaiaaysW7cqaHZoWzaaa@3D23@ et y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyEaiaac6 caaaa@35B2@ Par conséquent, nous pouvons représenter la densité a posteriori conditionnelle de ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dygaaa@3670@ par

p ( ϕ | δ , μ , θ , γ , y ) g = 1 G ω g { i = 1 l 0 1 π 2 ( ρ i , ϕ | δ , μ i , θ , γ , y ) d ρ i } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacqaHvpGzcaaMc8oacaGLiWoacaaMc8UaeqiTdqMa aiilaiaaysW7caWH8oGaaiilaiaaysW7cqaH4oqCcaGGSaGaaGjbVl abeo7aNjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiabgIKi7oaa qahabaGafqyYdCNbauaadaWgaaWcbaGaam4zaaqabaaabaGaam4zai abg2da9iaaigdaaeaacaWGhbaaniabggHiLdGcdaGadaqaamaaraha beWcbaGaamyAaiaai2dacaaIXaaabaGaeS4eHWganiabg+GivdGcda WdXaqaaiabec8aWnaaBaaaleaacaaIYaaabeaakmaabmaabaWaaqGa aeaacqaHbpGCdaWgaaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlabew 9aMjaaykW7aiaawIa7aiaaykW7cqaH0oazcaGGSaGaaGjbVlabeY7a TnaaBaaaleaacaWGPbaabeaakiaacYcacaaMe8UaeqiUdeNaaiilai aaysW7cqaHZoWzcaGGSaGaaGjbVlaahMhaaiaawIcacaGLPaaacaWG KbGaeqyWdi3aaSbaaSqaaiaadMgaaeqaaaqaaiaaicdaaeaacaaIXa aaniabgUIiYdaakiaawUhacaGL9baacaGGSaaaaa@89F2@

et obtenir des échantillons de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@365E@ en utilisant de nouveau l’échantillonneur à grille univariée. Enfin, conditionnellement à ( ϕ , δ ) , ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHvpGzcaGGSaGaaGjbVlabes7aKbGaayjkaiaawMcaaiaacYcacaaM e8UaaCyWdaaa@3F65@ peut être tiré de p ( ρ | μ , θ , γ , ϕ , δ , y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaWaaqGaaeaacaWHbpGaaGPaVdGaayjcSdGaaGPaVlaahY7acaGG SaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaaiilaiaaysW7cq aHvpGzcaGGSaGaaGjbVlabes7aKjaacYcacaaMe8UaaCyEaaGaayjk aiaawMcaaiaacYcaaaa@5214@ où nous utilisons également la méthode à grille univariée.

Cet algorithme échantillonne π 1 ( μ , θ , γ | ρ , ϕ , δ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiaahY7acaGGSaGa aGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaaGPaVdGaayjcSdGaaG PaVlaahg8acaGGSaGaaGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaaaaa@5273@ en tirant d’abord une itération de π 1 ( γ | ρ , ϕ , δ , y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiabeo7aNjaaykW7 aiaawIa7aiaaykW7caWHbpGaaiilaiaaysW7cqaHvpGzcaGGSaGaaG jbVlabes7aKjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiaacYca aaa@4BAB@ une itération de π 1 ( θ | γ , ρ , ϕ , δ , y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiabeI7aXjaaykW7 aiaawIa7aiaaykW7cqaHZoWzcaGGSaGaaGjbVlaahg8acaGGSaGaaG jbVlabew9aMjaacYcacaaMe8UaeqiTdqMaaiilaiaaysW7caWH5baa caGLOaGaayzkaaGaaiilaaaa@4F9E@ puis une itération de π 1 ( μ | θ , γ , ρ , ϕ , δ , y ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaabcaqaaiaahY7acaaMc8oa caGLiWoacaaMc8UaeqiUdeNaaiilaiaaysW7cqaHZoWzcaGGSaGaaG jbVlaahg8acaGGSaGaaGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaGaaiOlaaaa@5325@ Ensuite, il échantillonne π 2 ( ρ , ϕ , δ | μ , θ , γ , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiaahg8acaGGSaGa aGjbVlabew9aMjaacYcacaaMe8UaeqiTdqMaaGPaVdGaayjcSdGaaG PaVlaahY7acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaaaaa@5274@ en tirant d’abord une itération de π 2 ( δ | μ , θ , γ , y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiabes7aKjaaykW7 aiaawIa7aiaaykW7caWH8oGaaiilaiaaysW7cqaH4oqCcaGGSaGaaG jbVlabeo7aNjaacYcacaaMe8UaaCyEaaGaayjkaiaawMcaaiaacYca aaa@4B95@ une itération de π 2 ( ϕ | δ , μ , θ , γ , y ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiabew9aMjaaykW7 aiaawIa7aiaaykW7cqaH0oazcaGGSaGaaGjbVlaahY7acaGGSaGaaG jbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMaaiilaiaaysW7caWH5baa caGLOaGaayzkaaGaaiilaaaa@4F9A@ puis une itération de π 2 ( ρ | ϕ , δ , μ , θ , γ , y ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpe0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaadaabcaqaaiaahg8acaaMc8oa caGLiWoacaaMc8Uaeqy1dyMaaiilaiaaysW7cqaH0oazcaGGSaGaaG jbVlaahY7acaGGSaGaaGjbVlabeI7aXjaacYcacaaMe8Uaeq4SdCMa aiilaiaaysW7caWH5baacaGLOaGaayzkaaGaaiOlaaaa@5326@ La procédure complète se poursuit jusqu’à la convergence. Cela revient à utiliser un échantillonneur de Gibbs avec deux densités a posteriori conditionnelles, ce qui est, en fait, l’échantillonneur de Gibbs par blocs. La construction de l’échantillonneur de Gibbs par blocs est très efficace et il s’agit de l’une de nos principales contributions dans le présent article. En fait, nous pourrions donner à l’échantillonneur de Gibbs par blocs le nom d’échantillonneur de Gibbs « à grille » par blocs (Ritter et Tanner 1992).

Nous avons examiné la convergence de l’échantillonneur de Gibbs par blocs en utilisant des tracés, des graphiques d’autocorrélation et le test de stationnarité de Geweke. Les tracés (itérations en fonction du temps) renseignent sur la durée de la période de rodage requise pour éliminer l’effet des valeurs initiales. Les graphiques d’autocorrélation montrent la dépendance dans la chaîne et, par conséquent, ceux présentant de fortes corrélations entre de longs décalages sont le signe d’une mauvaise chaîne de mélange. Le test de Geweke compare les moyennes de la partie initiale et de la partie ultérieure de la chaîne de Markov en utilisant une statistique de score z , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaacY caaaa@3657@ où l’hypothèse nulle est que la chaîne est stationnaire; les valeurs p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFgFv0dd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0xi9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaayk W7aaa@3728@ sont toutes supérieures à 0,10. Nous avons utilisé les tracés, les graphiques d’autocorrélation et le test de Geweke pour chaque paramètre afin d’étudier la convergence de chaque exécution de l’échantillonneur de Gibbs par blocs. Pour nos données, nous avons tiré 2 000 échantillons et en avons utilisé 1 000 pour le rodage afin d’obtenir un échantillon de 1 000 itérations pour l’inférence. Cette période de rodage, qui est basée sur les tracés et le test de Geweke, est suffisamment longue pour obtenir des échantillons aléatoires. Les corrélations sont toutes non significatives, et, ce qui est intéressant, nous ne devons pas réduire les itérations. En outre, le test de Geweke donne la preuve de la stationnarité de notre échantillonneur. Donc, nous disposons d’un échantillonneur de Gibbs par blocs très efficace. L’exécution de la procédure en R prend quelques minutes. Nous avons appliqué la même procédure pour notre étude en simulation.


Date de modification :